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Abstract: Fractals are a common characteristic of many artificial and natural networks having
topological patterns of a self-similar nature. For example, the Mandelbrot set has been investigated
and extended in several ways since it was first introduced, whereas some authors characterized
it using various complex functions or polynomials, others generalized it using iterations from
fixed-point theory. In this paper, we generate Mandelbrot sets using the hybrid Picard S-iterations.
Therefore, an escape criterion involving complex functions is proved and used to provide numerical
and graphical examples. We produce a wide range of intriguing fractal patterns with the suggested
method, and we compare our findings with the classical S-iteration. It became evident that the newly
proposed iteration method produces novel images that are more spontaneous and fascinating than
those produced by the S-iteration. Therefore, the generated sets behave differently based on the
parameters involved in different iteration schemes.

Keywords: picard iteration; S-iteration; Mandelbrot sets; hybrid Picard S-iteration

1. Introduction

Fractals are frequently found in nature because they are good descriptions of things
like rivers, clouds, crystals, lightning, electricity, tree branches, and leaf patterns. The
study of many natural or living frameworks, such as the fractality in water distribution
networks, benefits greatly from the use of fractals [1]. To understand and predict violent
streams, fractals are also used in liquid mechanics. Fractal geometries play a crucial
role in determining where water quality sensors should be placed in the water delivery
network [2] and fractal river network [3]. Additionally, fractal theory is frequently applied
in several fields, including engineering models, video compression [4], and computational
architectural design [5]. Ring-shaped quantum dots play an important role in confining the
electrons along a circular orbit. Remarkably, the effect of Mandelbrot fractality is explored
by considering different types of Mandelbrot rings [6]. According to research by cognitive
neuroscientists, computer-generated fractals can reduce stress in viewers in precisely the
same way as fractals seen in nature [7]. These facts serve as the authors’ inspiration to
use the concepts from fixed-point theory to build a new escape criterion. Then, using the
escape radius, we present a comparative analysis of the fractals generated by two different
iterations. It turned out that the recently suggested hybrid iteration method creates new,
more interesting, and spontaneous visuals than the S-iteration does. Therefore, we first
examine and comprehend several related concepts in the following paragraphs before
presenting the main results.

In 1980, Mandelbrot introduced the Mandelbrot set when he was studying complex
quadratic function zn+1 = z2

n + c. He utilizes c as a complex parameter and invented the
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word “Fractal” for such best-known illustrations generated by a very basic computational
method [8]. The Mandelbrot set can be identified using a fractal artistic design [9]. Fractal
art is commonly settled with the help of fractal-creating software. In certain examples,
graphics tools are utilized to additionally adjust the patterns produced. It is well known
that fractal images cannot be created without computer fractal art because a computer
has the extraordinary ability to calculate [10]. Almost certainly, fractal art is recognized
from other digital activities [11,12]. Fractals are generated using iterative techniques to
solve polynomial equations or non-linear equations. Generating fractals can be an artistic
endeavour, a mathematical model, or just a soothing diversion.

Various properties and extensions of the Mandelbrot set have been studied extensively
in the literature. The initial and most evident generalization included the application of the
function zp + c rather than the second-degree polynomial [13,14]. Other categories of func-
tions were also examined in the literature such as anti-polynomials [15], transcendental [16],
rational [17], elliptic [18], etc. Another extension in the study of Mandelbrot sets is from
complex number system [19] to bicomplex numbers [20], quaternions [21], octonions [22],
etc. Some fixed-point techniques were also used for the extension and generalization of
Mandelbrot sets. For the creation of fractals using fixed-point theory, different cyclical
methods for locating fixed points in an identified map are used; for example, inversion
fractals [23], v-variable fractals [24], iterated function systems [25], and biomorphs [26].
A new and novel iteration scheme is applied to solve image deblurring and signal recov-
ery problems [27] using polynomiography. The Mann iteration was used by Rani and
Kumar [28,29] to visualize superior Julia and Mandelbrot sets. Afterwards, the Ishikawa
iteration was used in [30,31] for the visualization of relative superior Julia and Mandelbrot
sets. The authors in [32] proved that the convergence rate of S-iteration is higher than that
of the Ishikawa iteration and presented relatively superior Mandelbrot sets through the
S-iteration scheme. In [33], the Noor orbit was used by Rani et al. to visualize Mandelbrot
sets. Li et al. utilize the Jungck–Mann orbit creation of Mandelbrot sets in [34]. Different
iterative schemes were used by different researchers, such as in [35,36] Jungck–CR iterative
formulas having a specific convexity. Similarly, in [37], S-iteration orbit with s-convexity
was used. Then in [38], Jungck–Mann and Jungck–Ishikawa iterations with s-convexity
were used. Noor orbit and s-convexity were also used in [39]. Recently, Zou et al. [40]
introduced the Mandelbrot and Julia sets via hybrid Picard–Mann iteration. For more
recent and updated studies on related iterations and techniques, the interested reader is
referred to [41–43]

