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Abstract: The Langevin equation is a model for describing Brownian motion, while the Sturm–
Liouville equation is an important mechanical model. This paper focuses on the solvability and
stability of nonlinear impulsive Langevin and Sturm–Liouville equations with Caputo–Hadamard
(CH) fractional derivatives and multipoint boundary value conditions. To unify the two types
of equations, we investigate a general nonlinear impulsive coupled implicit system. By cleverly
constructing relevant operators involving impulsive terms, we establish the coincidence degree
theory and obtain the solvability. We explore the stability of solutions using nonlinear analysis and
inequality techniques. As the most direct application, we naturally obtained the solvability and
stability of the Langevin and Sturm–Liouville equations mentioned above. Finally, an example is
provided to demonstrate the validity and availability of our major findings.

Keywords: impulsive coupled implicit system; CH–fractional derivative; multipoint BVP; solvability
and stability; coincidence degree theory
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1. Introduction

In this paper, we delve into the following nonlinear impulsive CH–fractional differen-
tial Langevin Equation (1) and Sturm–Liouville Equation (2) under the m-point boundary
value conditions

CHDθ2
xl [

CHDθ1
xl − λ]U (x) = F(x,U (x),CH Dθ2+θ1

xl U (x)), x ∈ [α, β] \ {xl}m
l=0,

∆U (xl) = Il(U (xl)), ∆[ CHDθ1
xl U (·)](xl) = Jl(U (xl)), 1 ≤ l ≤ m,

∑m+1
l=1 alU (ξl) = c, ∑m+1

l=1 bl [
CHDθ1

xl U (·)](ξl) = d,
(1)

where 0 < α < β, 0 < θ1, θ2 ≤ 1, λ > 0, α = x0 = ξ1 < x1 < ξ2 < x2 < ξ3 <
x3 < . . . < xm < ξm = xm+1 = β, al , bl , c, d ∈ R, ∑m

l=1 al ̸= 0, ∑m
l=1 bl ̸= 0, CHDxl is

the CH–fractional derivative, F ∈ C([α, β]×R2,R+), Il , Jl ∈ C(R,R), ∆U (xl) = U (x+l )−
U (x−l ), ∆[ CHDθ1

xl U (·)](xl) = [ CHDθ1
xl U (·)](x+l ) − [ CHDθ1

xl U (·)](x−l ), [
CHDθ1

xl U (·)](x−l ) =

[ CHDθ1
xl U (·)](xl), U (x−l ) = U (xl), 1 ≤ l ≤ m, i = 1, 2.

CHDθ2
xl [p(x) CHDθ1

xl ]U (x) = F(x,U (x)), x ∈ [α, β] \ {xl}m
l=0,

∆U (xl) = Il(U (xl)), ∆[p(·) CHDθ1
xl U (·)](xl) = Jl(U (xl)), 1 ≤ l ≤ m,

∑m+1
l=1 alU (ξl) = c, ∑m+1

l=1 bl [p(·) CHDθ1
xl U (·)](ξl) = d,

(2)
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where p ∈ C([α, β], (0,+∞)), F ∈ C([α, β]× R,R+). The other conditions are the same
as (1).

Remark 1. In (1) and (2), the impulse functions Il , Jl are only related to U (xl) since CHD∗
xl
U (xl) ≡ 0.

In addition, (1) is implicit and (2) is explicit.

As is well known, the Langevin equation is a famous mathematical model that
describes the random motion of particles annihilating in a fluid due to collisions be-
tween particles and fluid molecules. Compared with the integer-order Langevin equation,
the fractional-order Langevin equation is more accurate in describing the random motion
of particles in complex viscoelastic fluids. In recent years, many papers dealing with the
fractional Langevin equations have been published. For example, Ahmadova and Mahmu-
dov [1] studied the explicit analytical solutions for several families of Langevin differential
equations with general fractional orders. Salem et al. [2] applied Darbo’s fixed-point theo-
rem to investigate the existence of solutions for the three-point boundary value problem
of a fractional Langevin equation in the noncompact Hausdorff space. Zhao, in [3–5],
discussed the stability of several types of nonlinear fractional Langevin equations with
delays and controls. In [6–8], the authors explored the controllability problem of fractional
Langevin equations. Other papers are [9–11] concerned with the dynamics of stochastic
Langevin equations.

Furthermore, the Sturm–Liouville equation, which includes the Helmholtz equation,
Bessel equation, and Legendre equation, also represents another important class of mathe-
matical and physical equations. Therefore, study of the fractional Sturm–Liouville equation
has also become a hot topic in recent years. Afarideh et al. [12] used the pseudospectral
method and Chebyshev cardinal functions to solve the Caputo fractional Sturm–Liouville
eigenvalue problems. Sadabad and Akbarfam [13] provided an efficient numerical method
to estimate the eigenvalues and eigenfunctions of the fractional Sturm–Liouville equa-
tion. Allahverdiev et al. [14] obtained a completeness theorem of singular dissipative
conformable fractional Sturm–Liouville operators. Goel et al. [15] probed the numerical cal-
culation of mixed boundary value problems for the generalized fractional Sturm–Liouville
system. Kumar and Mehra [16] adopted the wavelet method to solve the Sturm–Liouville
fractional optimal control problem. In fact, there are many research achievements on
fractional Langevin and Sturm–Liouville equations. We will not elaborate further here.
However, previous works in the literature have studied the two types of equations sepa-
rately, and there is rarely a unified approach. Accordingly, it is novel and fascinating to
unify Equations (1) and (2) for research purposes.

To address the solvability and stability of Equations (1) and (2) together, we consider a
general system including (1) and (2) as follows:

CHDθ1
xl U1(x) = F1(x,U1(x),U2(x),CH Dθ1

xl U1(x),CH Dθ2
xl U2(x)),

CHDθ2
xl U2(x) = F2(x,U1(x),U2(x),CH Dθ1

xl U1(x),CH Dθ2
xl U2(x)),

∆U1(xl) = Il(U1(xl),U2(xl)), ∆U2(xl) = Jl(U1(xl),U2(xl)),
∑m+1

l=1 alU1(ξl) = c, ∑m+1
l=1 blU2(ξl) = d,

(3)

where Fi ∈ C([α, β] × R4,R+), Il , Jl ∈ C(R2,R), ∆Ui(xl) = Ui(x+l ) − Ui(x−l ) with
Ui(x−l ) = Ui(xl), 1 ≤ l ≤ m, i = 1, 2. The other conditions are the same as (1).

Remark 2. When boundary conditions ∑m+1
l=1 alU1(ξl) = c, ∑m+1

l=1 blU2(ξl) = d degenerate to
U1(α) + U1(β) = 0, U2(α) + U2(β) = 0, system (3) becomes an impulsive implicit antiperiodic
boundary value problem.

The Hadamard fractional calculus proposed by Hadamard in 1892 [17] is a direct
and effective extension of Riemann–Liouville (RL) fractional calculus. Its prominent fea-
ture is that the logarithmic kernel H(x, s) = (log x

s )
ϑ−1 replaces the polynomial kernel
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G(x, s) = (x − s)ϑ−1 in the RH–calculus definition. These two kernels maintain certain
mathematical commonalities. For example, they have singularity when 0 < ϑ ≤ 1, that is,
G(x, s) → ∞, H(x, s) → ∞, as s → x. Some of their properties are also significantly distin-
guished. For instance, ∀ ζ > 0, H(ζx, ζs) = H(x, s), but G(ζx, ζs) = ζϑ−1G(x, s) ̸= G(x, s).
As an important class of differential equations, the theory and application of Hadamard-
type (H-type) fractional differential equations (FDEs) have received extensive and in-depth
research, which has achieved fruitful results (see [18–31]). Until now, the exploration of
various dynamic properties of H-type fractional differential equations has been a very lively
research topic. For example, in [32], the authors discussed the logarithmic decay stability
of an H-type fractional equation. Rao et al. [33] considered the problem of multiplicity of
solutions for a mixed H–fractional Laplacian system. Zhao [34,35] thought about the ap-
proximation and Hyers–Ulam-type stability of two classes of H–fractional boundary value
problems. In [36,37], the authors studied the numerical calculation problem of H–fractional
equations. Ortigueira et al. [38] explored the unification of H–calculus and RL–calculus.
Dhawan et al. [39] applied the upper and lower solution method to analyze a neutral H–
fractional equation. Ahmad et al. [40] investigated a coupled system of Hilfer–Hadamard
fractional equations. Ben Makhlouf et al. [41] studied the existence, uniqueness, and averag-
ing principle for Hadamard Ito–Doob stochastic delay fractional integral equations. Briefly,
the properties, research approaches, and generalization of the concept of H–derivative,
as well as the effects of delay, impulse, and random factors on H–fractional differential
systems, have always attracted the attention of scholars. We further refer to [42–47].

