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Abstract: To achieve high-precision deflection control of a Magnetically Suspended Control and
Sensitive Gyroscope rotor under high dynamic conditions, a deflection decoupling method using
Quantum Radial Basis Function Neural Network and fractional-order terminal sliding mode control
is proposed. The convergence speed and time complexity of the neural network controller limit the
control accuracy and stability of rotor deflection under high-bandwidth conditions. To solve the
problem, a quantum-computing-based structure optimization method for the Radial Basis Function
Neural Network is proposed for the first time, where the input and the center of hidden layer basis
function of the neural network are quantum-coded, and quantum rotation gates are designed to
replace the Gaussian function. The parallel characteristic of quantum computing is utilized to reduce
the time complexity and improve the convergence speed of the neural network. On top of that, in
order to further address the issue of input jitter, a fractional-order terminal sliding mode controller
based on the Quantum Radial Basis Function Neural Network is designed, the fractional-order
differential sliding mode surface and the fractional-order convergence law are proposed to reduce
the input jitter and achieve finite-time convergence of the controller, and the Quantum Radial Basis
Function Neural Network is used to approximate the residual coupling and external disturbances of
the system, resulting in improving the rotor deflection control accuracy. The semi-physical simulation
experiments demonstrate the effectiveness and superiority of the proposed method.

Keywords: magnetically suspended control and sensitive gyroscope; high-precision decoupling
control; quantum radial basis function neural network; fractional-order terminal sliding mode control

1. Introduction

Magnetically Suspended Control Sensitive Gyroscope (MSCSG) is a new type of actua-
tor for spacecraft attitude control [1]. Unlike existing single-functional magnetic suspension
control moment gyroscopes or magnetic suspension rate gyroscopes, the MSCSG has the
outstanding advantage of simultaneous control and sensing and has great potential for
high-accuracy control. However, there are challenges and difficulties in realizing high-
precision control of MSCSG. Some of the key factors that affect the high-precision and
high-bandwidth control of MSCSG are the problems of constant speed, suspension accuracy,
and stability of the high-speed magnetic suspension rotor. The magnetic suspension rotor is
a complex system with highly dynamic, nonlinear, and strongly coupled characteristics [2].
When subjected to external disturbances, the rotor will generate displacement, affecting
the suspension accuracy of the rotor. Therefore, external disturbances must be suppressed.
When controlling the high dynamic deflection of the rotor to output control moment, the
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real-time performance of the control system will affect the moment accuracy. There are
currently various control methods for magnetically suspended rotor decoupling control,
such as PID decoupling control [3], sliding mode control [4], and self-adaptive decoupling
control [5]. In addition, there are decoupling control methods that combine traditional
methods with neural networks [6].

Ren analyzed the effect of cross-coupling and feedforward channel delays on the
stability of PID cross-feedback decoupling control [7] and proved that the cross-coupling
channel delay is the main factor affecting stability. However, he did not propose an effective
method of delayed compensation.

Xia proposed a feedforward internal model decoupling control method for magneti-
cally suspended rotor [8]; however, the model’s accuracy limits the control accuracy at high
bandwidths.

Wang proposed a control method for the magnetically suspended rotor using active
disturbance rejection control (ADRC) [9], which achieved high-accuracy control of the de-
flection channel under external perturbation conditions, but the adjustment of the controller
parameters was complicated. Yin proposed a state feedback self-adaptive disturbance rotor
control method, but did not consider the decoupling accuracy problem under high-dynamic
conditions. Reference [10] proposed an RBF neural network ADRC method, which achieved
self-adaptive parameter adjustment through neural networks and improved the system’s ro-
bustness. However, all three methods adopted active disturbance rejection control (ADRC),
which makes it difficult to adjust the parameters [11]. Moreover, the second-order extended
state observer essentially belongs to an integral system [12,13], which will cause a lag effect
on the system, which is inadvisable for high-dynamic disturbance observation and control.

Sliding mode control (SMC) can effectively address high-precision control under
external disturbance conditions [14]. Dou proposed a rotor neural network sliding mode
control method to improve system robustness [15]. Zheng proposed an SMC method for a
satellite magnetically suspended rotor [16]. Wang proposed a terminal SMC method for
magnetically suspended flywheels [17]. Some studies focus on improving the performance
of the controller by using fractional-order theory [18,19]. Zhang proposed a fractional-order
PD attitude control method for spacecraft with flexible attachments [20]. Yu proposed a
model-free fractional-order sliding mode controller with a nonlinear disturbance observer
that has good dynamic response and strong robustness [21]. These methods achieved
convergence within a limited time; however, the problem of input jitter under high dynamic
conditions remains [22].