From this review of the literature, one can observe that most fractals have escape
requirements that dictate their dynamical behaviour, and they do so through a variety of
iterative strategies. One key idea is escape when figuring out if a point in the complex
plane is contained in a Mandelbrot set. Thus, it is believed that accurately creating a
high-level “Mandelbrot” is challenging and intricate [6]. One especially unique feature
of fractals that is lacking in other systems is scaling invariance. They are very suitable
for real-world situations where researchers may conduct studies on multiple dimensions
because of this feature. Since creating fractals is crucial from several perspectives indicated
above, a lot of focus has been placed on doing it in recent years, utilizing a variety of
methods. Multiple iterative procedures discussed above have also been used to create
some fractals with generic properties [44–47]. In these situations, a decision must be
made between a few different iteration techniques while considering crucial factors. For
instance, an iteration method is more effective than the others based on two primary
criteria: simplicity and convergence speed. Under such circumstances, the following issues
inevitably surface: Which of these iteration techniques is accelerating convergence? Hence,
it was demonstrated that the Picard S-iteration method converges more quickly than the CR
iteration method and, consequently, more quickly than any other known iteration method,
as well as all of the Picard, Mann, Ishikawa, Noor, SP, and S methods [48]. To the best of our
knowledge, this recently developed three-step iteration in the literature has not been applied
to fractals. Hence this research article fills this gap, which is significant because many
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iteration systems [49–51] provide variants for the same function in terms of shape, size,
colour, and additional attributes. Furthermore, the results of research conducted at various
scales might paint somewhat distinct images even though the geometrical features of the
structure itself are the same. This is true for systems with diverse structures. Conversely,
a mathematical fractal is a kind of feedback that depends on recursion; it is constructed
around an iterated equation. Iteration is essential to fully appreciating the aesthetic value
and beauty of fractals. It is simpler to visualize self-similar behaviour as consistently
carrying out a task. Each time a step is finished, we replace each initiator copy with a smaller
generator copy, rotating as necessary. Taking motivation from these facts, we use this newly
developed iteration scheme to prove an escape criterion. It proved useful for generating
fractals by analyzing their dynamic patterns in the presence of complex polynomials. The
fact that a new iteration strategy was successfully implemented emphasizes how significant
this research is compared to the previous ones. The dependence of time on variations in
the involved parameters of the iteration scheme is analyzed numerically and graphically.
The three-stage, fast-convergence Picard S-iterative technique is therefore more notable and
unique than the corpus of existing work.

The plan of this article is as follows: We discuss some necessary definitions and
preliminaries related to different iterations in Section 2. Then, we prove a general escape
criterion to generate the fractals in Section 3. This criterion is proved using a new hybrid
Picard S-iteration method for general complex polynomials. Further refinement of these
criteria is also presented in the form of corollaries. The visualization of Mandelbrot sets is
provided in Section 4. The pseudocode to create the Mandelbrot sets in Picard S-orbit is also
exhibited in this section. Based upon that Sections 4.1 and 4.2 contain a variety of images
for Mandelbrot sets by considering different parameter values in the proposed iteration
technique. A comparison of fractal images produced by using the new proposed iteration
and the classical S-iteration is also provided in this section. Time analysis is performed
for seconds using tabular and graphical illustrations. This comparison proved that the
Mandelbrot set images produced by the hybrid Picard S-iteration are far better than those
produced by S-iteration. This comparison is discussed and concluded in Section 5, leading
to some future directions of this work.

