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Abstract: The vibration of piping systems is one of the most important causes of accelerated equip-
ment wear and reduced work efficiency and safety. In this study, an active vibration control method
based on a fractional-order proportional–integral–derivative (PID) controller was proposed to sup-
press pipeline vibration and reduce pipeline damage. First, a mathematical model of the distributed
piping system was established using the finite element analysis method, and the characteristics of the
distributed piping system were studied effectively. Further, the time-frequency domain parameter
identification method was used to realise the system identification of the cross-point vibration transfer
function between the brake and sensor, and the particle swarm optimisation algorithm was utilised
to further optimise the transfer function parameters to improve the system identification accuracy.
Therefore, a fractional-order PID controller was designed using the D-decomposition method, and
the optimal controller parameters were obtained. The experimental and numerical simulation results
show that the improved system identification algorithm can significantly improve modelling accuracy.
In addition, the designed fractional-order PID controller can effectively reduce the system’s overshoot,
oscillation time, and adjustment time, thereby reducing the vibration response of piping systems.

Keywords: D-decomposition method; distributed piping system; fractional-order PID control; system
identification

1. Introduction

Distributed piping systems are crucial components for transporting liquids, gases, and
solid particles in nuclear power plants. Efficient operation of distributed piping systems is
crucial to the safety of nuclear power systems. In the process of system operation, owing
to the influence of the external environment or internal factors, the pipeline components
inevitably vibrate for a certain period. Owing to these vibrations, the efficiency of the
system is significantly reduced. When the vibration is severe enough to exceed the limit
that the pipeline can bear, it can cause fatigue failure of the distributed piping system
and even lead to serious accidents. Therefore, vibration control must be implemented in
distributed piping systems.

Active control is a common and effective method for controlling pipeline vibrations,
which can suppress vibrations by applying an active control force to counteract the vibration
force. This method is widely used for controlling vibrations in industrial systems [1–4].
Common active control methods include proportional–integral–derivative (PID) control [5,6],
linear quadratic regression (LQR) control [7,8], and reinforcement-learning control [9,10].
Proportional–integral–derivative (PID) control is a control method with simple principles,
convenient implementation, and good efficacy. Chen proposed a double closed-loop control
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system based on proportional–integral–derivative (PID) control to control the stick–slip
vibration of a drill string [11]. Ju et al. controlled a flexible arm independently by combining
the BP algorithm with PID control and showed that the control of BP–PID has a positive
impact on the vibration [12]. Hussin et al. used a proportional–integral–derivative (PID)
controller to control the vibration of a semi-active suspension system and employed the
AFA algorithm to tune the PID controller. The experimental results showed that the PID–
AFA could significantly reduce the sprung acceleration and human acceleration response
amplitudes than the other controllers [13]. Considering the influence of low-frequency
vibrations on a pipeline, Hong et al. adopted a PID controller to reduce the vibration of the
system. Proportional–integral–derivative control has a better effect than uncontrolled or
passive controls [14]. Gulbahce designed a tuner-based PID controller to control intelligent
beams. The experimental results proved that the designed controller was more efficient
and energy-efficient [15]. The above experimental data and results show that PID control
is a more effective vibration control method. However, it still has shortcomings, such as
insufficient control accuracy and a low degree of model matching.

Fractional-order PID control is an advanced type of controller established by some
scholars in recent years, which introduces the integral order, λ, and differential order, µ,
into traditional PID controllers [16–19]. The fractional-order PID controller has a higher
degree of freedom and matching than the conventional PID controller. Kavin et al. im-
plemented a fractional-order PID controller in a reverse-osmosis desalination system and
optimised the controller using the chaotic whale method [20]. Chiranjeevi proposed and
implemented a fractional-order proportional–integral–derivative (PID) controller that used
a pollination algorithm to control the motor speed, effectively improving the performance
of the system [21]. Frikh proposed a fractional-order proportional–integral–derivative
(PID) controller for wind turbine system speed control. The controller could obtain the
desired phase margin and unit-gain cross-frequency, and the superiority of the method was
verified by several performance evaluation indices [22]. Zheng et al. [23] proposed a robust
fractional-order PID controller for a permanent-magnet synchronous motor speed servo
system. Simulation results showed that the proposed method exhibited superior tracking
and disturbance rejection performance. Thelkar designed a fractional-order PID controller
to control the liquid level of a tank framework. The experiment proved that the fractional-
order PID controller can better address external disturbances and expand the vitality of
the framework [24]. Xu combined the traceback method with a fractional PID controller to
design a trajectory tracking control system and successfully applied it to the mobile robot
model. Experimental results showed that the algorithm was effective [25]. Despite active
control methods based on fractional PID having made significant achievements in both
theoretical research and practical applications, there are few studies on the application of
fractional PID to the vibration control of pipeline systems.