Generally speaking, the study of implicit forms of differential equations is relatively
more difficult than explicit forms. Therefore, the research achievements on implicit differ-
ential equations are also rarer than those on explicit differential equations. Only a small
number of published papers deal with the solvability and stability of implicit Hadamard
fractional differential equations (see [48–56]). Some academic researchers have applied
the theory of coincidence degree to study the solvability of integer-order nonlinear func-
tional differential equations and have achieved fruitful results (see [57–68]). In the theory
of coincidence degree, the construction of relevant operators is highly skilled, which
brings difficulties to the application of this method. Consequently, there are relatively
few works [69–73] on the existence of solutions to fractional differential equations via
coincidence degree theory.

Owed to the aforementioned, it is fascinating and challenging to investigate the
solvability of system (3) by coincidence degree theory. The highlights of this paper mainly
comprise the following. (a) Our work enriches and fills the gap in the study of nonlocal
boundary value problems for implicit and impulsive fractional coupled systems. (b) In
the establishment of coincidence degree theory, we cleverly constructed and proved the
complete continuity of the relevant operators for the first time in the study of impulsive
fractional differential equations. (c) As an important application of our basic results, we
obtained the solvability and stability of the Langevin system and Sturm–Liouville system.

The remaining content of this paper is arranged as follows. Some necessary concepts
and lemmas are stated in Section 2. Section 3 studies the existence, uniqueness, and stability
of solutions to (3). Section 4 discusses the solvability and stability of the Langevin system (1)
and Sturm–Liouville system (2), and gives an example to check the validity and availability
of our basic findings. Finally, we provide a simple conclusion of research approaches,
results, and significance in Section 5.

2. Preliminaries

This section mainly introduces some basic knowledge required for this article. We
first state an important result of the coincidence theory for solving operator equations
as follows.

Lemma 1 (Mawhin [74]). Let E,F be Banach spaces, ∅ ̸= Θ ⊂ E, a bounded open subset. If
L : E → F is a 0-index Fredholm operator, and N : E× [0, 1] → F is L-compact on Θ × [0, 1],
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then there has to be at least X ∗ ∈ Θ ∩ DomL s.t. LX ∗ = N (X ∗, 1) provided that the following
is true:

(a1) If X solves LX = η · N (X , η), then X /∈ ∂Θ ∩ DomL, ∀ η ∈ (0, 1);
(a2) QN (X , 0)X ̸= 0, ∀X ∈ ∂Θ ∩ KerL;
(a3) deg(JQN (X , 0), Θ ∩ KerL, 0) ̸= 0;

where Q,J : F → F are projected and homotopy, respectively.

Next, we need to review the basic concepts and results of Caputo–Hadamard frac-
tional calculus.

Definition 1 ([75]). Let θ > 0, 0 < α < β < ∞, and U : [α, β] → R; the definition of θ-order
Hadamard fractional integral of U is

HJ θ
α+U (x) =

1
Γ(θ)

∫ x

α

(
log

x
z

)θ−1
U (z)dz

z
.

Definition 2 ([75]). Let θ > 0, 0 < α < β < ∞, m = [θ] + 1, and
(

x d
dx

)m−1
U (x) ∈ AC[α, β];

the definition of θ-order Caputo–Hadamard fractional derivative of U is

CHDθ
α+U (x) =

1
Γ(m − θ)

∫ x

α

(
log

x
z

)m−θ−1
(

z
d
dz

)m
U (z)dz

z
.

Lemma 2 ([75]). Let θ > 0, 0 < α < β < ∞, m = [θ] + 1, and
(

x d
dx

)m−1
U(x) ∈ AC[α, β], then

HJ θ
α+(

CHDθ
α+U (x)) = U (x) +

m−1

∑
j=0

(
z d

dz

)j
U (z)

∣∣
z=α

j!

(
log

x
α

)j
.

To obtain a prior estimate of the solution to BVP (3), the following lemma is required.

Lemma 3. Let 0 < α < β, 0 < θ1, θ2 ≤ 1, al , bl , c, d ∈ R, ∑m
l=1 al ̸= 0, ∑m

l=1 bl ̸= 0,
Fi ∈ C([α, β]×R4,R+), Il , Jl ∈ C(R2,R), 1 ≤ l ≤ m, i = 1, 2. If U (x) = (U1(x),U2(x))T

solves the BVP (3), then U (x) = (U1(x),U2(x))T also solves the following integral equation

U1(x) = cU0 + 1
Γ(θ1)

∫ x
α

(
log x

z
)θ1−1

ϕU1(z)
dz
z , x ∈ [α, x1],

U2(x) = dU0 + 1
Γ(θ2)

∫ x
α

(
log x

z
)θ2−1

ψU2(z)
dz
z , x ∈ [α, x1],

U1(x) = cUl + 1
Γ(θ1)

∫ x
xl

(
log x

z
)θ1−1

ϕU1(z)
dz
z , x ∈ (xl , xl+1],

U2(x) = dUl + 1
Γ(θ2)

∫ x
xl

(
log x

z
)θ2−1

ψU2(z)
dz
z , x ∈ (xl , xl+1],

(4)

where 1 ≤ l ≤ m, a =: ∑m
l=1 al , b =: ∑m

l=1 bl ,{
ϕU1(x) = F1(x,U1(x),U2(x), ϕU1(x), ψU2(x)),
ψU2(x) = F2(x,U1(x),U2(x), ϕU1(x), ψU2(x)),
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cU0 = 1
a

[
c −

m
∑

l=1
al

l
∑

k=1

(
1

Γ(θ1)

∫ xk
xk−1

(
log xk

z
)θ1−1

ϕU1(z)
dz
z

+Ik(U1(xk),U2(xk))

)
− 1

Γ(θ1)

m
∑

l=1
al
∫ ξl

xl

(
log ξl

z

)θ1−1
ϕU1(z)

dz
z

]
,

dU0 = 1
b

[
d −

m
∑

l=1
bl

l
∑

k=1

(
1

Γ(θ2)

∫ xk
xk−1

(
log xk

z
)θ2−1

ψU2(z)
dz
z

+Jk(U1(xk),U2(xk))

)
− 1

Γ(θ2)

m
∑

l=1
bl
∫ ξl

xl

(
log ξl

z

)θ2−1
ψU2(z)

dz
z

]
,

cUl = cU0 + 1
Γ(θ1)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ1−1

ϕU1(z)
dz
z +

l
∑

k=1
Ik(U1(xk),U2(xk)),

dUl = dU0 + 1
Γ(θ2)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ2−1

ψU2(z)
dz
z +

l
∑

k=1
Jk(U1(xk),U2(xk)).

Proof. For x ∈ [ξ1, x1] = [α, x1], by Lemma 2 and (3), we have U1(x) = cU0 + 1
Γ(θ1)

∫ x
α

(
log x

z
)θ1−1

ϕU1(z)
dz
z ,

U2(x) = dU0 + 1
Γ(θ2)

∫ x
α

(
log x

z
)θ2−1

ψU2(z)
dz
z .

(5)

For x ∈ (x1, x2], similar to (5), we obtain U1(x) = cU1 + 1
Γ(θ1)

∫ x
x1

(
log x

z
)θ1−1

ϕU1(z)
dz
z ,

U2(x) = dU1 + 1
Γ(θ2)

∫ x
x1

(
log x

z
)θ2−1

ψU2(z)
dz
z .

(6)

From (5) and (6) and the impulsive conditions of (3), we yield that cU1 − cU0 = 1
Γ(θ1)

∫ x1
α

(
log x1

z
)θ1−1

ϕU1(z)
dz
z + I1(U1(x1),U2(x1)),

dU1 − dU0 = 1
Γ(θ2)

∫ x1
α

(
log x1

z
)θ2−1

ψU2(z)
dz
z + J1(U1(x1),U2(x1)).