Neural network control has potential in the field of nonlinear system control by gen-
eral approximation of unknown functions. The Radial Basis Function Neural Network
(RBF-NN) is a multi-layer feed-forward neural network with a simple structure that can
approximate nonlinear functions with arbitrary accuracy and is widely used in the con-
trol of nonlinear systems [23,24]. However, the network structure and time complexity
constraints unavoidably affect the approximation performance under high-dynamic dis-
turbances [25]. Some scholars have improved the approximation accuracy and dynamic
performance of neural networks by introducing the idea of quantum computing for opti-
mizing network parameters and structures [26,27]. L. proposed a BP neural network based
on universal quantum gates, which improved the convergence rate of the network [28].
Li proposed a quantum neural network model based on controllable Hadamard gates,
which improved the approximation accuracy of the network [29]; Ye used quantum evo-
lutionary algorithms for parameter tuning of neural network PID controllers, achieving
certain effects [30]. As for the Quantum Radial Basis Function Neural Network (QRBF-NN),
Liu proposed a method to improve RBF using quantum coding, and simulations showed
that QRBF-NN outperforms RBF in image recognition [31]. Shao proposed two quantum
algorithms to train RBF networks, which sped up the training [32]. However, these methods
only improve the network performance based on traditional quantum gate circuit neural
networks without improving the network structure, resulting in limited effects for high-
bandwidth nonlinear systems. Due to the high dynamic characteristics of MSCSG rotors,
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the real-time performance of traditional neural networks further magnifies the impact on
control accuracy.

In summary, the traditional MSCSG rotor neural network control method has the
following problems: (1) High network time complexity, which affects the high-frequency
deflection control accuracy of the rotor. (2) Controller design needs to be further optimized
to speed up the convergence speed and reduce the input jitter. To solve these problems,
in this paper, a decoupling control method for rotor deflection based on QRBF-NN and
terminal sliding mode control is proposed. Firstly, the RBF neural network structure is
optimized using the idea of quantum computing. Exploiting the parallel characteristic of
quantum computing, the time complexity of the network is reduced, thereby enhancing
the approximation accuracy under high-bandwidth conditions. Secondly, a fractional-
order terminal sliding mode controller based on QRBF-NN is designed, incorporating a
fractional-order sliding surface and fractional-order approaching law to reduce input jitter
and improve control accuracy. Finally, the effectiveness and superiority of the proposed
method are validated through semi-physical simulation.

The paper is organized as follows: Section 2 describes the modeling of MSCSG.
Section 3 provides the QRBF-NN and controller design and two relevant theorems. Section 4
presents the simulations and comparisons. Section 5 draws a conclusion of the research.

To the best of the authors” knowledge, the result presented in this paper is the first
attempt in the literature to accomplish MSCSG rotor high-precision deflection decoupling
control using QRBF-NN.

2. Dynamic Molding of In-Orbit MSCSG

MSCSG utilizes a Lorentz force magnetic bearing (LFMB) as a moment actuator to
achieve radial deflection of the rotor, and its principles of operation are shown in Figure 1.
The LFMB coordinate system, defined by OX,Y,Z,, is fixed to the LFMB stator, and O is
the centroid of the spherical rotor. The rotor coordinate system OX,Y,Z, is tied up with the
magnetic suspension rotor, but cannot rotate around O,Z,. When the rotor does not deflect,
each axis of O,X;Y;Z, coincides with that of OX;Y¢Z,. The rotor deflects at angles of « and
p around OX¢ and OYj.

Z{Zs)

Rotor

Gyro Room Zg(Z" )
<

LFMB coordinate system

Rotor coordinate system

LFMB coils

(a) (b)

Figure 1. Schematic diagram of MSCSG structure: (a) section view of MSCSG, (b) coordinate

system definition.