2. Basic Definitions and Preliminaries

This section contains some basic definitions and theorems that are essential to proving
our new results.

Definition 1. The Mandelbrot set denoted by M for the given polynomial qc(s) = s2 + c consists
of all c ∈ C having a bounded orbit of the point 0 given as [44]

M = {{qN
c (0)}; c ∈ C; N = 0, 1, 2, . . . is bounded}.

Here and what follows, C denotes the set of complex numbers. The beginning point has been taken
as 0 because this is the only critical point of qc.

Definition 2. Consider a map Z : C → C, on the set of complex numbers denoted by C then the
subsequent iteration is a Mann iteration process [45]:{

u0 ∈ C,
uN+1 = (1 − ζ)uN + ζZ(uN), ζ ∈ (0, 1]; N ≥ 0.

(1)

Definition 3. Consider a map Z : C → C, on the set of complex numbers denoted by C then the
subsequent iteration is an Ishikawa iteration process [46]:

u0 ∈ C,
uN+1 = (1 − ζ)uN + ζZ(vN),
vN = (1 − δ)uN + δZ(uN), N ≥ 0,

(2)
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where ζ, δ ∈ (0, 1].

Definition 4. Consider a map Z : C → C, on the set of complex numbers denoted by C then the
subsequent iteration is an S-iteration process [47]:

u0 ∈ C,
uN+1 = (1 − α1)Z(uN) + α1Z(vN),
vN = (1 − α2)uN + α2Z(uN), N ≥ 0,

(3)

where α1, α2 ∈ (0, 1].

Definition 5. Consider a map Z : C → C, on the set of complex numbers denoted by C and u0 ∈ C
then the subsequent iteration is a Picard S-iteration process [48]

uN+1 = Z(vN),
vN = (1 − α1)Z(uN) + α1Z(wN),
wN = (1 − α2)uN + α2Z(uN); N ≥ 0,

(4)

where α1, α2 ∈ (0, 1]. This iteration process, named as Picard S-orbit, depends on four variables
(Z, u0, α1, α2) which can be written as “Picard S-orbit (Z, u0, α1, α2)”. The first term in (4)
represents the Picard iteration whereas the second and third come from S-iteration. That is why it is
named as the hybrid Picard S-iteration method or procedure.

Usually, the escape criterion for Mandelbrot sets is followed as stated in the following
theorem [44].

Theorem 1. Consider a quadratic polynomial, qc(w) = w2 + c, c ∈ C ≥ 0, then q satisfies the
following such that ∣∣∣qN

c (w)
∣∣∣ > max{2, |c|},

and
∣∣qN

c (w)
∣∣ → ∞ as N → ∞.

The expression max{2, |c|} is called the threshold of the escape radius. This escape
radius is different during every iteration. A widely used escape criterion for polynomials
of the form qc(w) = wk + c where k ≥ 2, with S-iteration is given in the subsequent
theorem [32].

Theorem 2. Suppose that |w| ≥ |c| > ( 2
α1
)

1
k−1 and |w| ≥ |c| > ( 2

α2
)

1
k−1 , where α1, α2 ∈

(0, 1], k ≥ 2 where c is a complex number. Suppose z◦ = z and w◦ = w. Therefore, we have{
wN+1 = (1 − α1)qc(wN) + α1qc(zN),
zN = (1 − α2)wN + α2qc(wN), N ≥ 0,

then |wN | → ∞ as N → ∞.

Corollary 1. Suppose |w| > max{|c|, ( 2
α1
)

1
k−1 , ( 2

α2
)

1
k−1 } then |wN | → ∞ as N → ∞.