Therefore, this study innovatively adopts fractional-order PID control to realise the
vibration control of a distributed piping system. Moreover, the accuracy of the cross-point
vibration transfer function between the brake and sensor obtained using the system identi-
fication toolbox was effectively improved through the optimisation algorithm. Considering
the increase in controller parameters in the fractional-order PID controller, this study adopts
the D-decomposition method to define the boundaries IRB, CRB, and RRB of the stable re-
gion SR, providing a design method to determine the ideal control parameters by lowering
the system performance index.

The remainder of this study is organised as follows. Section 2 describes the finite
element modelling process of the distributed piping system and deduces the state-space
expressions. Section 3 presents the experimental identification of the system and further
reduces the difference between the transfer function and the finite element model using the
particle swarm optimisation algorithm. Section 4 introduces the design of the fractional-
order PID controller based on the D-decomposition method and describes the acquisition
process of the controller parameters. Section 5 presents experimental results on the designed
fractional-order PID controller. Finally, Section 6 provides conclusions.
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2. Preliminary
2.1. Finite Element Model

The distributed piping system is mainly composed of a pump, a control valve, and a
water purifier in a classical power plant. During operation, the water is sucked in by the
pipeline connected to the marine source through the pump and then flows into the purifier,
where the pollutants harmful to the pipeline material are purified and then flow into the
condenser. When the water flow exceeds a specified threshold, the excess water flows back
into the ocean through a control valve.

For modelling with finite elements, the following assumptions are made:

(1) The stiffness effect of the valve and pump are ignored, and only their inertial charac-
teristics are considered here;

(2) Condensers are much stiffer than pipes; therefore, a fixed boundary condition with
full degrees of freedom is imposed at the inlet nozzle of the condenser;

(3) Both the source and sink are considered to be fixed and all degrees of freedom are
constrained.

The distributed piping system is modelled using the ANSYS Parametric Design Lan-
guage (APDL). The straight-pipe model uses PIPE16 elements, as well as PIPE18 for elbows,
MASS21 for pumps and valves, and COMBIN14 for elastic support units. The construction
of pipeline network model is shown in Figure 1.
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Figure 1. Finite element model of the distributed piping system.

2.2. Fractional PID Control

A fractional-order controller is an advanced control method developed based on a
traditional controller in recent years, and it is very popular because of its better control
effect [26,27]. The traditional PID controller is a common control method used in industry,
which has the advantages of a simple principle and high reliability. However, the order
of integral and differential parts of traditional PID controller is 1, which limits the control
characteristics of the system to a great extent. The principle of a fractional-order PID
controller is to further improve the degree of freedom of the controller by adding an
integral operator and a differential operator. In the time domain, the fractional-order PID
controller is expressed as

u(t) = kp + ki Jλ
t + kdDµ

t (1)

The controller’s proportional gain, integral gain, and differential gain are, respectively,
denoted by the symbols kp, ki and kd. The controller’s integral operator and differential
operator are Jt

λ and Dt
µ, respectively. The controller’s integral order and differential order

are λ and µ, respectively. They meet the inequality 0 < λ, µ < 2. The transfer function of
the controller can be calculated by converting the expression of the fractional-order PID
controller from the time domain to the frequency domain as follows:

C(s) = kp +
ki

sλ
+ kdsµ (2)