When the coil is perpendicular to the magnetic field and a current is passed through it,
an amperometric force perpendicular to the direction of the coil and the magnetic field will
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be generated in the upper and lower parts of the coil, respectively. The magnitude of the
force can be expressed as

() 2NBL(I; + I) . L+13
o= (5) = Gaetn 1) =2vee (G55 ) w
where fy, fy are ampere forces in the X,- and Y,-axis directions, respectively. N is the
number of turns in the coil of LEMB; B is the magnetic field strength; L is the length of the
coil; I, I are the coil driving currents in the positive and negative directions of the X¢-axis;
respectively; and I3, I are the same currents of the Y-axis, respectively. Suppose that
Iy = I3 = o, I, = Iy = Ip; when coils of opposite directions are fed with equal currents

of opposite directions, the coils will produce equal and opposite ampere forces. It can be
inferred that the LFMB provides deflection moments in the X and Y directions as follows:

Ty = 4NBLIyly 2
Ty = 4NBLIylg

where [, represents the stator radius of the LFMB.

Suppose that each axis of OX;YZ, coincides with that of the spacecraft coordinate
system. The angular velocity of the LFMB coordinate system with respect to the inertial
coordinate system is w!, and the angular velocity of the rotor coordinate system with

respect to the LFMB coordinate system is projected in the LEFMB coordinate system as wy.

The projection of the angular velocity of the rotor relative to the inertial space in the rotor
coordinate system can be expressed as

w;,=C (w‘fﬂué) , (3)

where Cg represents the transformation matrices from the LEMB coordinate system to
the rotor coordinate system. Since the angular velocity components of the rotor coor-

dinate system around the stator coordinate system are «, § and 0, respectively, one has

S _ | 7 T h i T
wr—[zx B O} . Suppose that wy = [wy Wy w:] .

In actual engineering, « and f are less than 1073 rad:

1 0 -8 1 00
Co~ |0 1 a|=~]|0 1 0. 4)
g —a 1 0 01
One has
&+ wy
w;}, = ﬁ + wy |- )
Wy

I,, I, denote the rotor moment of inertia in the axial and radial directions around the
stator, respectively. The rotor angular momentum is

I, 00
H=|0 I, 0[(Q+d),), (6)
0 0 I

whereQ=1[0 0 Q] T, and () is the constant rotational speed of the rotor about the z-axis.
The dynamic equation of the magnetically suspended rotor in the rotor coordinate
system can be expressed as

M =w!, xH +H, )
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where M is the total external moment applied to the rotor. H is the rate of change in the
rotor angular momentum.
The rotor angular momentum and its rate of change can be written as

I (& + wy) I (& + wx)
H = |L(B+w) | H = | L(B+a,) |. ®)
L(w: + Q) Lw:

According to Euler’s dynamics equation, the in-orbit MSCSG radial dynamics model
can be expressed as

{ To = (L = 1) (B+wy ) ws + LO(B+wy ) + L (i + @) + o

Ty = (I — 1) (& + wo)w: = LO( +wx) + I (B+ @y ) +dy

where d, and dy represent the unknown disturbances in the Xg— and Yg-axis directions,
respectively.

3. Design of QRBF-NN and Controller
3.1. Quantum-Computing-Based Structure Optimization Method of RBF-NN

As shown in Figure 2, an n-dimensional input vector X = [x1,%0,+ -, xn]T it can be
transformed into a diagonal matrix |X) in an n-dimensional Hilbert space.

|1X) = diag(|x1), |[x1), -+, [xn)), (10)
where ) )
T . 7T
|x;) —cos(1+exi>|0>+sm<l+exi)|1), (11)
where & = —2Z_ is the quantum phase angle for the i-th input.
Tie & q p g p
Quantum
rotation gates f
X1 V1
N Quantum R(C) .
coding
Xn Ym

Figure 2. Schematic diagram of QRBEF.