(7)

In the same manner, for x ∈ (xl , xl+1], 2 ≤ l ≤ m, we obtain U1(x) = cUl + 1
Γ(θ1)

∫ x
xl

(
log x

z
)θ1−1

ϕU1(z)
dz
z ,

U2(x) = dUl + 1
Γ(θ2)

∫ x
xl

(
log x

z
)θ2−1

ψU2(z)
dz
z ,

(8)

and  cUl − cUl−1 = 1
Γ(θ1)

∫ xl
xl−1

(
log xl

z
)θ1−1

ϕU1(z)
dz
z + Il(U1(xl),U2(xl)),

dUl − dUl−1 = 1
Γ(θ2)

∫ xl
xl−1

(
log xl

z
)θ2−1

ψU2(z)
dz
z + Jl(U1(xl),U2(xl)).

(9)

In view of (7) and (9), we derive that, for 1 ≤ l ≤ m,
cUl = cU0 + 1

Γ(θ1)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ1−1

ϕU1(z)
dz
z +

l
∑

k=1
Ik(U1(xk),U2(xk)),

dUl = dU0 + 1
Γ(θ2)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ2−1

ψU2(z)
dz
z +

l
∑

k=1
Jk(U1(xk),U2(xk)).

(10)

It follows from the boundary value conditions in (3) that
m
∑

l=1
al

[
cUl + 1

Γ(θ1)

∫ ξl
xl

(
log ξl

z

)θ1−1
ϕU1(z)

dz
z

]
= c,

m
∑

l=1
bl

[
dUl + 1

Γ(θ2)

∫ ξl
xl

(
log ξl

z

)θ2−1
ψU2(z)

dz
z

]
= d.

(11)
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From (10) and (11), we have

cU0 = 1
a

[
c −

m
∑

l=1
al

l
∑

k=1

(
1

Γ(θ1)

∫ xk
xk−1

(
log xk

z
)θ1−1

ϕU1(z)
dz
z + Ik(U1(xk),U2(xk))

)
− 1

Γ(θ1)

m
∑

l=1
al
∫ ξl

xl

(
log ξl

z

)θ1−1
ϕU1(z)

dz
z

]
,

dU0 = 1
b

[
d −

m
∑

l=1
bl

l
∑

k=1

(
1

Γ(θ2)

∫ xk
xk−1

(
log xk

z
)θ2−1

ψU2(z)
dz
z + Jk(U1(xk),U2(xk))

)
− 1

Γ(θ2)

m
∑

l=1
bl
∫ ξl

xl

(
log ξl

z

)θ2−1
ψU2(z)

dz
z

]
.

(12)

From (5), (8), and (12), we gain the integral Equation (4). The proof is completed.

3. Solvability and Stability of (3)

In this section, we first establish the theory of coincidence degree for BVP (3), and
apply Lemma 1 to explore its solvability. Let

PC[α, β] = C[α, x1] ∪
{
W ∈ C(xl , xl+1] : W(x−l ) = W(xl), and W(x+l ) exists, 1 ≤ l ≤ m

}
,

X =

{
U = (U1,U2)

T : Ui ∈ PC[α, β],
m+1

∑
l=1

alU1(ξl) = c,
m+1

∑
l=1

blU2(ξl) = d, i = 1, 2

}
,

Y = {V = (U , h1, . . . , hm) : U ∈ X, hl = (hl1, hl2)
T ∈ R2, 1 ≤ l ≤ m}.

Define some norms as follows:

∥W∥PC = max
0≤l≤m

sup
xl≤x≤xl+1

|W(x)|, ∀ W ∈ PC[α, β],

∥U∥X = max{∥U1∥PC, ∥U2∥PC}, ∀ U ∈ X,

∥V∥Y = max{∥U∥X , |hl1|, |h12|, . . . , |hm1|, |hm2|}, ∀ V ∈ Y.

Consequently, (PC[α, β], ∥ · ∥PC), (X, ∥ · ∥X), (Y, ∥ · ∥Y) are the Banach spaces. Define
two operators L : DomL = X → Y and N : X× [0, 1] → Y as

LU =

( (
CHDθ1

xl U1
CHDθ2

xl U2

)
,
(

∆U1(x1)
∆U2(x1)

)
, · · · ,

(
∆U1(xm)
∆U2(xm)

) )
, (13)

N (U , η) =

( (
F1(x, η)
F2(x, η)

)
,
(

I1(U (x1))
J1(U (x1))

)
, · · · ,

(
Im(U (xm))
Jm(U (xm))

) )
, (14)

where Il(U (xl)) = Il(U1(xl),U2(xl)), Jl(U (xl)) = Jl(U1(xl),U2(xl)), 1 ≤ l ≤ m,

Fj(x, η) = Fj(x,U1(x),U2(x), η ·CH Dθ1
xl U1(x), η ·CH Dθ2

xl U2(x)), j = 1, 2.

Lemma 4. L defined by (13) is a 0-index Fredholm operator.

Proof. L is obviously linear. The kernel of L, KerL is defined by

KerL = {U = (U 1,U 2)
T ∈ DomL : LU = 0}. (15)
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From (13) and (15), it is similar to Lemma 3 that{
U 1(x) = c0, U 2(x) = d0, x ∈ [α, x1],
U 1(x) = cl , U 2(x) = dl , x ∈ (xl , xl+1], 1 ≤ l ≤ m,

(16)

and 
m
∑

l=1
alcl = c,

m
∑

l=1
bldl = d,

cl = c0, dl = d0, 1 ≤ l ≤ m.
(17)

We derive from (16) and (17) that KerL = {U = ( c
a , d

b )
T}. Therefore, dim(KerL) = 0.

The image set of L, ImL is defined by

ImL = {V ∈ Y : ∃ U ∈ DomL s.t. LU = V}. (18)

Obviously, ImL ⊂ Y. For all V ∈ Y,

V =

( (
V1
V2

)
,
(

h11
h12

)
, · · · ,

(
hm1
hm2

) )
,

it follows from LU = V that
CHDθ1

xl U1(x) = V1(x), CHDθ2
xl U2(x) = V2(x), x ∈ [α, β] \ {xl},

∆U1(xl) = hl1, ∆U2(xl) = hl2, 1 ≤ l ≤ m,
∑m+1

l=1 alU1(ξl) = c, ∑m+1
l=1 blU2(ξl) = d.

(19)

Similar to Lemma 3, Equation (19) allows a unique solution U ∗ = (U ∗
1 ,U ∗

2 )
T as follows:

U ∗
1 (x) = c∗0 +

1
Γ(θ1)

∫ x
α

(
log x

z
)θ1−1V1(z) dz

z , x ∈ [α, x1],

U ∗
2 (x) = d∗0 +

1
Γ(θ2)

∫ x
α

(
log x

z
)θ2−1V2(z) dz

z , x ∈ [α, x1],

U ∗
1 (x) = c∗l +

1
Γ(θ1)

∫ x
xl

(
log x

z
)θ1−1V1(z) dz

z , x ∈ (xl , xl+1],

U ∗
2 (x) = d∗l +

1
Γ(θ2)

∫ x
xl

(
log x

z
)θ2−1V2(z) dz

z , x ∈ (xl , xl+1],

(20)

where 

c∗0 = 1
a

[
c −

m
∑

l=1
al

l
∑

k=1

(
1

Γ(θ1)

∫ xk
xk−1

(
log xk

z
)θ1−1V1(z) dz

z + hk1

)
− 1

Γ(θ1)

m
∑

l=1
al
∫ ξl

xl

(
log ξl

z

)θ1−1
V1(z) dz

z

]
,

d∗0 = 1
b

[
d −

m
∑

l=1
bl

l
∑

k=1

(
1

Γ(θ2)

∫ xk
xk−1

(
log xk

z
)θ2−1V2(z) dz

z + hk2

)
− 1

Γ(θ2)

m
∑

l=1
bl
∫ ξl

xl

(
log ξl

z

)θ2−1
V2(z) dz

z

]
,

c∗l = c∗0 +
1

Γ(θ1)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ1−1V1(z) dz

z +
l

∑
k=1

hk1,

d∗l = d∗0 +
1

Γ(θ2)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ2−1V2(z) dz

z +
l

∑
k=1

hk2.