3. System Identification Based on the Particle Swarm Optimization Strategy

The experiment uses the approach of system identification to build the vibration
transfer function across points between the brake and the sensor in the distributed piping
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system. The purpose of this treatment is to analyse the performance of the system more
effectively and visualize the control effect of the controller. The input and output experi-
mental data calculated by the finite element model are identified with the aid of the system
identification toolbox by choosing the appropriate number of zeros and poles, and the
parameters of the transfer function are optimized using the particle swarm optimization
algorithm to bring the output value of the transfer function model closer to the output
value calculated by the finite element mode. The sampling time of the system is 0.001 s,
and a total of 10,000 moments are taken, that is, data within 10 s.

The cross-point vibration transfer function between the system brake and the sensor
identified by the system identification toolbox is

G(z) =
0.0013z−1

1 + 0.6362z−1 + 0.4028z−2 (3)

A random search swarm intelligence optimization algorithm called particle swarm
optimization (PSO) mimics the foraging behaviour of birds. It is frequently utilized in a
variety of complex and nonlinear optimization problems because of its advantages of quick
convergence speed and excellent convergence accuracy. The velocity and position update
formulas of PSO are shown in Formulas (4) and (5):

vi = vi + c1rand × (pbesti − xi)
+c2rand × (gbesti − xi),

(4)

xi = xi + vi, i = 1, 2, . . . , n (5)

In the formula, vi is the particle update speed, c1 and c2 are the algorithm learning
factors, pbesti is the individual optimal solution, gbesti is the global optimal solution, xi is
the current particle position, and n is the number of particles in the population.

The PSO algorithm takes the model matching degree between the transfer function
model and the finite element model as the optimization goal. The model matching the
degree Formula is as follows:

J = 1 −

√√√√∑M
i=1(yi(t)− y′ i(t))

2

∑M
i=1(yi(t)− y(t))2 (6)

In the formula, yi(t) is the finite element output at the ith sampling time, and y′ i(t) is
the output of the transfer function model at the ith sampling time. If the degree of similarity
between the identified model and the real model is higher, the model’s fit index J is closer
to 1. The parameters of PSO are set as c1 = 0.9, c2 = 1.2. The cross-point vibration transfer
function between the system brake and the sensor obtained after the optimization of PSO is

G(z) =
3.2579 × 10−4 + 0.0015z−1

1 + 0.6361z−1 + 0.4028z−2 (7)

Then, the transfer Function (7) is converted from a discrete model to a continuous
model as follows:

G(s) =
0.0003258s2 + 2.548s + 4011

s2 + 909.4s + 4.599 × 106 (8)

Table 1 compares the outcomes of transfer function optimization using the PSO ap-
proach and the system identification toolbox. The table analysis demonstrates that the
transfer function optimized by PSO is closer to the vibration signal energy of the finite
element model with a higher degree of matching, which can be further increased after
identification by the system identification toolbox. The design environment of the sub-
sequent controller is more closely aligned with the distributed piping system due to the
model’s correctness.
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Table 1. Comparison results of the transfer function and finite element model.

Method Difference in Signal Energy Model Fit

The system
Identification toolbox 0.8042 83.09%

Particle swarm optimization 0.6148 88.03%

4. Design of the Fractional-Order PID Controller

Since the introduction of the order increases the complexity of controller parameter
optimization, this section adopts a D-decomposition algorithm to select the parameters of
the FOPID controller. Considering the cross-point vibration transfer function between the
system brake and the sensor as a second-order system, Equation (9) gives the expression of
the plant based on the model in the paper [28]:

G(s) =
n2sq2 + n1sq1 + n0sq0

m2sp2 + m1sp1 + m0sp0
≜

N(s)
D(s)

, (9)

Among these, p and q are the orders of D(s) and N(s), respectively, and satisfy the
inequalities p2 > p1 > p0 and q2 > q1 > q0. M and n are the coefficients of D(s) and N(s),
respectively. When the p and q values are integers, the system is an integer-order system.
When the p and q values are fractional, the system is a fractional-order system.

