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Abstract: This paper considers the numerical approximation to the fourth-order fractional diffusion-
wave equation. Using a separation of variables, we can construct the exact solution for such a problem
and then analyze its regularity. The obtained regularity result indicates that the solution behaves as a
weak singularity at the initial time. Using the order reduction method, the fourth-order fractional
diffusion-wave equation can be rewritten as a coupled system of low order, which is approximated
by the nonuniform Alikhanov scheme in time and the finite difference method in space. Furthermore,
the H2-norm stability result is obtained. With the help of this result and a priori bounds of the
solution, an α-robust error estimate with optimal convergence order is derived. In order to further
verify the accuracy of our theoretical analysis, some numerical results are provided.
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1. Introduction

As of the last few decades, fractional partial differential equations (FPDEs) have
gained widespread acceptance in both physics and engineering [1,2] to describe a variety
of phenomena such as the universal response of electromagnetic fields [3], the denoising
of images [4], etc. The exact solution to FPDEs can be constructed using tools such as
Laplace transforms, Fourier transforms, and Mellin transforms; see [5,6]. In reality, only
a few FPDEs can obtain the exact solution. Thus, the numerical simulation of FPDEs has
been greatly developed. A number of numerical methods have recently been developed for
solving time-fractional diffusion equations with a weakly singular solution. The regularity
result for this problem was presented by Stynes et al. [7], and the L1 scheme was constructed
on graded meshes. For the nonlinear time-fractional diffusion equation, Liao et al. [8]
proposed the nonuniform Alikhanov scheme and constructed the corresponding discrete
fractional Gronwall inequality. A nonuniform L2 scheme was designed by Kopteka [9] and
the local error of the formulated scheme was estimated. By using the Müntz polynomial,
Hou et al. [10] proposed a method for solving the time-fractional diffusion equation using
the fractional spectral method.

The purpose of this paper is to develop a numerical method that is efficient in solving
the following fourth-order fractional diffusion-wave equation:

Dα
t u + κ2∆2u − c∆u = g(t, x) ∀ (t, x) ∈ Φ := (0, T]× Ω, (1a)

u(0, x) = φ(x) and ut(0, x) = φ̃(x) for x ∈ Ω, (1b)

u|∂Ω = ∆u|∂Ω = 0 for 0 ≤ t ≤ T, (1c)

Fractal Fract. 2024, 8, 106. https://doi.org/10.3390/fractalfract8020106 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8020106
https://doi.org/10.3390/fractalfract8020106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-3554-7885
https://doi.org/10.3390/fractalfract8020106
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8020106?type=check_update&version=1


Fractal Fract. 2024, 8, 106 2 of 13

where 1 < α < 2, κ > 0, c ≥ 0, Ω = [xl , xr] × [yl , yr] ⊂ R2, φ(x) ∈ C∞(Ω̄), and
φ̃(x) ∈ C∞(Ω̄). Here, Dα

t is the standard Caputo fractional derivative defined by

Dα
t v(t, x) =

∫ t

0
Λ2−α(t − s)

∂2v(s, x)
∂s2 ds with Λρ(t) =

tρ−1

Γ(ρ)
for ρ > 0. (2)

As a matter of fact, Model (1) can be used to describe a wide variety of phenomena
in physics, chemistry, engineering, and medicine, such as surfactant and liquid delivery
into the lung [11], ice formation [12], forming grooves on flat surfaces [13], removing
noise from medical magnetic resonance images [14], and so on. The main advantage of
Model (1) is that it is able to be used to describe the evolution processes between diffusion
and wave propagation, which is one of its most significant advantages. A number of
numerical methods have recently been developed for solving the fractional diffusion-wave
equation [15,16]. Despite this, it is relatively rare to simulate Equation (1) with a weakly
singular solution numerically. A combination of the L1 scheme and the compact difference
scheme is applied in the temporal and spatial directions by Hu and Zhang [17] to resolve
Problem (1) by means of order reduction methods. As described in [18], Li and Vong
solved Problem (1) by applying the parametric quintic spline in spatial direction and the
weighted shifted Grünwald Letnikov scheme in the temporal direction. Bhrawy et al. [19]
proposed an efficient and accurate spectral method to simulate Equation (1). To solve
Equation (1) with nonlinear terms, Huang et al. [20] used piecewise rectangular formulas
and the Crank–Nicolson technique in time, and unconditional convergence was derived
using the energy method. A fast Alikhanov scheme was proposed by Ran and Lei [21]
to approximate the Caputo derivative of Problem (1) with a variable coefficient, and the
unconditional stability as well as the optimal convergence under the maximum norm of
the scheme was demonstrated.

It should be noted that the above numerical methods are based on the assumption
that the exact solution of Problem (1) is smooth. This assumption, as far as we know, is
unrealistic, because at the initial time, the solution of time-fractional equations usually
behaves as a weak singularity. Therefore, this paper establishes the regularity of u as well
as the intermediate variable for Equation (1). By introducing two intermediate variables,
w = Dα/2

t (u − tφ̃) and p = ∆(u − tφ̃), we are able to rewrite a fourth-order fractional
diffusion-wave Equation (1) and approximate its solution using nonuniform Alikhanov
schemes in temporal direction and the finite difference method in the spatial direction.
Furthermore, we provide an optimal convergence analysis of the proposed method based
on the H2-norm which satisfies α-robust.