For an RBF neural network with n inputs and N neurons, the hidden layer center can
be expressed as

€11 -+ CIN
c= |+ .. | (12)

Cnl " CuN
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Through quantum coding, the hidden layer center can be rewritten as

Cn ClN
C=1|: . (13)
Cn CuN
where
Cl‘]‘IZkT[M,izl"‘”;j:l"'N~ (14)
an — C1j

The quantum rotation gate is designed to replace the hidden layer center by introduc-
ing quantum computing concepts. The quantum rotation gate can be expressed as

T
R(Cy1) -+ R(Cin)
R(C)=| + - : , (15)
R(Cnl) e R(CnN)
where
ij—C1j ij—C1
R(C;) = Cos<27'(cn’ 7;1’]_) Sm<2”c]]—clj-) 16)
1 - O O
/ sin (27‘(5:1]] _?1]] ) cos <2n%>

In a traditional RBF neural network, the role of the hidden layer is to map a vector
from a low-dimensional m to a high-dimensional n, making linearly inseparable cases in
low dimensions become linearly separable in high dimensions. The output of the hidden
layer can be expressed as

hi—exp<—”X20§1'>,i—1,z,...,m, 17)

where X = [x1,xp,- -, xn]T denotes the network input vector, n, m, respectively represents
the number of nodes in the input layer and hidden layer, &; represents the Gaussian basis
function, and o = [0y, 09, - - - , 03] stands for the network product-width.

The input after undergoing quantum rotation gate transformation can be expressed as

T
|x11) - |xN)
R(O)|X) = : : , (18)
Xu1) o [xm)
where
N\ 21 2 Cij—¢cj 0
[xj) = cos{ 55 + 275, =; ) 10) (19)
+sin (25 + 2 1)
14e™%i Cpj—C1j

The sum of the probability amplitudes of |1) is used as the neuron output. Define the
output of the jth neurons as

+e % Cpj — C1j

< 5. 27 Cij = C1j
(X)) = Zsm(@i + Cl-]-) = Zsm i + 27 . (20)
i=1 i=1
The definition domain of f;(|X)) is [-7, n]. A non-linear mapping can be constructed:

g(x) = cos (%x) (21)
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The output of the hidden layer in QRBF-NN can be written as
T

B (%) = g(f(1X))) :cos<2n§sm<a+cg))- @

1=

The output of the QRBF-NN can be expressed as

- T
y=) kF(|X)) =K'F(X)), j=12,...,N. (23)
=1

IFi(1%)) — F(1%))

cos <

IN

sl
8n2

IN

pisl
4n

IN

2sin {51 ( i sin(; + Cjj) + f; sin (¢} + C,ﬂ)} sin {51 ( i sin(&; + Cjj) — i sin (¢} + Cij))} ‘
i=1 i=1 ] i
(i sin(éi + Ci]‘) + i Sin((;‘; + Cﬁ)) (i Sin(gi + Cij) — f Sin(gl{ + Cz’j)) ‘
i=1 i=1 i=1 i=1
'i‘l sin(éi + Cl]) — ‘i:l sin (51’ + Cl])

2
%@%Mi—éz’-ﬁ

The following proves that the input to output of QRBF-NN is a continuous mapping.

] T
For a real-valued input, X = [xl,x2,~~-,xn]T and X' = [x{,xb,---,x,],

. 27 - . .

since ¢; = ;- is a continuous mapping.

Theorem 1. The QRBF-NN designed in this paper can approximate any continuous function
uniformly on any compact set and any measurable function arbitrarily.

Definition 1.1. K: R" — Ris an integrable bounded function such that K is continuous and [, K(x) dx # 0;
the family Sy consists of functions g: R” — Rrepresented by

g(x) = iwiK(x;Zi) (24)

where M € N, > 0,w; € R,z; € R" fori =1... M. L(R") denotes the usual spaces of R-valued
maps f defined on R”.

Lemma 1.1. Let y be a finite measure on R", f € L(R"), and the family Sy is dense in C(R") with
respect to the metric p, defined by [33]:

ou(f,g) = inf{e > 0: p{x € R": |f(x) —g(x)| > ¢} <e}. (25)

Lemma 1.1 establishes that under certain mild conditions on the kernel function,
networks with one hidden layer and the same smoothing factor in each kernel are broad
enough for universal approximation. We will use this lemma to prove that QRBF-NN has
similar properties.

Proof of Theorem 1. Firstly, we prove that the mapping from input to output of a QRBF-NN
is a continuous function.
Ve > 0,30 >0, |X— X'|| < 0,and one has |¢; — /| <e.

i=1

i=1 1=

(26)

Ve’ > 0,30" = %¢' > 0,and when |§; — §}| < ¢/, one has [F — F'| < ¢'.
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N
Since y = ¥ kjF;(|X)), Ve” > 0and J0” > 0; when |F;(|X)) — F/;(|X))| < 0", one
j=1
has |y — y'| < ¢, which means the mapping from input to output of a QRBF-NN is a
measurable continuous function from R" — R.
Secondly, we prove that F(|X)) satisfies the conditions on K in Definition 1.1.