Figure 2 shows the system structure of the controlled object under the fractional-order
PID controller.
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Figure 2. System structure under fractional-order PID control.

In the diagram, R(s) stands for the system’s input, Y(s) is the output, and fe is the
external effect which mostly refers to the piping system’s excitation force. The controller
and control object, respectively, are denoted by C(s) and G(s). In the vibration reduction
control problem of the distributed piping system, to reduce the output value of vibration
as much as possible, the input value (expected value) R(s) is set to zero, that is, R(s) = 0, the
system structure diagram can be equivalent to Figure 3.
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According to Formula (2), the fractional-order PID controller can be expressed as
C(s) = kp +

ki
sλ + kdsµ. Therefore, the open-loop transfer function of the system can be

determined from the figure as follows:

Po(s) = C(s)G(s) =

(
kpsλ + ki + kdsλ+µ

)
N(s)

sλD(s)
(10)

The closed-loop transfer function of the system is

Pc(s) =
G(s)

1 + C(s)G(s)
=

sλN(s)
sλD(s) +

(
kpsλ + ki + kdsλ+µ

)
N(s)

(11)
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Then, an operator of system (11) is defined as

L(s) = sλD(s) +
(

kpsλ + ki + kdsλ+µ
)

N(s) (12)

It is possible to derive the operator L(s) expression with respect to the controller
parameters kp, ki, kd, λ and µ.

L
(
s, kp, ki, kd, λ, µ

)
= ∑2

σ=0 mσsp0+λ + nσsqσ (kpsλ + ki + kdsλ+µ), (13)

The values of the controller parameters kp, ki, kd, λ and µ determine the position and
area of the stability region (SR) of the system. Real root boundaries (RRB), infinite root
boundaries (IRB), and complicated root boundaries (CRB) make up the majority of the
boundaries of SR. The three boundaries are described in the D-decomposition approach
as follows:

RRB: When s = 0, the parameter condition when the operator L = 0 is made,

L
(
s = 0, kp, ki, kd, λ, µ

)
= n0sq0 ki = 0 (14)

IRB: In the literature [28], the author shows that the condition for the existence of IRB
is pn ≤ qn + µ, and pn and qn are the highest orders of polynomial D(s) and N(s), respectively.
On this basis, IRB can be expressed as

kd =


0 i f (pn = qn)or(pn > qn, µ > pn − qn)

±m2
n2

i f (pn > qn, µ = pn − qn)

none i f (pn > qn, µ < pn − qn)

(15)

To ensure the existence of the differential part in the controller, that is, the coefficient
kd ̸= 0, the differential order µ needs to satisfy the condition µ ≤ pn − qn.

CRB: Bring s = jω into Formula (13) and make its value equal to 0, then CRB can be
defined as

L
(

jω, kp, ki, kd, λ, µ
)
=

2

∑
σ=0

mσ(jω)p0+λ + nσ j(ω)qσ
(

kpsλ + ki + kd(jω)λ+µ
)
= 0 (16)

The expressions for the controller parameters kp, ki, kd, λ, µ and ω can be derived from
Formula (16):

Γ1H1(ω, λ) + kp H2(ω, λ) + ki H3(ω) + kd H4(ω, λ, µ) = 0

(ω, λ) + kpΓ2(ω, λ) + kiΓ3(ω) + kdΓ4(ω, λ, µ) = 0,
(17)

where
Γ1(ω, λ) = ∑2

σ=0 mσωpσ+λ cos (pσ+λ)π
2

Γ2(ω, λ) = ∑2
σ=0 nσωqσ+λ cos (qσ+λ)π

2

Γ3(ω) = ∑2
σ=0 nσωqσ cos qσπ

2

Γ2(ω, λ) = ∑2
σ=0 nσωqσ+λ+µ cos (qσ+λ+µ)π

2

H1(ω, λ) = ∑2
σ=0 mσωpσ+λ sin (pσ+λ)π

2

H2(ω, λ) = ∑2
σ=0 nσωqσ+λ sin (qσ+λ)π

2

H3(ω) =
2
∑

σ=0
nσωqσ sin qσπ

2

H4(ω, λ, µ) =
2
∑

σ=0
nσωqσ+λ+µ sin (qσ+λ+µ)π

2

(18)