3. Escape Criterion

The fixed-point theory is a fundamental concept in fractals because it offers a frame-
work for comprehending the iterative schemes that produce fractals. The points in the
fractal that do not change regardless of the number of times the scheme is iterated are
actually the fixed points of that iterative scheme in the context of fractals. These fixed points
“attract” neighbouring points lying in that fractal towards themselves and therefore are
frequently referred to as attractors. The concept of “escape” is essential for colouring and
visualizing fractals. A point that escapes to infinity quickly is often assigned one colour,
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whereas other points that escape slower or cannot escape are assigned other colours. The
maximum number of iterations needed to ascertain whether the orbit sequence tends to
infinity determines the escape time algorithm. This algorithm provides a useful element
that is significant to visualize the important properties of a dynamic system iteratively. We
now prove the general escape criterion required to build the Mandelbrot sets in the Picard
S-orbit. Consider a polynomial qc as well as w0 ∈ C, then define the Picard S-iteration
procedure as follows: 

wN+1 = qc(xN)

xN = (1 − α1)qc(wN) + α1qc(zN),
zN = (1 − α2)wN + α2qc(wN),

(5)

where N = 0, 1, 2, . . . and α1, α2 ∈ (0, 1]. The orbit of this newly defined iteration scheme
may denoted as Picard S-orbit(qc, w0, α1, α2). Hence, the subsequent result is the proof of
the required escape criteria for generalized polynomial qc(w) = wd + c where d ≥ 2, using
the hybrid Picard S-iteration procedure.

Theorem 3. Suppose that |w| ≥ |c| >
(

2
α1

) 1
d−1 and |w| ≥ |c| >

(
2
α2

) 1
d−1 , where α1, α2 ∈ (0, 1]

and c ∈ C. Let w = w◦, x = x◦ and z = z◦. Then, for qc(w) = wd + c, |wN | → ∞ as N → ∞
using the proposed iteration (5).

Proof. We first consider the following expression

|z| = |(1 − α2)w + α2qc(w)|

then we replace qc(w) = wd + c and obtain the following expression,

|z| =
∣∣∣(1 − α2)w + α2(wd + c)

∣∣∣
|z| ≥

∣∣∣α2wd + (1 − α2)w
∣∣∣− |α2c|

≥
∣∣∣α2wd + (1 − α2)w

∣∣∣− |α2w|(∵ |w| > |c|)

≥
∣∣∣α2wd

∣∣∣− |(1 − α2)w| − |α2w|

≥
∣∣∣α2wd

∣∣∣− |w|+ |α2w| − |α2w|

= |w|(α2|w|d−1 − 1). (6)

Furthermore, we proceed with the hybrid Picard S-iteration process, taking into account
the following:

|x| = |(1 − α1)qc(w) + α1qc(z)|

=
∣∣∣(1 − α1)(wd + c) + α1(zd + c)

∣∣∣. (7)

Next, combining this with (6) leads to the following

|x| ≥
∣∣∣(1 − α1)(wd + c) + α1((|w|(α2|w|d−1 − 1))d + c)

∣∣∣. (8)

Since |w| >
(

2
α2

) 1
d−1 , we obtain α2|w|d−1 > 2 and (α2|w|d−1 − 1)d > 1, which leads to the

following
|w|d(α2|w|d−1 − 1)d > |w|d. (9)
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By making use of (9) in (8), we obtain

|x| ≥
∣∣∣(1 − α1)(wd + c) + α1(|w|d + c)

∣∣∣
=

∣∣∣α1|w|d + (1 − α1)wd + c − α1c + α1c
∣∣∣

=
∣∣∣α1|w|d + (1 − α1)wd + c

∣∣∣
≥

∣∣∣α1|w|d − (α1 − 1)wd
∣∣∣− |c|

≥
∣∣∣α1|z|d − (α1 − 1)zd

∣∣∣− |z|(∵ |z| > |c|)