(21)

Clearly, U ∗ = (U ∗
1 ,U ∗

2 )
T ∈ DomL. Thereby, Y ⊂ ImL. Thus, we claim that Y = ImL and

ImL is closed, as well as

codim(ImL) = dim(Y/ImL) = dim(Y/Y) = 0 = dim(KerL).

Based on the definition of 0-index Fredholm operator, we know that Lemma 4 is true.
The proof is completed.
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P : X → X is defined by

PU = P
(

U1(x)
U2(x)

)
=

( c
a
d
b

)
. (22)

Obviously, P2 = P and KerP = X. Noticing that KerL is zero space, we yield that
ImP = KerL and X = KerL⊕ KerP . Therefore, L|DomL∩KerP : X = DomL ∩ KerP →
ImL = Y; there exists an inverse operator KP. For each V ∈ Y, KPV = (U∗

1 (x),U∗
2 (x))

T ∈ X
is defined as (19) and (20). Define Q : Y → Y as

Q
( (

V1
V2

)
,
{(

hl1
hl2

)}m

l=1

)
=

( (
1

β−α

∫ β
α V1(x)dx

1
β−α

∫ β
α V2(x)dx

)
,
{(

0
0

)}m

l=1

)
, (23)

then Q2 = Q, KerQ = ImL = Y and Y = ImL⊕ ImQ. In addition,

QN (U , η) =

( (
1

β−α

∫ β
α F1(x, η)dx

1
β−α

∫ β
α F2(x, η)dx

)
,
{(

0
0

)}m

l=1

)
.

By substituting N (U , η)−QN (U , η) into (20) and (21), we can obtain the expression
of KP(I −Q)N (U , η).

Lemma 5. N defined by (14) is L-compact.

Proof. For all bounded subsets Θ ⊂ X, it suffices to prove that KP(I −Q)N (Θ) is rela-
tively compact. Indeed, it follows from the continuity of Fi, Iil and Jil(i = 1, 2; 1 ≤ l ≤ m)
that KP(I −Q)N (U , η) is uniformly bounded. Set a sequence of functions, n ∈ N,

H(Un, η)(x) =
{

KP(I −Q)N (Un, η)(x), x ∈ [α, x1] ∪ (x1, xl+1], 1 ≤ l ≤ m,
KP(I −Q)N (Un, η)(x+), x = xl , 1 ≤ l ≤ m,

then {HlUn =: KP(I −Q)N (Un, η)(x)|[xl ,xl+1]
}n∈N is uniformly bounded on [xl, xl+1](0 ≤ l ≤

m). Therefore, {HlUn} has a uniformly convergent subsequence {HlUn(1)1
} on [x0, x1] = [α, x1].

Similarly, {HlUn(1)
1
} has a uniformly convergent subsequence {HlUn(2)

2
} on [x1, x2]. By

repeating the above, {HlUn(m−1)
m−1

} has a uniformly convergent subsequence {HlUn(m)
m

} on

[xm, xm+1] = [xm, β]. Thus, {HlUn(m)
m

} is a uniformly convergent subsequence on [α, β],

which means that KP(I −Q)N (Θ) is relatively compact. The proof is completed.

Theorem 1. BVP (3) permits a unique solution Ũ (x) = (Ũ1(x), Ũ2(x))T ∈ X, provided that the
following conditions (A1)–(A4) are true.

(A1) Assume that 0 < α < β, 0 < θ1, θ2 ≤ 1, α = x0 = ξ1 < x1 < ξ2 < x2 < ξ3 <
x3 < . . . < xm < ξm = xm+1 = β, al , bl , c, d ∈ R, a = ∑m

l=1 al ̸= 0, b = ∑m
l=1 bl ̸= 0,

Fi ∈ C([α, β]×R4,R+), Il , Jl ∈ C(R2,R), 1 ≤ l ≤ m, i = 1, 2.
(A2) ∀ u = (u1, u2, u3, u4)

T , u = (u1, u2, u3, u4)
T ∈ R4, ∃ Li1, Li2, Li3, Li4 > 0 s.t.

|Fi(x, u)− Fi(x, u)| ≤
4

∑
j=1

Lij|uj − uj|, ∀ x ∈ [α, β], i = 1, 2.

(A3) ∀ v = (v1, v2)
T , v = (v1, v2)

T ∈ R2, ∃ Ml1, Ml2, Nl1, Nl2 > 0 s.t.

|Il(v)− Il(v)| ≤
2

∑
i=1

Mli|vi − vi|, |Jl(v)− Jl(v)| ≤
2

∑
i=1

Nli|vi − vi|, 1 ≤ l ≤ m.



Fractal Fract. 2024, 8, 111 9 of 20

(A4) D > 0, 0 < L13, L24, ρ1, ρ2 < 1, where a+ = ∑m
l=1 |al |, b+ = ∑m

l=1 |bl |,

ρ1 =
1
|a|

[
2D1a+

DΓ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
D1

DΓ(θ1 + 1)

m

∑
k=1

|ak |
(

log
ξk

xk−1

)θ1

+ 2a+
m

∑
k=1

(Mk1 + Mk2)

]
+

D1

DΓ(θ1 + 1)

(
log

β

α

)θ1

,

ρ2 =
1
|b|

[
2D2b+

DΓ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
D2

DΓ(θ2 + 1)

m

∑
k=1

|bk |
(

log
ξk

xk−1

)θ2

+ 2b+
m

∑
k=1

(Nk1 + Nk2)

]
+

D2

DΓ(θ2 + 1)

(
log

β

α

)θ2

,

D =

∣∣∣∣ 1 − L13 −L14
−L23 1 − L24

∣∣∣∣, D1 =

∣∣∣∣ L11 + L12 −L14
L21 + L22 1 − L24

∣∣∣∣, D2 =

∣∣∣∣ 1 − L13 L11 + L12
−L23 L21 + L22

∣∣∣∣.
Proof. We will apply Lemma 1 to prove Theorem 1. To this end, define L, N , P , and Q
as (13), (14), (22) and (23), respectively. From Lemmas 4 and 5, we claim that L is a 0-index
Fredholm operator, and N is L-compact. If U (x) = (U1(x),U2(x))T ∈ X is a solution
of BVP (3), then we know from Lemma 3 that U (x) = (U1(x),U2(x))T ∈ X satisfies (4).
Noticing that Fi(x, 0, 0, 0, 0) = 0(i = 1, 2), we derive from (A2) that

|ϕU1(x)| =|F1(x,U1(x),U2(x), ϕU1(x), ψU2(x))− F1(x, 0, 0, 0, 0)|
≤L11|U1(x)|+ L12|U2(x)|+ L13|ϕU1(x)|+ L14|ψU2(x)|,
≤(L11 + L12)∥U∥X + L13|ϕU1(x)|+ L14|ψU2(x)|, (24)

and

|ψU2(x)| =|F2(x,U1(x),U2(x), ϕU1(x), ψU2(x))− F2(x, 0, 0, 0, 0)|
≤L21|U1(x)|+ L22|U2(x)|+ L23|ϕU1(x)|+ L24|ψU2(x)|
≤(L21 + L22)∥U∥X + L23|ϕU1(x)|+ L24|ψU2(x)|. (25)

Equations (24) and (25) lead to{
(1 − L13)|ϕU1(x)| − L14|ψU2(x)| ≤ (L11 + L12)∥U∥X ,
−L23|ϕU1(x)|+ (1 − L24)|ψU2(x)| ≤ (L21 + L22)∥U∥X .