Through derivation, the expressions of the controller parameters kp and ki can be
obtained as
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kp(ω, kd, λ, µ) =
Γ3(ω)H1(ω, λ)− Γ1(ω, λ)H3(ω) + kd[Γ3(ω)H4(ω, λ, µ)− Γ4(ω, λ, µ)H3(ω)]

Γ2(ω, λ)H3(ω)− Γ3(ω)H2(ω, λ)
, (19)

ki(ω, kd, λ, µ) =
Γ1(ω, λ)H2(ω, λ)− Γ2(ω, λ)H1(ω, λ) + kd[Γ4(ω, λ, µ)H2(ω, λ)− Γ2(ω, λ)H4(ω, λ, µ)]

Γ2(ω, λ)H3(ω)− Γ3(ω)H2(ω, λ)
(20)

4.1. Design of Parameters kp, ki, kd

When the controller order parameters λ and µ are given, the value range of kd can be
obtained through SR as 0 → kdsup . According to the definition of the phase angle margin
Pm and the crossover frequency ωc,{ ∣∣Po(s)

∣∣s=jωc = 1

arg
(

Po(s)|s=jωc

)
= −π + Pm

(21)

When bringing Formula (11) into Formula (21),

sλD(s) + (kpsλ + ki + kdsλ+µ)N(s)|s=jωc = 0 (22)

The relationship between the controller parameters kp, ki on kd, λ, µ is then derived:

kp(kd, λ, µ) =
Γ3cH1c(λ)− Γ1c(λ)H3c + kd[Γ3cH4c(λ, µ)− Γ4c(λ, µ)H3c]

Γ2c(λ)H3c − Γ3H2(λ)
(23)

ki(kd, λ, µ)

= Γ1c(λ)H2c(λ)−Γ2c(λ)H1c(λ)+kd [Γ4c(λ,µ)H2c(λ)−Γ2c(λ)H4c(λ,µ)]
Γ2c(λ)H3c−Γ3c H2c(λ)

(24)

where
Γ1c(λ) = ∑2

σ=0 mσωc
pσ+λ cos (pσ+λ)π

2

Γ2c(λ) = ∑2
σ=0 nσωc

qσ+λ cos( (qσ+λ)π
2 − Pm)

Γ3c = ∑2
σ=0 nσωc

qσ cos ( qσπ
2 − Pm)

Γ4c(λ, µ) = ∑2
σ=0 nσωc

qσ+λ+µ cos ( (qσ+λ+µ)π
2 − Pm)

H1c(λ) = ∑2
σ=0 mσωc

pσ+λ sin (pσ+λ)π
2

H2c(λ) = ∑2
σ=0 nσωc

qσ+λ sin ( (qσ+λ)π
2 − Pm)

H3c = ∑2
σ=0 nσωc

qσ sin ( qσπ
2 − Pm)

H4c(λ, µ) = ∑2
σ=0 nσωc

qσ+λ+µ sin ( (qσ+λ+µ)π
2 − Pm),

(25)

The following formula can be used to determine the controller parameter kd to ensure
that the system has the better performance:

Po(jω) =
Q(ω, kd) + jR(ω, kd)

Γ1(ω, λ) + jH1(ω, λ)
, (26)

where
Q(ω, kd) = kp(kd)Γ2(ω, λ) + ki(kd)Γ3(ω) + kdΓ4(ω, λ, µ)

R(ω, kd) = kp(kd)H2(ω, λ) + ki(kd)H3(ω) + kdH4(ω, λ, µ)
(27)

The argument of Po(jω) can be expressed as

arg(Po(jω)) = arctanΨ(ω, kd) + nπ (28)

where n is an integer and

Ψ(ω, kd) =
R(ω, kd)Γ1(ω, λ)− Q(ω, kd)Γ1(ω, λ)