≥ α1|w|d −
∣∣∣(α1 − 1)wd

∣∣∣− |w|

= |w|d − |w|

= |w|
(
|w|d−1 − 1

)
. (10)

The last or the third step of the hybrid Picard S-iteration procedure implies that

|w1| = |qc(x)|

=
∣∣∣xd + c

∣∣∣. (11)

Then, by making use of (10) in (11), we obtain the following

|w1| ≥
∣∣∣(|w|

(
|w|d−1 − 1

)
)d + c

∣∣∣. (12)

Since |w| >
(

2
α1

) 1
d−1 ≥ (2)d−1; α1 ∈ (0, 1], using the following relation in (12),

|w|d−1 − 1 ≥ 1 or |w|d
(
|w|d−1 − 1

)
≥ |w|d

we obtain

|w1| ≥
∣∣∣|w|d + c

∣∣∣
≥ |w|d − |c|

≥ |w|d − |w|(∵ |w| > |c|)

≥ |w|
(
|w|d−1 − 1

)
.

Because |w| ≥ (2)
1

d−1 gives that |w|d−1 − 1 > 1. Therefore, there exists δ > 0, such that
|w|d−1 − 1 > 1 + δ > 1. Consequently, we obtain the following

|w1| > (1 + δ)|w|.

The same reasoning can be used again to obtain:

|w2| > (1 + δ)2|w|,
...

|wN | > (1 + δ)N |w|.

Hence, |wN | → ∞ as n → ∞, which completes the proof.
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Corollary 2. Let us take

|w| ≥ |c| >
(

2
α1

) 1
d−1

and |w| ≥ |c| >
(

2
α2

) 1
d−1

, (13)

then, the Picard S-orbit(qc, 0, α1, α2) escapes to infinity.

The refinement of the escape criterion is provided in the form of the next corollary.

Corollary 3. Let α1, α2 ∈ (0, 1] and suppose that

|w| > max

{
|c|,

(
2
α1

) 1
d−1

,
(

2
α2

) 1
d−1

}
, (14)

then, there exists δ > 0 such that |wN | > (1 + δ)N |w| and |wN | → ∞ as N → ∞.

4. Rich and Exquisite Patterns of the Fractal Mandelbrot Sets

This section is concerned with the rich and exquisite patterns of the Mandelbrot
set produced using the escape time algorithm. This depends on the greatest number of
iterations required to determine whether the orbit sequence gets closer to infinity. When
employing an iterative process, this method offers a useful framework that can be utilized
to demonstrate specific features of dynamic systems. New Mandelbrot sets are presented
here in this section for quadratic and cubic polynomials using the hybrid Picard S-iteration,
as well as compared with Mandelbrot sets created by the S-iteration. The graphics were
produced using the Mathematica 10 software and the escape specifications with the escape
time algorithm. Observations were analyzed using a computer having specifications such
as of Intel i5-2400 (@3.1 GHz) processor, 8 GB DDR3 RAM, and Microsoft Windows 10
(64-bit) operating system. The pseudocode of the Mandelbrot set creation algorithm in
Picard S-orbit is exhibited in Algorithm 1 and for S-Orbit in Algorithm 2.

Algorithm 1: Creation of the Mandelbrot sets using the hybrid Picard S-orbit

Input: qc(w) = wd + c; d ≥ 2; R ⊂ C – area, K – iterations, α1, α2 ∈ (0, 1] –
parameters for Picard S-iteration procedure, colourmap[0..n − 1] – with n
colours.

Output: Mandelbrot set for area R.

1 for c ∈ A do

2 R = max{|c|, ( 2
α1
)

1
d−1 , ( 2

α2
)

1
d−1 }

N = 0
w0 = 0
while N ≤ K do

3 yN = (1 − α2)wN + α2qc(wN),
xN = (1 − α1)qc(wN) + α1qc(yN),

4 wN+1 = qc(xN)
if |wN+1| > R then

5 break

6 N = N + 1

7 i = ⌊(n − 1)N
K ⌋

colour c with colourmap[i]
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Algorithm 2: Creation of the Mandelbrot sets using the S-orbit

Input: qc(w) = wd + c; d ≥ 2; R ⊂ C – area, K – iterations, α1, α2 ∈ (0, 1] –
parameters for Picard S-iteration procedure, colourmap[0..n − 1] – with n
colours.