Fi(|X)) = cos (27; él sin(¢; + Cij))

. - @7)
= cos (27;1';1 sin(lf;xi + Cl-]-) >

Let ¢(x;) = <1+267in + Cij), e(P(x;)) = %ié sin(i(x;)). Itis clear that (x;) is in the

range [04n]; thus, ¢(¢(x;)) is in the range [—%,5]|, which means

Jrr Fi(1X)) dx; = [pr cos(@(p(x;))) dx; # 0.
The proof is finished. [J

Theorem 2. The QRBF-NN designed in this paper outperforms RBF-NN in terms of time
complexity when the neuron number N is large enough.

Proof of Theorem 2. The kernel function of RBF-NN can be expressed as
igl (Xiici)z
frep =€ 27 . (28)
The kernel function of RBF-NN can be expressed as
T 2r
fQRBF = COS <2ni—l sin (He_xl + C1]> > . (29)

Suppose t; is one unit of CPU time for addition or subtraction, ¢; is one unit of CPU
time for multiplication or division, t3 is one unit of CPU time for exponentiation, and ¢,
is one unit of CPU time for sine or cosine operation. Nested loops are avoided because
QRBF-NN uses matrix operations. Then, the time complexity of one kernel operation of
RBEF-NN and QRBF-NN can be written as

O(fRBF) = (3n—1)t1 + (Tl+3)t2+t3, (30)

O(fQRBF) = (3H—1)t1+(7l+1)fz+nt3+(Vl—|—1)t4. (31)

It seems that the time complexity of a kernel operation of QRBF-NN is larger than that
of RBF-NN. However, due to the parallel nature of quantum computing, operations on
N neurons in QRBF-NN are simultaneous while operations on N neurons in RBE-NN are
cyclic. Thus, for an RBE-NN with N neurons, the time complexity is

O(N'fRBF) = N(3Tl—1)t1 +N(Tl+3)f2+Nt3, (32)
while O(N . fQRBF) = O(fQRBF)- One has

O(N . fRBF) — O(N . fQRBF) = (N — 1)(371 — 1)t1 +(Nn+3N—-—n— 1)1’2 + (N — I’I)t3 — (7’[ + 1)t4. (33)
O(N ' fRBF) > O(N . fQRBF) if and only if

(N=1)Bn—1)t; + (Nn+3N —n—1)ty + (N —n)tz > (n+ 1)ty, (34)

which is easy to achieve when N is large enough.
The proof is finished. [
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Moreover, since the definition domain of C ij is [—0, 27t], which covers the whole range
of rotation angles, C;; does not have to be adjusted. The only parameter that needs to be
adjusted in QBF-NN is K, while C;, 0, and K are the parameters to be adjusted in RBF-NN.

It can be obtained that the QRBF-NN has a lower time complexity than RBF-NN, and
as the number of network neurons increases, the gap will become more and more obvious.

3.2. Design of Fractional-Order Terminal Sliding Mode Controller Based on QRBF-NN

Aiming at the strong coupling, high dynamics, and nonlinearity of the magnetic
suspended rotor system, based on the use of QRBF to approximate the system disturbances,
we propose a terminal sliding mode controller based on the combination of a fractional-
order sliding mode surface and a fractional-order convergence law in order to achieve
system decoupling and to reduce the input jitter.

Combining the perturbation terms, one obtains
[Tx] B { Is IZQ] il | [ EOw, + (- 1) (ﬁ + wy)wz + Loy + dy )

Ty —LQ Ls —LOwy + (I — L) (& + wy) ws + Ly +dy |

p

As shown in Figure 3, feedforward compensation is used to decouple the two degrees
of freedom of rotor deflection. The control system diagram is shown Figure 4.

A.\’
U 4 N Tx 4 N
X + + .
» D, (s) > > G, (5) —+>o+——> a
+
D, (s) G,,(s)
D, (s) G, (s)
U |, vl
- > Dy, (s) >0 » Gy (s) —>
\_ Inverse System ) AyT+ \_ MSCSG )

Figure 3. Feedforward compensation decoupling.