Q(ω, kd)Γ1(ω, λ) + R(ω, kd)H1(ω, λ)
(29)
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To achieve optimal robustness, the controller parameter kd can be calculated using the
following formula:

kd = argmin
0≤kd<kdsup

∣∣∣∣∣ darg(Po(jω))

dω

∣∣∣∣
ω=ωc

∣∣∣∣∣ (30)

When the value of kd is obtained by calculation, the values of the controller parameters
kp and ki can be obtained according to Formula (12):

kp = kp(kd), ki = ki(kd) (31)

The value range of parameter ω is [ωmin, ωmax], and the values of ωmin and ωmax
satisfy the following conditions:

ωmin : kp(ωmin) = 0 and kp
(
ω+

min
)
< 0

ωmax : ωmax > ωmin, kp(ωmax) ≥ 0
(32)

4.2. Design of Parameters λ and µ

The values of kp, ki and kd only depend on the order λ and µ according to Formulas (30)
and (31). The time multiplied by the integral of the absolute value of the error (ITAE) is
chosen as the performance index of the controller to achieve the best response performance
of the control system, i.e.,

JITAE =
∫ ∞

0
t|e(t)|dt (33)

Among them, e(t) is the error signal in the control system. By finding the λ and µ
values that minimize the performance index JITAE value, the values of parameters kp, ki and
kd are further determined according to Formulas (30) and (31):

kd = argmin
0≤kd<kdsup

∣∣∣∣∣∣
d(arctan ( R(ω,kd)Γ1(ω,λ)−Q(ω,kd)H1(ω,λ)

Q(ω,kd)Γ1(ω,λ)+R(ω,kd)H1(ω,λ) ) + nπ)

dω

∣∣∣∣∣∣
ω=ωc

∣∣∣∣∣∣ (34)

kp = kp(kd), ki = ki(kd) (35)

4.3. Design Process

In this section, the specific steps to obtain the parameters of the fractional-order
controller using the D-decomposition method are given as follows.

Step 1 Initialize the following data, including

p2, p1, p0, q2, q1, q0, m2, m1, m0, n2, n1, n0.

Set the phase angle margin Pm and the crossover frequency ωc.
Step 2 In order to ensure the existence of the differential part in the fractional order

controller, according to Formula (15), it obtains kd ̸= 0 and the differential order must satisfy
the condition µ ≤ pn − qn. When the order parameters λ and µ gradually increase from low
to high, the value range 0 → kdsup of the controller parameter kd is calculated according
to SR.

Step 3 The values of the controller parameters kp, ki and kd under the conditions
of traversal λ ∈ (0, 2) and µ ∈ (0, 2) are calculated sequentially through Formulas (34)
and (35), and the performance index JITAE of the controller is calculated according to
Formula (33).

Step 4 The planned fractional-order PID controller’s parameter value is determined
by finding the values of kp, ki, kd, λ and µ, that minimize the performance index JITAE.



Fractal Fract. 2024, 8, 122 9 of 13

5. Experimental Results

According to Formula (8), the controlled object of the system is

G(s) =
0.0003258s2 + 2.548s + 4011

s2 + 909.4s + 4.599 × 106 (36)

As can be seen from Formula (36), the coefficient of s2 is much lower than the other
coefficients, so it is simplified here. The transfer function G(s) can be approximated as

G′(s) =
2.548s + 4011

s2 + 909.4s + 4.599 × 106 (37)

The transfer functions G′(s) serve as the foundation for the fractional-order PID
controller, and their initialisation G′(s) yields the following information:

G′(s) :
p2 = 2, p1 = 1, p0 = 0, q1 = 1, q0 = 0,
m2 = 1, m1 = 909.4, m0 = 4.599 × 106,

n1 = 2.548, n0 = 4011.

Set the phase angle margin Pm = 7π/10 and the crossover frequency ωc = 1500, and
calculate the RRB, IRB.