Output: Mandelbrot set for area R.

1 for c ∈ A do

2 R = max{|c|, ( 2
α1
)

1
d−1 , ( 2

α2
)

1
d−1 }

N = 0
w0 = 0
while N ≤ K do

3 yN = (1 − α2)wN + α2qc(wN),
xN = (1 − α1)qc(wN) + α1qc(yN),
if |wN+1| > R then

4 break

5 N = N + 1

6 i = ⌊(n − 1)N
K ⌋

colour c with colourmap[i]

4.1. Rich and Exquisite Patterns of the Mandelbrot Sets Using Hybrid Picard S-Iteration vs.
S-Iteration and Quadratic Functions

In Figures 1–10, Mandelbrot sets using quadratic functions are visualized in the hybrid
Picard S-orbit and S-orbit by choosing the greatest number of iterations, 20, as well as fixing
parameter α2 = 0.4 and varying the values of the parameter α1. The time comparison
for quadratic functions using Picard S-orbit and S-orbit is also analyzed in Table 1 and
Figure 11 by varying the value of α1.

• In Figures 1 and 2 using A = [−3.3, 0.9] × [−2.6, 2.6] Mandelbrot sets (MSs) are
created in the hybrid Picard S-orbit and S-orbit for the fixed value of α1 = 0.5.

• In Figures 3 and 4 using A = [−3.6, 1.2]× [−2.5, 2.5] Mandelbrot sets (MSs) created
in the hybrid Picard S-orbit and S-orbit for the fixed value of α1 = 0.6.

• In Figures 5 and 6 using A = [−3.8, 1.2]× [−2.5, 2.5] Mandelbrot sets (MSs) created
in the hybrid Picard S-orbit and S-orbit for the fixed value of α1 = 0.7.

• In Figures 7 and 8 using A = [−4.0, 1.2]× [−2.5, 2.5] Mandelbrot sets (MSs) created
in the hybrid Picard S-orbit and S-orbit for the fixed value of α1 = 0.8.

• In Figures 9 and 10 using A = [−4.1, 1.2]× [−2.5, 2.5] Mandelbrot sets (MSs) created
in the hybrid Picard S-orbit and S-orbit for the fixed value of α1 = 0.9.

Table 1. Time comparison of iterative schemes in seconds using quadratic functions.

α1
Time for the Hybrid Picard

S-Iteration Time for S-Iteration

0.5 6.81250 7.42188
0.6 5.78125 5.96875
0.7 5.09375 5.37500
0.8 4.37500 5.00000
0.9 3.78125 5.06250
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Figure 1. Created in the hybrid Picard S-orbit for α1 = 0.5.

Figure 2. Created in S-orbit for α1 = 0.5.

Figure 3. Created in the hybrid Picard S-orbit for α1 = 0.6.
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Figure 4. Created in S-orbit for α1 = 0.6.

Figure 5. Created in the hybrid Picard S-orbit for α1 = 0.7.

Figure 6. Created in S-orbit for α1 = 0.7.
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Figure 7. Created in the hybrid Picard S-orbit for α1 = 0.8.

Figure 8. Created in S-orbit for α1 = 0.8.

Figure 9. Created in the hybrid Picard S-orbit for α1 = 0.9.
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Figure 10. Created in S-orbit for α1 = 0.9.

0.5 0.6 0.7 0.8 0.9
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6.5

α1

T
im
e
in
se
co
nd
s

Picard-S

S-iteration

Figure 11. Dependence of the Mandelbrot set creation time (in seconds) in the hybrid Picard S-orbit
and S-orbit on α1.

In Figures 12–23, quadratic Mandelbrot sets are presented in Picard S-orbit and S-orbit
by fixing parameter α1 = 0.7, choosing the greatest number of iterations (20), and varying
parameter α2. The time comparison for quadratic functions using Picard S-orbit and S-orbit
is also analyzed in Table 2 and Figure 24 by varying the value of α2.