[Ad;]::ive }{ ORBE } i & B

A
v U ( N i
Equivalent Iy
L sliding T,
Fractional- —

order
Terminal
Sliding
Mode
Surface

control law

Fractional-
order
convergence

» D, (s OO

» \__Inverse system JAT
N
Control Object

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

4
s=e+mD"'e+né’ __pv (k-sgn(s))
Control Law |

Figure 4. Control system diagram.

Here,

Dn(s) Dp(s)] _ [E2 I, -1
[DZ(S) DZ(S)}_ [_ 101 . (36)
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-1
{Gn(s) Glz(s)} _ [ Ls IZQ} 37)
G21 (S) G22 (S) —IZQ Iis ’
The decoupled system can be written as
EQ | T,
R [ "

where Ay and Ay are the disturbances of the X,-axis and Y¢-axis, respectively. QRBF-NN is
used to approximate [Ay Ay ] T,

Ax] |:K£F( |X>)] [Sx:|
= + . 39
&) = izt < 2 )
Taking the example of deviation around the Yg-axis,

Ay = KIF(|X)) + &5, (40)

where g, represents the network approximation error. Then, the output of the RBF network
can be expressed as

Ay = KiF(|X)). (41)
The ideal steering angle tracking command is B, and the tracking error is defined as

e = By — B. To achieve fast convergence of the system in finite time, the fractional-order
terminal sliding mode surface is designed as

q
s=e+mD " le+nev, (42)

where p and g are odd numbers and p > g, m and 7 are the sliding mode surface parameters
and m >0 and n > 0, and r is the differential order and satisfies r € (0,1). According to the
definition of RL fractional-order differentiation,

RLyr _ L/t 1
0 th(t) - F(r) 0 (t T) f(T)dT (43)
One has .
§=eé+mDleteMer

. . 44)
p 11 Uy 12202 Ay (
:e+mDre+%e" <ﬁb—? 7 [H-?)
Assuming that s = 0, the equivalent control law can be obtained as follows:
25 BO? pi-1. A
Useg = I\ By + =7 B+ gt 7 (e+mD%) ) + Ay. (45)
r
The fractional-order sliding mode reaching law is designed as follows:
$ = —D'(k-sgn(s)), (46)

where k is the reaching law parameter, and ¢ is the differential order and satisfies t € (0,1).
The control law can be expressed as

202 1

U, =12 B —l—IZ ,B—I—ﬁé 7%(é+mDre) + Ay + D'(k - sgn(s)) (47)
x — ir b Irz nq X g 7

where . o
—Ay + Ay = KIF(|X)) + e — K F(]X)) = K, F(|X)) +e. (48)
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- T =T
K{F(|X)) — K.F(|X)) = K. F(]X)). (49)
Define the Lyapunov function as
1 1 —r-
L= 552 + E'nyKx, (50)
where v > 0.
Taking the derivative of Equation (49) yields
~ . =T
L =ss+ 7K, Ky
| ~T ~T<
= spler ™ (<K, (X)) — & — D' (ksgn(s)) ) +1KcKa
~T 19 . 1 (51)
= —K, s{é—pe” F(|X)) — Ky ) — %el’ s(e + D'(ksgn(s)))
~T A 1,1 ~ . 171
= K, s%eﬁ’ F(|X)) — 7Ky +s%e” (—e — D'(ksgn(s)))
Designing the adaptive law as
- nq 1
K, =s——¢é? F(|X)), (52)
o= s e E(X)
one has ,
11
L= s{épe” (—e — D' (ksgn(s))) )
< Mg (—se — D'kls])
~ Iy

- .
Since %e” ! >0, when Dtk > ¢, L <0.
T

It can be seen that for unknown external disturbances d, the system can be stabilized
as long as k is selected. There is no restriction on the bandwidth or derivative of d. The
proposed method can take full advantage of the high-bandwidth moment output by MSCSG
and the fast convergence property of the QRBF to suppress spacecraft micro-vibrations.

4. Semi-Physical Simulation
4.1. Simulation Analysis of QRBF-NN Approximation Performance

Firstly, simulations were conducted to compare the approximation accuracy and
approximation speed of RBF and QRBEF. The objective function was set as a sine function
with an amplitude of 1 and frequencies of 1 Hz, 10 Hz, and 100 Hz. The training was
conducted continuously for 20 iterations, with the root mean square error of approximation

error used as the criterion. The results are shown in Tables 1 and 2.