(26)

From (A4) and (26), we have

|ϕU1(x)| ≤ D1

D
∥U∥X , |ψU2(x)| ≤ D2

D
∥U∥X , x ∈ [α, β]. (27)

In addition, by (A3), we yield

|Il(U1(xl),U2(xl))| ≤ |Il(U1(xl),U2(xl))− Il(0, 0)|+ |Il(0, 0)|
≤Ml1|U1(xl)|+ Ml2|U2(xl)|+ |Il(0, 0)| ≤ (Ml1 + Ml2)∥U∥X + |Il(0, 0)|. (28)

It is similar to obtain

|Jl(U1(xl),U2(xl))| ≤ (Nl1 + Nl2)∥U∥X + |Jl(0, 0)|. (29)
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In view of (4), (27), and (28), we obtain

|cU0 | ≤
1
|a|

[
|c|+

m

∑
l=1

|al |
m

∑
k=1

(
1

Γ(θ1)

∫ xk

xk−1

(
log

xk
z

)θ1−1
|ϕU1(z)|

dz
z

+ |Ik(U1(xk),U2(xk))|
)
+

1
Γ(θ1)

m

∑
l=1

|al |
∫ ξl

xl−1

(
log

ξl
z

)θ1−1
|ϕU1(z)|

dz
z

]
≤ 1
|a|

[
|c|+

m

∑
l=1

|al |
m

∑
k=1

(
D1

DΓ(θ1)
∥U∥X

∫ xk

xk−1

(
log

xk
z

)θ1−1 dz
z

+ |Ik(0, 0)|

+ (Mk1 + Mk2)∥U∥X

)
+

D1

DΓ(θ1)
∥U∥X

m

∑
l=1

|al |
∫ ξl

xl−1

(
log

ξl
z

)θ1−1 dz
z

]

=
1
|a|

[
|c|+

m

∑
l=1

|al |
m

∑
k=1

(
D1

DΓ(θ1 + 1)
∥U∥X

(
log

xk
xk−1

)θ1

+ |Ik(0, 0)|

+ (Mk1 + Mk2)∥U∥X

)
+

D1

DΓ(θ1 + 1)
∥U∥X

m

∑
l=1

|al |
(

log
ξl

xl−1

)θ1
]

=
1
|a|

[
D1a+

DΓ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
D1

DΓ(θ1 + 1)

m

∑
k=1

|ak|
(

log
ξk

xk−1

)θ1

+ a+
m

∑
k=1

(Mk1 + Mk2)

]
· ∥U∥X +

1
|a|

[
|c|+ a+

m

∑
k=1

|Ik(0, 0)|
]

, (30)

and

|cUl | ≤|cU0 |+
1

Γ(θ1)

m

∑
k=1

∫ xk

xk−1

(
log

xk
z

)θ1−1
|ϕU1(z)|

dz
z

+
m

∑
k=1

|Ik(U1(xk),U2(xk))|

≤|cU0 |+
D1

DΓ(θ1 + 1)
∥U∥X

m

∑
k=1

(
log

xk
xk−1

)θ1

+
m

∑
k=1

[(Mk1 + Mk2)∥U∥X + Ik(0, 0)]

≤ 1
|a|

[
2D1a+

DΓ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
D1

DΓ(θ1 + 1)

m

∑
k=1

|ak|
(

log
ξk

xk−1

)θ1

+ 2a+
m

∑
k=1

(Mk1 + Mk2)

]
· ∥U∥X +

1
|a|

[
|c|+ 2a+

m

∑
k=1

|Ik(0, 0)|
]

. (31)

Similar to (30) and (31), we have

|dU0 | ≤
1
|b|

[
D2b+

DΓ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
D2

DΓ(θ2 + 1)

m

∑
k=1

|bk|
(

log
ξk

xk−1

)θ2

+ b+
m

∑
k=1

(Nk1 + Nk2)

]
· ∥U∥X +

1
|b|

[
|d|+ b+

m

∑
k=1

|Jk(0, 0)|
]

, (32)

and

|dUl | ≤
1
|b|

[
2D2b+

DΓ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
D2

DΓ(θ2 + 1)

m

∑
k=1

|bk|
(

log
ξk

xk−1

)θ2

+ 2b+
m

∑
k=1

(Nk1 + Nk2)

]
· ∥U∥X +

1
|b|

[
|d|+ 2b+

m

∑
k=1

|Jk(0, 0)|
]

. (33)

In addition, for 0 ≤ l ≤ m, we obtain

g1(x) =
1

Γ(θ1)

∫ x

xl

(
log

x
z

)θ1−1
|ϕU1(z)|

dz
z

≤ D1

DΓ(θ1 + 1)

(
log

β

α

)θ1

· ∥U∥X , (34)
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and

g2(x) =
1

Γ(θ2)

∫ x

xl

(
log

x
z

)θ2−1
|ψU2(z)|

dz
z

≤ D2

DΓ(θ2 + 1)

(
log

β

α

)θ2

· ∥U∥X . (35)

From (4), (30)–(35) and (A4), we yield

|U1(x)| ≤ |cUl |+ g1(x) ≤ ρ1∥U∥X + ϖ1 ≤ ρ∥U∥X + ϖ, l = 0, 1, 2, . . . , m,

|U2(x)| ≤ |dUl |+ g2(x) ≤ ρ2∥U∥X + ϖ2 ≤ ρ∥U∥X + ϖ, l = 0, 1, 2, . . . , m,

which implies that

∥U∥X ≤ ρ∥U∥X + ϖ, (36)

where ρ = max{ρ1, ρ2}, ϖ = max{ϖ1, ϖ2}, and

ϖ1 =
1
|a|

[
|c|+ 2a+

m

∑
k=1

|Ik(0, 0)|
]

, ϖ2 =
1
|b|

[
|d|+ 2b+

m

∑
k=1

|Jk(0, 0)|
]

.

Equation (36) derives that

∥U∥X ≤ ϖ

1 − ρ
. (37)

Based on (37), we choose R > ϖ
1−ρ and Ω = {U ∈ X : ∥U∥X < R}; then, Ω ⊂ X

is a nonempty bounded open subset. Now, we shall verify that (a1) in Lemma 1 is true.
In fact, if U ∗∗ ∈ X is a solution of LU = η · N (U , η), then, similar to Lemma 3, it can be
expressed in the form of an integral equation. A derivation similar to (24)–(37) yields that
∥U ∗∗∥X ≤ ϖ

1−ρ , which means that U ∗∗ ∈ Ω. Noticing that ∂Ω ∩ KerL = {( c
a , d

b )
T} and

Fi ∈ C([α, β]×R4,R+), we claim that QN (( c
a , d

b )
T , 0)( c

a , d
b )

T > 0, which means that (a2)
in Lemma 1 holds. Let J be an identity; then, we have

deg(JQN (U , 0), Ω ∩ KerL, 0) = deg(JQN (U , 0), (c/a, d/b)T , 0) = 1.

Thus, (a3) in Lemma 1 is also true. Therefore, it follows from Lemma 4 that BVP (3)
has at least a solution Ũ (x) = (Ũ1(x), Ũ2(x))T ∈ X.

Next, we will prove the uniqueness of the solution. Let Û (x) = (Û1(x), Û2(x))T ∈ X be
another solution to (3), and denote W(x) = Ũ (x)− Û (x); then, it follows from Lemma 3 that

W1(x) = cW0 + 1
Γ(θ1)

∫ x
α

(
log x

z
)θ1−1Φ(z) dz

z , x ∈ [α, x1],

W2(x) = dW0 + 1
Γ(θ2)

∫ x
α

(
log x

z
)θ2−1Ψ(z) dz

z , x ∈ [α, x1],

W1(x) = cWl + 1
Γ(θ1)

∫ x
xl

(
log x

z
)θ1−1Φ(z) dz

z , x ∈ (xl , xl+1],

W2(x) = dWl + 1
Γ(θ2)

∫ x
xl

(
log x

z
)θ2−1Ψ(z) dz

z , x ∈ (xl , xl+1],

(38)
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cW0 = 1
a

[
−

m
∑

l=1
al

l
∑

k=1

(
1

Γ(θ1)

∫ xk
xk−1

(
log xk

z
)θ1−1Φ(z) dz

z + Ik(xk)
)

− 1
Γ(θ1)

m
∑

l=1
al
∫ ξl

xl

(
log ξl

z

)θ1−1
Φ(z) dz

z

]
,

dW0 = 1
b

[
−

m
∑

l=1
bl

l
∑

k=1

(
1

Γ(θ2)

∫ xk
xk−1

(
log xk

z
)θ2−1Ψ(z) dz

z + Jk(xk)
)

− 1
Γ(θ2)

m
∑

l=1
bl
∫ ξl

xl

(
log ξl

z

)θ2−1
Ψ(z) dz

z

]
,

cWl = cW0 + 1
Γ(θ1)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ1−1Φ(z) dz

z +
l

∑
k=1

I(xk),

dWl = dW0 + 1
Γ(θ2)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ2−1Ψ(z) dz

z +
l

∑
k=1

J (xk),

where
Φ(z) = ϕŨ1

(z)− ϕÛ1
(z), Ψ(z) = ϕŨ1

(z)− ϕÛ1
(z),

Ik(xk) = Ik(Ũ1(xk), Ũ2(xk))− Ik(Û1(xk), Û2(xk)),

Jk(xk) = Jk(Ũ1(xk), Ũ2(xk))− Jk(Û1(xk), Û2(xk)).