• In Figures 12 and 13 with A = [−5.3, 1.4]× [−2.8, 2.8] Mandelbrot set created in the
hybrid Picard S-orbit and S-orbit for the same value of α2 = 0.2.

• In Figures 14 and 15 with A = [−5.3, 1.4]× [−2.8, 2.8] Mandelbrot set created in the
hybrid Picard S-orbit and S-orbit for the same value of α2 = 0.3.

• In Figures 16 and 17 with A = [−4.7, 1.4]× [−2.8, 2.8] Mandelbrot set created in the
hybrid Picard S-orbit and S-orbit for the same value of α2 = 0.4.

• In Figures 18 and 19 with A = [−4.0, 1.4]× [−2.8, 2.8] Mandelbrot set created in the
hybrid Picard S-orbit and S-orbit for the same value of α2 = 0.5.
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• In Figures 20 and 21 with A = [−2.8, 1.0]× [−2.5, 2.5] Mandelbrot set created in the
hybrid Picard S-orbit and S-orbit for the same value of α2 = 0.7.

• In Figures 22 and 23 with A = [−2.6, 1.0]× [−2.2, 2.2] Mandelbrot set created in the
hybrid Picard S-orbit and S-orbit for the same value of α2 = 0.8.

Figure 12. Created in the hybrid Picard S-orbit for α2 = 0.2.

Figure 13. Created in the hybrid S-orbit for α2 = 0.2.

Figure 14. Created in the hybrid Picard S-orbit for α2 = 0.3.



Fractal Fract. 2024, 8, 116 14 of 24

Figure 15. Created in S-orbit for α2 = 0.3.

Figure 16. Created in the hybrid Picard S-orbit for α2 = 0.4.

Figure 17. Created in S-orbit for α2 = 0.4.
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Figure 18. Created in the hybrid Picard S-orbit for α2 = 0.5.

Figure 19. Created in S-orbit for α2 = 0.5.

Figure 20. Created in the hybrid Picard S-orbit for α2 = 0.7.
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Figure 21. Created in S-orbit for α2 = 0.7.

Figure 22. Created in the hybrid Picard S-orbit for α2 = 0.8.

Figure 23. Created in S-orbit for α2 = 0.8.
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Table 2. Time comparison of iterative schemes in seconds using quadratic functions.

α2
Time for the Hybrid Picard

S-Iteration Time for S-Iteration

0.2 8.50000 9.14063
0.3 4.92188 5.76563
0.4 4.14063 4.39063
0.5 3.62500 3.95313
0.7 3.79688 4.07813
0.8 4.03125 4.18750

0.2 0.3 0.4 0.5 0.6 0.7 0.8
3.5

4.0

4.5

5.0

5.5

6.0

6.5

α2

T
im
e
in
se
co
nd
s

Picard-S

S-iteration

Figure 24. Dependence on time (in seconds) in the hybrid Picard S-orbit and S-orbit for α2.

4.2. Rich and Exquisite Patterns of the Mandelbrot Sets Using Hybrid Picard S-Iteration vs.
S-Iteration and Cubic Functions

In fractal theory, the Mandelbrot set is arguably the most well-known object. It is
thought to be the most complex object that has been made visible, in addition to being
the most beautiful. The cubic polynomial analogue of the Mandelbrot set has two critical
orbits. Therefore, their analysis using cubic polynomials is significantly more complex as
compared to quadratic polynomials.

In Figures 25–38, Mandelbrot sets are presented using the cubic function along with
the hybrid Picard S-iteration and S-iteration by choosing A = [−1.4, 1.4] × [−2.2, 2.2]
maximum number of iterations 20 and fixing parameter α2 = 0.5. The time comparison
for cubic functions using hybrid Picard S-orbit and S-orbit is also analyzed in Table 3 and
Figure 39 by varying the value of α1.
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Figure 25. Created in the hybrid Picard S-orbit for α1 = 0.1.