RRB: ki = 0, IRB: kd = none.
From Step 2, the value range of the order parameter of the fractional-order PID

controller must be λ ∈ (0, 2) and µ ∈ (0, 2). Calculate the position of the system stability
interval SR under the conditions of different integral and differential orders and determine
the value range of ω as [ωmin , ωmax]. Taking λ = 1.5 and µ = 0.5 as examples, the kdsup value
of the transfer functions is obtained as kdsup = 13. Figure 4 shows the SR of the transfer
functions G′(s) under different kd values. From the graph analysis, as kd increases, the SR
area of the system gradually decreases.
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According to Formula (34), the relationship between the optimal kd value and λ, µ
under the conditions of different order parameters λ and µ is obtained, as shown in Figure 5.

Given the parameters kdbest, λ and µ, the performance index JITAE of the control system
under different conditions is calculated. Figure 6 depicts the link between JITAE and
parameters λ, µ. The graph analysis reveals that the integral order λ has a significant
impact on the JITAE of the system while the differential order µ has less of an impact.
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Under the condition of Pm = 7π/10 and ωc = 1500, when the order parameters of the
transfer function are λ = 1.6 and µ = 0.5, the minimum value of the performance index JITAE
is JITAE = 6.913 × 10−9.

Consequently, the intended fractional-order PID controller parameters can be ob-
tained as

C1(s) = 8.215 × 102 +
9.863 × 107

s1.6 + s0.5 (38)

By setting the order to one and using the same method, the parameters of the PID
controller are designed as follows:

C2(s) = 187.833 +
9.043 × 105

s
+ 0.100 s (39)

Figure 7 shows the responses of the transfer functions G′(s) under fractional-order and
integer-order PID controls, indicating that the control system has a significant overshoot
and many oscillations following the addition of the integer-order PID controller. Excessive
overshoot significantly affects the system’s performance. In some practical engineering
systems, an excessive overshoot may lead to devastating consequences that are not allowed.
More oscillations and longer adjustment times also significantly reduced the system’s
stability. The addition of the fractional-order PID controller reduces the system’s overshoot
and the number of oscillations based on the PID controller, shortens the system’s adjustment
time, significantly enhances the system’s performance, and boosts the quality and efficiency
of control owing to the introduction of two parameters of the fractional-order PID controller,
which makes the controller province more compatible with the controlled object and
improves the controlled freedom.
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Figure 8 shows the output of the system vibration for a distributed piping system
without a controller, with a PID controller and with a fractional-order PID controller. The
PID controller can reduce the vibration of the piping system. According to the analysis
shown in the figure, its control effect is limited. However, this approach is insufficient
for demanding control systems. The fractional-order PID controller, based on the PID
controller, can further reduce the vibration output of the piping system. The vibration
amplitude can be maintained within a particular range, thereby reducing damage to the
pipeline and improving its continuous use time. Therefore, the reference of the integral
order λ and differential order µ in a fractional-order PID controller can improve the control
precision of the controller and obtain a better control effect.
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6. Conclusions

This study proposes a design approach for a fractional-order proportional–integral–
derivative (PID) controller for vibration reduction in distributed piping systems. This
technique uses the D-decomposition approach to determine the IRB, CRB, and RRB bound-
aries of the SR and achieves the best possible control of the controlled object by lowering
the system’s JITAE performance index. In the process of system identification of the pipe
network, the system identification toolbox was used to realise the system identification
of the vibration transfer function between the brakes and the sensor. A comparative anal-
ysis showed that the transfer function has the potential to further improve the degree of
fit of the model. Therefore, PSO was adopted, and the matching degree of the transfer
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function model was used as the optimisation goal. The parameter values of the transfer
function were further optimised such that the calculated and improved transfer function
was closer to the finite element model in terms of accuracy. Subsequently, a fractional-order
PID controller designed using the D-decomposition method was applied to the transfer
function. The experimental results demonstrate that the proposed fractional-order PID
controller can significantly minimise the overshoot of the original system, number of oscil-
lations, and adjustment time. In addition, it has a substantially better suppressive effect on
pipeline vibrations than the PID controller. Consequently, a fractional-order PID controller
is more suitable for suppressing vibrations in the distributed piping system of a power
plant. Considering their superiority over integer-order PID controllers, fractional-order
PID controllers in different fields remain an exploratory direction for future work.
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