It is similar to (24)–(27) that

|Φ(x)| = |ϕŨ1
(x)− ϕÛ1

(x)| ≤ D1

D
∥Ũ − Û∥X , x ∈ [α, β], (39)

|Ψ(x)| = |ψŨ2
(x)− ψÛ2

(x)| ≤ D2

D
∥Ũ − Û∥X , x ∈ [α, β], (40)

|Ik(xl)| = |Il(Ũ1(xl), Ũ2(xl))− Il(Û1(xl), Û2(xl))| ≤ (Ml1 + Ml2)∥Ũ − Û∥X , (41)

|Jk(xl)| = |Il(Ũ1(xl), Ũ2(xl))− Il(Û1(xl), Û2(xl))| ≤ (Nl1 + Nl2)∥Ũ − Û∥X . (42)

Similar to (30)–(36), we derive from (38)–(42) that ∥W∥X ≤ ρ∥W∥X. Noting that
0 < ρ < 1, we know that ∥W∥X = 0, which implies that Ũ (x) = Û (x). The proof
is completed.

Now, we discuss the Hyers–Ulam (HU) stability of BVP (3). The concept of HU–
stability of (3) is given as follows.

Definition 3. BVP (3) is HU–stable if ∀ ζ > 0; there exists a unique solution Ũ (x) = (Ũ1(x), Ũ2(x)) ∈ X
solving (3) s.t.

∥U (x)− Ũ (x)∥X ≤ B · ζ,

where B > 0 is a constant and U = (U1,U2) ∈ X is any solution of the following inequality
CHDθ1

xl U1(x)− F1(x,U1(x),U2(x),CH Dθ1
xl U1(x),CH Dθ2

xl U2(x)) ≤ ζ,
CHDθ2

xl U2(x)− F2(x,U1(x),U2(x),CH Dθ1
xl U1(x),CH Dθ2

xl U2(x)) ≤ ζ,
∆U1(xl) = Il(U1(xl),U2(xl)), ∆U2(xl) = Jl(U1(xl),U2(xl)),
∑m+1

l=1 alU1(ξl) = c, ∑m+1
l=1 blU2(ξl) = d.

(43)

Theorem 2. BVP (3) is HU–stable provided that the conditions (A1)–(A4) are true.
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Proof. U = (U1,U2) ∈ X solves the inequality (43) if it also solves the following system
CHDθ1

xl U1(x) = F1(x,U1(x),U2(x),CH Dθ1
xl U1(x),CH Dθ2

xl U2(x)) + ω1(x),
CHDθ2

xl U2(x) = F2(x,U1(x),U2(x),CH Dθ1
xl U1(x),CH Dθ2

xl U2(x)) + ω2(x),
∆U1(xl) = Il(U1(xl),U2(xl)), ∆U2(xl) = Jl(U1(xl),U2(xl)),
∑m+1

l=1 alU1(ξl) = c, ∑m+1
l=1 blU2(ξl) = d,

(44)

where ω(x) = (ω1(x), ω2(x)) ∈ X and |ωi(x)| ≤ ζ (i = 1, 2), ∀ x ∈ [α, β].
From Lemma 3 and (44), any solution of inequality (43) is represented by

U1(x) = cω
0 + 1

Γ(θ1)

∫ x
α

(
log x

z
)θ1−1

[ϕU1(z) + ω1(z)] dz
z , x ∈ [α, x1],

U2(x) = dω
0 + 1

Γ(θ2)

∫ x
α

(
log x

z
)θ2−1

[ψU2(z) + ω2(z)] dz
z , x ∈ [α, x1],

U1(x) = cω
l + 1

Γ(θ1)

∫ x
xl

(
log x

z
)θ1−1

[ϕU1(z) + ω1(z)] dz
z , x ∈ (xl , xl+1],

U2(x) = dω
l + 1

Γ(θ2)

∫ x
xl

(
log x

z
)θ2−1

[ψU2(z) + ω2(z)] dz
z , x ∈ (xl , xl+1],

(45)

where

cω
0 = 1

a

[
c −

m
∑

l=1
al

l
∑

k=1

(
1

Γ(θ1)

∫ xk
xk−1

(
log xk

z
)θ1−1

[ϕU1(z) + ω1(z)] dz
z

+Ik(U1(xk),U2(xk))

)
− 1

Γ(θ1)

m
∑

l=1
al
∫ ξl

xl

(
log ξl

z

)θ1−1
[ϕU1(z) + ω1(z)] dz

z

]
,

dω
0 = 1

b

[
d −

m
∑

l=1
bl

l
∑

k=1

(
1

Γ(θ2)

∫ xk
xk−1

(
log xk

z
)θ2−1

[ψU2(z) + ω2(z)] dz
z

+Jk(U1(xk),U2(xk))

)
− 1

Γ(θ2)

m
∑

l=1
bl
∫ ξl

xl

(
log ξl

z

)θ2−1
ψU2(z)

dz
z

]
,

cω
l = cω

0 + 1
Γ(θ1)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ1−1

[ϕU1(z) + ω1(z)] dz
z +

l
∑

k=1
Ik(U1(xk),U2(xk)),

dω
l = dω

0 + 1
Γ(θ2)

l
∑

k=1

∫ xk
xk−1

(
log xk

z
)θ2−1

[ψU2(z) + ω2(z)] dz
z +

l
∑

k=1
Jk(U1(xk),U2(xk)).

From Theorem 1, the unique solution Ũ = (Ũ1, Ũ2) ∈ X is written as (4). Similar to
(39)–(42), we have

|ϕU1(x) + ω1(x)− ϕŨ1
(x)| ≤ |ϕU1(x)− ϕŨ1

(x)|+ |ω1(x)| ≤ D1

D
∥U − Ũ∥X + ζ, (46)

|ψU2(x) + ω2(x)− ϕŨ2
(x)| ≤ |ψU2(x)− ψŨ2

(x)|+ |ω2(x)| ≤ D2

D
∥U − Ũ∥X + ζ, (47)

|Il(U1(xl),U2(xl))− Il(Ũ1(xl), Ũ2(xl))| ≤ (Ml1 + Ml2)∥U − Ũ∥X , (48)

|Jl(U1(xl),U2(xl))− Jl(Ũ1(xl), Ũ2(xl))| ≤ (Nl1 + Nl2)∥U − Ũ∥X . (49)

In the same way as (30)–(33), we yield from (45)–(49) that

|cω
0 − cŨ0 | ≤

1
|a|

[
D1a+

DΓ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
D1

DΓ(θ1 + 1)

m

∑
k=1

|ak|
(

log
ξk

xk−1

)θ1

+ a+
m

∑
k=1

(Mk1 + Mk2)

]
(∥U − Ũ∥X + ζ), (50)
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|cω
l − cŨl | ≤

1
|a|

[
2D1a+

DΓ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
D1

DΓ(θ1 + 1)

m

∑
k=1

|ak|
(

log
ξk

xk−1

)θ1

+ 2a+
m

∑
k=1

(Mk1 + Mk2)

]
(∥U − Ũ∥X + ζ), (51)

|dω
0 − dŨ0 | ≤

1
|b|

[
D2b+

DΓ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
D2

DΓ(θ2 + 1)

m

∑
k=1

|bk|
(

log
ξk

xk−1

)θ2

+ b+
m

∑
k=1

(Nk1 + Nk2)

]
(∥U − Ũ∥X + ζ), (52)

|dω
l − dŨl | ≤

1
|b|

[
2D2b+

DΓ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
D2

DΓ(θ2 + 1)

m

∑
k=1

|bk|
(

log
ξk

xk−1

)θ2

+ 2b+
m

∑
k=1

(Nk1 + Nk2)

]
(∥U − Ũ∥X + ζ). (53)

Additionally, we have

h1(x) =
1

Γ(θ1)