Figure 26. Created in S-orbit for α1 = 0.1.

Figure 27. Created in the hybrid Picard S-orbit for α1 = 0.2.

Figure 28. Created in S-orbit for α1 = 0.2.
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Figure 29. Created in the hybrid Picard S-orbit for α1 = 0.4.

Figure 30. Created in S-orbit for α1 = 0.4.

Figure 31. Created in the hybrid Picard S-orbit for α1 = 0.5.

Figure 32. Created in S-orbit for α1 = 0.5.
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Figure 33. Created in the hybrid Picard S-orbit for α1 = 0.6.

Figure 34. Created in S-orbit for α1 = 0.6.

Figure 35. Created in the hybrid Picard S-orbit for α1 = 0.7.

Figure 36. Created in S-orbit for α1 = 0.7.
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Figure 37. Created in the hybrid Picard S-orbit for α1 = 0.8.

Figure 38. Created in S-orbit for α1 = 0.8.

0.0 0.2 0.4 0.6 0.8

4.5

5.0

5.5
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Picard-S

S-iteration

Figure 39. Dependence on time (in seconds) in Picard S-orbit and S-orbit on α2.
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Table 3. Time comparison of iterative schemes in seconds using cubic functions.

α1 Time for Picard S-Iteration Time for S-Iteration

0.1 4.09375 5.14063
0.2 4.37500 5.84375
0.4 5.37500 5.54688
0.5 5.71875 4.96875
0.6 4.85938 4.39063
0.7 4.45313 4.07813
0.8 4.32813 4.12500

5. Conclusions and Discussion

This paper presents the escape criteria for fractals (Mandelbrot sets) concerning hybrid
Picard S-iteration and illustrates the novel fractal patterns. Fractals generated by the hybrid
Picard S-iterative procedure exhibit drastic changes for varying values of α1 and α2. Using
Picard S-orbit, we were able to obtain more spontaneous or natural Mandelbrot sets than
with fractals made using S-iteration. We have experienced the following observations:

• It is observed that in Figures 1–10, an obvious variation in the shapes created using
the hybrid Picard S-orbit and S orbit for fixed value α2 = 0.4 and similar value of α1.

• Similarly in Figures 12–23, we fixed parameter α1 = 0.7 and varied parameter α2 to
obtain quadratic Mandelbrot sets. Mandelbrot sets created using the hybrid Picard
S-iteration procedure are quite spontaneous from those created via S-iteration.

• It is seen that in time comparison Tables 1 and 2 and Figures 11 and 24, the hybrid
Picard S-iteration procedure takes a short time to create a Mandelbrot set.

• The cubic Mandelbrot sets created in the hybrid Picard S-orbit and S-orbit with fixed
parameter α2 = 0.5 also have an obvious variation in figures for varying parameter α1.

• In Table 3 and Figure 39, it is seen that for values α1 ≥ 0.5, S-iteration takes a rather
small amount of time as compared to Picard S-iteration to create cubic Mandelbrot
sets. However, the preservation of beauty created by the latter is, foremost, better than
the S-iteration.

• Quadratic Mandelbrot sets are symmetrical along the x-axis whereas cubic Mandelbrot
sets are symmetrical along both the x-axis and y-axis.

It is evident that changes in the iteration scheme’s orbit cause variations in the graphics.
People interested in designing aesthetically pleasing patterns will find great satisfaction
in the findings of this paper. For further future applications, this work can be combined
with [52,53]. In future, comparisons can be made with other iterations and the process can
be improved for higher-order polynomials and transcendental functions. Furthermore, a
new Picard–Ishikawa hybrid iterative scheme [54] is analyzed for its fast convergence over
the others. It proved useful in solving particular differential equations. It is remarkable
that for qc(zN) = zN ; α1 = 1 − α1, in (5), Picard–Ishikawa hybrid iterative scheme [54] can
be obtained. Hence, our results can be used further to generalize the results of [54] and
explore more general differential equations.
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