Table 1. Approximation error of RBF-NN and QRBF-NN.

Bandwidth Network Type Min (s) Mean (s)
H RBF 0.003261 0.003677 6.55 x 1078
z QRBF 0.001778 0.001778 350 x 10724
0H RBF 0.031547 0.043651 241 x 1078
z QRBF 0.017781 0.017780 472 x 10~22
100 Hz RBF 0.249943 0.299523 0.001202

QRBF 0.178042 0.178041 7.52 x 10~20




Fractal Fract. 2024, 8, 120 12 of 20

Table 2. Time complexity of RBF-NN and QRBF-NN.

Bandwidth Network Type Min (s) Mean (s)
1H RBF 2.1199415 2.212232405
z QRBF 0.9361242 1.034356325
10H RBF 2.1611742 2.28721176
z QRBF 0.9521237 1.03840404
100 1 RBF 2.1957421 2.385841465
z QRBF 0.9530300 1.03328098

It can be observed from Table 1 that as the bandwidth of the objective function increases,
the approximation error of both neural networks also increases. However, when the band-
width of the objective function is set at 1 Hz, 10 Hz, and 100 Hz, QRBF-NN consistently
exhibits lower approximation errors compared to the traditional RBF-NN network.

It can be observed from Table 2 that when the bandwidth of the objective function
is set at 1 Hz, 10 Hz, and 100 Hz, QRBF-NN consistently exhibits lower time complexity
compared to the traditional RBF-NN.

Secondly, simulations were conducted to compare the robustness of RBF-NN and
QRBF-NN. The objective function was defined as a sine function with an amplitude of 10
and a frequency of 1 Hz. At 1 s, a sine function with an amplitude of 20 and a frequency
of 50 Hz was added. At 4 s, a sine function with an amplitude of 15 and a frequency of
100 Hz was added. At 8 s, a sine function with an amplitude of 30 and a frequency of 30 Hz
was added. The results are shown in Figures 5 and 6. The red line represents the true value
and the blue line represents the approximation.

T T T

time(s)

Figure 5. Approximation and error of QRBF-NN.
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Figure 6. Approximation and error of RBF-NN.

From Figures 5 and 6, it can be observed that when the objective function undergoes a
sudden change, the fluctuation in the approximation error of QRBF is smaller compared to
RBE. And the approximation error of QRBF after stabilization is smaller than that of RBE.

4.2. Comparison of Control Performance for QRBF-NN and RBF-NN
The parameters of the MSCSG and controller are shown in Table 3.

Table 3. MSCSG parameters.

Parameter Value Parameter Value

Jx (kg-m?) 0.0097 Q (r/min) 5000

Jy (kgm?) 0.0097 m (kg) 8.95

]z (kg-m?) 0.0166 k 1.2
m 0.3 n 0.5
p 13 q 9

Simulations were conducted to compare the decoupling control performance of RBF-
NN and QRBF-NN. The simulations were performed using the following three control
methods.

Method 1: RBF-NN method in [10] (RBF-NN and ADRC);

Method 2: QRBF-NN combined with sliding mode control (QRBF-NN and SMC);

Method 3: QRBF-NN combined with fractional-order terminal sliding mode control
(QRBF-NN and FOSMC).

Firstly, the decoupling performance of the three methods was verified. The rotor
deflection command around the X,-axis is a sinusoidal signal with an amplitude of 1° and
a period of 0.757. Additionally, at 0.5 s, the rotor deflection command around the Y¢-axis is
a step signal with an amplitude of 1°.

From Figure 7, it can be observed that the rotor controlled by method 1 still exhibits
coupling between the two degrees of freedom, while the rotor controlled by methods 2 and
3 does not exhibit coupling. The performance comparison of the three methods is shown in
the Table 4.
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Figure 7. Comparison of rotor deflection decoupling performance of 3 methods.
Table 4. Control performance comparison.
Method Settling Time Overshoot Decoupling
Performance
RBE-NN and ADRC 22s 22% Residual coupling
QRBF-NN and SMC 0.63s None Fully decoupled
QRBF-NN and FOSMC 0.59s None Fully decoupled

As for the settling time, the rotor deflection angles controlled by method 1 continue to
fluctuate in a small range, whereas the signal controlled by methods 2/3 stabilized by 0.7 s.
Due to the faster convergence speed of the fractional-order sliding mode controller, method 3
tracks the reference signal faster than method 2 while also having a smaller phase difference.
As for overshoot, the rotor deflection angle controlled by method 1 has 22% overshoot while
methods 2 and 3 do not. Due to the better approximation performance of QRBF-NN compared
to RBF-NN, method 2 achieves higher control accuracy than method 1.