∫ x

xl

(
log

x
z

)θ1−1
|ϕU1(x) + ω1(x)− ϕŨ1

(x)|dz
z

≤ D1

DΓ(θ1 + 1)

(
log

β

α

)θ1

(∥U − Ũ∥X + ζ), (54)

h2(x) =
1

Γ(θ2)

∫ x

xl

(
log

x
z

)θ2−1
|ψU2(x) + ω2(x)− ϕŨ2

(x)|dz
z

≤ D2

DΓ(θ2 + 1)

(
log

β

α

)θ2

(∥U − Ũ∥X + ζ). (55)

We derive from (4), (45) and (50)–(55) that

|U1(x)− Ũ1(x)| ≤ |cω
l − cŨl |+ h1(x) ≤ ρ1(∥U − Ũ∥X + ζ), l = 0, 1, 2, . . . , m, (56)

|U2(x)− Ũ2(x)| ≤ |dω
l − dŨl |+ h2(x) ≤ ρ2(∥U − Ũ∥X + ζ), l = 0, 1, 2, . . . , m. (57)

Equations (56) and (57) lead to

∥U − Ũ∥X ≤ ρ(∥U − Ũ∥X + ζ), (58)

which implies that

∥U − Ũ∥X ≤ ρ

1 − ρ
· ζ, (59)

where 0 < ρ = max{ρ1, ρ2} < 1. From Definition 3, we know that BVP (3) is HU–stable.
The proof is completed.

4. Solvability and Stability of (1) and (2)

In this section, we apply our main methods and results to discuss the existence,
uniqueness, and HU–stability of solutions for the Langevin system (1) and Sturm–Liouville
system (2).
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Theorem 3. The Langevin Equation (1) has a unique solution in PC[α, β] which is HU–stable,
provided that the following conditions (A′1)–(A′4) are fulfilled.

(A′1) Assume that 0 < α < β, 0 < θ1, θ2 ≤ 1, λ > 0, α = x0 = ξ1 < x1 < ξ2 < x2 < ξ3 <
x3 < . . . < xm < ξm = xm+1 = β, al , bl , c, d ∈ R, a = ∑m

l=1 al ̸= 0, b = ∑m
l=1 bl ̸= 0,

F ∈ C([α, β]×R2,R+), Il , Jl ∈ C(R,R), 1 ≤ l ≤ m.
(A′2) ∀ u = (u1, u2)

T , u = (u1, u2)
T ∈ R2, ∃L1,L2 > 0 s.t.

|F(x, u)− F(x, u)| ≤
2

∑
j=1

Lj|uj − uj|, ∀ x ∈ [α, β].

(A′3) ∀ v, v ∈ R, ∃Ml ,Nl > 0 s.t.

|Il(v)− Il(v)| ≤ Ml |v − v|, |Jl(v)− Jl(v)| ≤ Nl |v − v|, 1 ≤ l ≤ m.

(A′4) 0 < L2, ρ′1, ρ′2 < 1, where a+ = ∑m
l=1 |al |, b+ = ∑m

l=1 |bl |,

ρ′1 =
1
|a|

[
2a+

Γ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
1

Γ(θ1 + 1)

m

∑
k=1

|ak |
(

log
ξk

xk−1

)θ1

+ 2a+
m

∑
k=1

Mk

]
+

1
Γ(θ1 + 1)

(
log

β

α

)θ1

,

ρ′2 =
1
|b|

[
2(λ + L2)b+

(1 − L2)Γ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
λ + L2

(1 − L2)Γ(θ2 + 1)

m

∑
k=1

|bk |
(

log
ξk

xk−1

)θ2

+ 2b+
m

∑
k=1

Nk

]
+

λ + L2

(1 − L2)Γ(θ2 + 1)

(
log

β

α

)θ2

,

Proof. Let U (x) = U1(x), CHDθ1
xl U (x) = U2(x); then, the Langevin system (1) becomes

CHDθ1
xl U1(x) = U2(x), x ∈ [α, β] \ {xl},

CHDθ2
xl U2(x) = λU1(x) + F(x,U1(x),CH Dθ2

xl U2(x)), x ∈ [α, β] \ {xl},
∆U1(xl) = Il(U1(xl)), ∆U2(xl) = Jl(U1(xl)), 1 ≤ l ≤ m,
∑m+1

l=1 alU1(ξl) = c, ∑m+1
l=1 blU2(ξl) = d.

(60)

Therefore, the solvability of the Langevin system (1) and BVP (60) is equivalent.
It suffices to discuss the existence of solutions for BVP (60). Indeed, let F1 = U2(x),
F2 = λU1(x) + F(x,U1(x),CH Dθ2

xl U2(x)); then, BVP (60) is transformed into the form of (3).
Condition (A′1) and Condition (A1) correspond exactly. From (A′2) and (A′3), a simple
calculation provides that L11 = L13 = L14 = L22 = L23 = 0, L12 = 1, L21 = λ + L1,
L24 = L2, Ml2 = Nl2 = 0, Ml1 = Ml , Nl2 = Nl . Substituting these values into Condition
(A4) yields Condition (A′4). From Theorems 1 and 2, we declare that BVP (60) has a unique
solution in X which is HU–stable. The proof is completed.

Theorem 4. The Sturm–Liouville system (2) has a unique solution in PC[α, β] which is HU–stable,
provided that the following conditions (A′′1)–(A′′4) are fulfilled.

(A′′1) Assume that 0 < α < β, 0 < θ1, θ2 ≤ 1, α = x0 = ξ1 < x1 < ξ2 < x2 < ξ3 <
x3 < . . . < xm < ξm = xm+1 = β, al , bl , c, d ∈ R, a = ∑m

l=1 al ̸= 0, b = ∑m
l=1 bl ̸= 0,

p ∈ C([α, β], (0,+∞)), F ∈ C([α, β]×R,R+), Il , Jl ∈ C(R,R), 1 ≤ l ≤ m.
(A′′2) ∀ u, u ∈ R, ∃L > 0 s.t.

|F(x, u)− F(x, u)| ≤ L|u − u|, ∀ x ∈ [α, β].

(A′′3) ∀ v, v ∈ R, ∃Ml ,Nl > 0 s.t.

|Il(v)− Il(v)| ≤ Ml |v − v|, |Jl(v)− Jl(v)| ≤ Nl |v − v|, 1 ≤ l ≤ m.
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(A′′4) 0 < ρ′′1 , ρ′′2 < 1, where a+ = ∑m
l=1 |al |, b+ = ∑m

l=1 |bl |, p− = min{p(x) : α ≤ x ≤ β},

ρ′′1 =
1
|a|

[
2a+

p−Γ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
1

p−Γ(θ1 + 1)

m

∑
k=1

|ak |
(

log
ξk

xk−1

)θ1

+ 2a+
m

∑
k=1

Mk

]
+

1
p−Γ(θ1 + 1)

(
log

β

α

)θ1

,

ρ′′2 =
1
|b|

[
2Lb+

Γ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
L

Γ(θ2 + 1)

m

∑
k=1

|bk |
(

log
ξk

xk−1

)θ2

+ 2b+
m

∑
k=1

Nk

]
+

L

Γ(θ2 + 1)

(
log

β

α

)θ2

,

Proof. Let U (x) = U1(x), p(x) CHDθ1
xl U (x) = U2(x); then, the Sturm–Liouville system (1)

changes into 
CHDθ1

xl U1(x) = 1
p(x)U2(x), x ∈ [α, β] \ {xl},

CHDθ2
xl U2(x) = F(x,U1(x)), x ∈ [α, β] \ {xl},

∆U1(xl) = Il(U1(xl)), ∆U2(xl) = Jl(U1(xl)), 1 ≤ l ≤ m,
∑m+1

l=1 alU1(ξl) = c, ∑m+1
l=1 blU2(ξl) = d.

(61)

So it suffices to discuss the existence of solutions for BVP (61). In fact, let F1 =
1

p(x)U2(x),
F2 = F(x,U1(x)); then, BVP (61) is transformed into the form of (3). Condition (A′′1) and
Condition (A1) correspond exactly. From (A′′2) and (A′′3), a simple computation gives
that L11 = L13 = L14 = L22 = L23 = L24 = 0, L12 = 1

p− , L21 = L, Ml2 = Nl2 = 0,
Ml1 = Ml , Nl2 = Nl . Substituting these values into Condition (A4) yields Condition
(A′′4). From Theorems 1 and 2, we declare that BVP (61) has a unique solution in X which
is HU–stable. The proof is completed.