Secondly, the control accuracy of the three methods was verified. The rotor deflection
command was a sinusoidal signal with an amplitude of 0.5° and a frequency of 20 Hz
around the X,-axis. At 2 s, a sinusoidal signal with an amplitude of 1° and a frequency of
25 Hz was added. At 5 s, a sinusoidal signal with an amplitude of 0.5° and a frequency
of 50 Hz was added. At the same time, the rotor was subjected to an external disturbance
of which the amplitude was 0.02 N and the frequency was 40 Hz, and another external
disturbance of which the amplitude was 0.03 N and the frequency was 75 Hz in the
Xg-axis. The rotor deviation angles and errors controlled by three methods are shown in
Figures 8-10.
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Figure 9. Rotor deflection angle and error controlled by method 2.
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Figure 10. Rotor deflection angle and error controlled by method 3.

It can be seen from Figure 8 that the rotor controlled by method 1 tracked the reference
signal at 0.1 s and had a stable deflection angle error of [-0.008, 0.012]°.

It can be seen from Figure 9 that the rotor controlled by method 2 tracked the reference
signal at 0.02 s and had a stable deflection angle error of [—-0.006, 0.009]°.

It can be seen from Figure 10 that the rotor controlled by method 3 tracked the reference
signal at 0.01 s and had a stable deviation angle error of =0.005°. Compared with method 1
and method 2, method 3 has advantages in terms of reference tracking speed and control
accuracy. At the same time, the reference tracking speed and control accuracy of method 2
are higher compared to method 1, which proves the superiority of QRBF-NN.

4.3. Experimental Analysis of MSCSG

The MSCSG laboratory setup is shown in Figure 11. The rotor deflection command
around the Xg-axis is a sinusoidal signal with a frequency of 120 Hz while remain-
ing stationary around the Yg-axis. We collected the rotor deflection signals for offline
simulation experiments.

As can be seen from Figure 12, due to the coupling of the two degrees of freedom of
rotor deflection, when the rotor is controlled to deflect along the Y¢-axis, the rotor will also
deflect along the Y-axis, and the Yg-axis phase is 90 degrees behind the x-axis. The Fourier
transform of B shows that the amplitude of the deflection frequency of f is 0.12.

As can be seen from Figure 13, the two-degree-of-freedom coupling of the rotor
deflection controlled by the new method is reduced. The Fourier transform of § shows that
the amplitude of the deflection frequency of § is 0.05, which decreases by 58.3% compared
to the traditional method. Meanwhile, the « controlled by the proposed method is smoother
than that of the traditional method, proving that the proposed method is better than the
traditional method in terms of control accuracy and decoupling performance.
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Figure 11. MSCSG laboratory setup.
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Figure 12. Two degrees of freedom of rotor deflection angles controlled by the traditional method.
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Figure 13. Two degrees of freedom of rotor deflection angles controlled by the proposed method.

5. Conclusions

In this paper, a decoupling control method for MSCSG rotor deflection based on
QRBEF-NN and fractional-order terminal sliding mode control is proposed.

A quantum-computing-based optimization method for the structure of the RBF-NN is
proposed for the first time. The following two conclusions are drawn: (1) the QRBF-NN
is able to approximate continuous functions with arbitrary accuracy; (2) the QRBF-NN
outperforms the conventional RBF-NN in terms of time complexity.

Building upon this, a fractional-order terminal sliding mode control method based
on QRBF-NN is proposed. The fractional-order sliding surfaces and approaching laws are
designed. The simulation results show that (1) the QRBF-NN can accurately approximate
perturbations while reducing latency; (2) the proposed method can realize high-precision
decoupling control of MSCSG rotor.

In the future, we will further theoretically prove the generalization of QRBF-NN and
the stability of the QRBF-NN fractional-order controller. And we will prove its effectiveness
and advancement through more experiments to promote its application.
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