To illustrate the availability and correctness of Theorem 1, we provide an example of
the three-point boundary value problem with two impulse points as follows.

Example 1. Consider the following nonlinear impulsive coupled implicit system
CHD0.9

xl
U1(x) = F1(x,U1(x),U2(x),CH D0.9

xl
U1(x),CH D0.7

xl
U2(x)), x ∈ [1, e] \ {xl},

CHD0.7
xl
U2(x) = F2(x,U1(x),U2(x),CH D0.9

xl
U1(x),CH D0.7

xl
U2(x)), x ∈ [1, e] \ {xl},

∆U1(xl) = Il(U1(xl),U2(xl)), ∆U2(xl) = Jl(U1(xl),U2(xl)), l = 1, 2,
1
2U1(ξ1) +

1
3U1(ξ2) +

1
6U1(ξ3) = 2, 1

4U2(ξ1) +
1
5U2(ξ2) +

11
20U2(ξ3) = −3,

(62)

where α = ξ1 = 1, β = ξ3 = e, θ1 = 0.9, θ2 = 0.7, m = 2, x1 = e+3
4 , x2 = 3e+1

4 , ξ2 = e+1
2 ,

a1 = 1
2 , a2 = 1

3 , a3 = 1
6 , b1 = 1

4 , b2 = 1
5 , b3 = 11

20 , c = 2, d = −3, F1(x, u1, u2, u3, u4) = x2 +

2+e−u2
1+cos(u2)+sin(u3+u4)

100 , F2(x, u1, u2, u3, u4) = u1+u2
100 arctan(u1 + u2) +

1
200 log[1 + (u1 +

u2)
2] + x

100 [1 + cos(u3, u4)], I1(v1, v2) = I2(v1, v2) = sin(v1+v2)
100 . J1(v1, v2) = J2(v1, v2) =

(v1+v2) arccos(v1+v2)+
√

1−(v1+v2)2

100 . Obviously, a = a1 + a2 + a3 = 1, b = b1 + b2 + b3 = 1,
F1, F2 ∈ C([1, e]×R4,R+), I1, I2, J1, J2 ∈ C(R2,R). Therefore, the condition (A1) holds. We
perform a simple calculation to yield that ∂F1

∂u1
= − u1

50 e−u2
1 , ∂F1

∂u2
= − sin(u2)

100 , ∂F1
∂u3

= ∂F1
∂u4

=
cos(u3+u4)

100 , ∂F2
∂u1

= ∂F2
∂u2

= arctan(u1+u2)
100 , ∂F2

∂u3
= ∂F2

∂u4
= − x sin(u3+u4)

100 , ∂Ii
∂v1

= ∂Ii
∂v2

= cos(v1+v2)
100 (i =

1, 2), ∂Ji
∂v1

= ∂Ji
∂v2

= arccos(v1+v2)
100 (i = 1, 2). Hence, we derive that

|F1(x, u1, u2, u3, u4)− F1(x, u1, u2, u3, u4)| ≤
√

2e−0.5

100
|u1 − u1|+

1
100

4

∑
j=2

|uj − uj|,
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|F2(x, u1, u2, u3, u4)− F2(x, u1, u2, u3, u4)| ≤
π

200

2

∑
i=1

|ui − ui|+
e

100

4

∑
j=2

|uj − uj|,

|Ii(v1, v2)| − Ii(v1, v2) ≤
1

100

2

∑
j=1

|vj − vj|, |Ji(v1, v2)| − Ji(v1, v2) ≤
π

100

2

∑
j=1

|vj − vj|,

L11 =

√
2e−0.5

100
, L12 = L13 = L14 =

1
100

, L21 = L22 =
π

200
, L23 = L24 =

e
100

,

M11 = M12 = M21 = M22 =
1

100
, N11 = N12 = N21 = N22 =

π

100
,

a+ =
3

∑
l=1

|al | = 1, b+ =
3

∑
l=1

|bl | = 1, D =

∣∣∣∣ 1 − L13 −L14
−L23 1 − L24

∣∣∣∣ ≈ 0.9628 < 1,

D1 =

∣∣∣∣ L11 + L12 −L14
L21 + L22 1 − L24

∣∣∣∣ ≈ 0.0184, D2 =

∣∣∣∣ 1 − L13 L11 + L12
−L23 L21 + L22

∣∣∣∣ ≈ 0.0316.

ρ1 =
1
|a|

[
2D1a+

DΓ(θ1 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ1

+
D1

DΓ(θ1 + 1)

m

∑
k=1

|ak |
(

log
ξk

xk−1

)θ1

+ 2a+
m

∑
k=1

(Mk1 + Mk2)

]
+

D1

DΓ(θ1 + 1)

(
log

β

α

)θ1

≈ 0.1466 < 1,

ρ2 =
1
|b|

[
2D2b+

DΓ(θ2 + 1)

m

∑
k=1

(
log

xk
xk−1

)θ2

+
D2

DΓ(θ2 + 1)

m

∑
k=1

|bk |
(

log
ξk

xk−1

)θ2

+ 2b+
m

∑
k=1

(Nk1 + Nk2)

]
+

D2

DΓ(θ2 + 1)

(
log

β

α

)θ2

≈ 0.3950 < 1.

Thus, the conditions (A2)–(A4) are also satisfied. From Theorems 1 and 2, we conclude that
system (60) admits a unique solution, which is HU–stable.

5. Conclusions

This section first provides further analysis and then discussion of our main results.
In Theorems 1–4, the most important condition is that 0 < ρ1, ρ2, ρ′1, ρ′2, ρ′′1 , ρ′′2 < 1. This
condition is determined by the response functions F1, F2, pulse functions Il, Jl, impulsive
points xl, boundary value points α, β, ξl, and coefficients al, bl together, l = 1, 2, . . . , m. The

more complex calculation to verify this condition is that
m
∑

k=1

(
log xk

xk−1

)θ
and

m
∑

k=1

(
log ξk

xk−1

)θ
,

where θ ∈ {θ1, θ2}. Since xk−1 < ξk < xk(k = 1, 2, . . . , m), the positions of adjacent impulsive
points xk−1 and xk will result in two different cases for verifying this condition. Case 1:

when xk
xk−1

< e, then 0 <
(

log xk
xk−1

)θ
< 1 and 0 <

(
log ξk

xk−1

)θ
< 1. Thus, the condition

0 < ρ1, ρ2, ρ′1, ρ′2, ρ′′1 , ρ′′2 < 1 is relatively easy to satisfy. Example 1 belongs to this case.

Case 2: when xk
xk−1

> e, then
(

log xk
xk−1

)θ
> 1. So, the condition 0 < ρ1, ρ2, ρ′1, ρ′2, ρ′′1 , ρ′′2 < 1

is more difficult to satisfy. This requires controlling the values of Lij, Mij, Nij, al and bl,
i, j = 1, 2; l = 1, 2, . . . , m. In addition, since this paper considers the CH–fractional differential
equations with certain singularities, the ODE toolboxes in MATHLAB cannot be applied in
numerical simulations. This requires the design of new numerical algorithms, which is also
one of our future research directions.

Next, we make a brief summary. Hadamard fractional calculus in the Caputo sense is
an important type of fractional calculus, which is a generalization of RL–fractional calculus
in the Caputo sense. The CH–fractional differential equation is used to solve many practical
problems and has become a popular object of concern for many academic researchers. There
have been some good results in the study of CH–fractional differential explicit systems.
However, studies on the solvability and stability of CH–fractional coupled implicit systems
under impulsive influence are relatively rare because it is difficult to estimate the existence
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region of the solution. Additionally, the theory of coincidence degree is an important route
to solve the existence of solutions to nonlinear differential equations. In this paper, we
creatively establish a framework for the coincidence degree theory for system (3) with
impulsive effects and prove the existence of a solution. Simultaneously, our main results are
applied to solve the solvability of the Langevin system (1) and Sturm–Liouville system (2).
Our research objects and findings enrich the theory of CH–fractional differential equations.
Our approach also provides a paradigm for uniformly solving such problems.
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