We organize this paper as follows. The regularity of u and the introduced variable
w = Dα/2

t (u − tφ̃) is analyzed in Section 2. In Section 3, an equivalent coupled system
for Equation (1) is approximated using nonuniform Alikhanov schemes in time and the
finite difference method in space. Moreover, Section 4 provides stability and convergence
results in H2-norm for the proposed scheme. In Section 5, two numerical experiments
are presented to verify the accuracy of theoretical results. The final section of the paper
presents our conclusions.

In the rest of the paper, we note that generic constant C is independent of the mesh,
and it takes different values depending on where it is used. Furthermore, this constant is
α-robust, i.e., the constant’s value remains finite as α → 2.

2. Regularity of the Solution

In this section, the regularity of the exact solution for original Problem (1) is analyzed.
We denote ũ(t, x) := u(t, x)− tφ̃(x). Now, we reformulate the original Problem (1) as

Dα
t ũ + κ2∆2ũ − c∆ũ = g − t (κ2∆2 φ̃ − c∆φ̃) ∀ (t, x) ∈ Φ := (0, T]× Ω, (3a)

ũ(0, x) = φ(x) and ũt(0, x) = 0 for x ∈ Ω, (3b)

ũ|∂Ω = ∆ũ|∂Ω = 0 for 0 ≤ t ≤ T. (3c)
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Applying the separation of variables, we construct the solution to Problem (3). We
let {(λi, ϕi); i = 1, 2, . . . } be the eigenvalues and eigenfunctions of the following Sturm–
Liouville problem:

−∆ϕi = λiϕi with ϕi|∂Ω = 0,

where ϕi is the unit orthogonal basis of L2(Ω) for all i and 0 < λ1 < λ2 < · · · < λi → ∞.
From [22] (p. 3327), we observe that ϕi is the eigenfunctions for the eigenvalue problem,

κ2∆2ϕi − c∆ϕi = λ̃iϕi with ϕi|∂Ω = ∆ϕi|∂Ω = 0,

where eigenvalue λ̃i is defined by λ̃i := λi(κ
2λi + c) for i = 1, 2, . . . , ∞.

Now, applying the separation of variables to the equivalent Equation (3) yields

ũ(t, x) =
∞

∑
i=0

[
(φ, ϕi)Eα,1(−λ̃itα) + Ji(t)

]
ϕi(x), (4)

where Ji(t) is defined by

Ji(t) :=
∫ t

0
sα−1Eα,α(−λ̃isα)gi(t − s) ds with gi(t) :=

(
g(t, ·)− t (κ2∆2 φ̃ − c∆φ̃), ϕi(·)

)
.

Here, the classic Mittag–Leffler function Eρ,η can be represented as follows:

Eρ,η(s) =
∞

∑
i=0

si

Γ(ρi + η)
∀ ρ > 0, η > 0.

Now, the following fractional power Lγ is defined for each γ ∈ R by

D(Lγ) :=

{
v ∈ L2(Ω) :

∞

∑
i=1

λ̃
2γ
i (v, ϕi)

2 < ∞

}
, and we set ∥v∥Lγ :=

(
∞

∑
i=1

λ̃
2γ
i (v, ϕi)

2

)1/2

.

We set w = Dα/2
t (u − tφ̃). Imitating [23] (Section 3), a priori bounds on ũ and w of

Problem (1) are stated in the following lemma.

Lemma 1. We assume that φ(x) ∈ D(L5), φ̃(x) ∈ D(L5), g(t, ·) ∈ D(L5), gt(t, ·) ∈ D(L3),
and gtt(t, ·) ∈ D(L3) for each t ∈ (0, T] with

∥g(t, ·)∥L5 + ∥gt(t, ·)∥L3 + ∥gtt(t, ·)∥L3 ≤ C.

Then, the solution of (3) and the introduced variable w satisfy

∥ũ(t, x)∥H6(Ω) + ∥w(t, x)∥H6(Ω) ≤ C for t ∈ (0, T], (5a)∥∥∥∂k
t ũ(t, x)

∥∥∥
H4(Ω)

≤ C(1 + tα−k) for t ∈ (0, T] and k = 0, 1, 2, 3, (5b)

∥∥∥∂k
t w(t, x)

∥∥∥
H4(Ω)

≤ C(1 + tα/2−k) for t ∈ (0, T] and k = 0, 1, 2, 3. (5c)

Proof. Applying the definition of the Caputo derivative and (4) yields

w(t, x) =
1

Γ(1 − β)

∫ t

0
(t − s)−βũs(s, x) ds

=
1

Γ(1 − β)

∞

∑
i=0

[
−λ̃i(φ, ϕi)Si

1 + gi(0)Si
1 + Si

2

]
ϕi(x), (6)
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where Si
1 and Si

2 are defined by

Si
1 :=

∫ t

0
(t − s)−βsα−1Eα,α(−λ̃isα) ds

and

Si
2 :=

∫ t

0
(t − s)−β

[∫ s

0
τα−1Eα,α(−λ̃iτ

α)g′i(s − τ) dτ

]
ds.

Differentiating Series (4) and (6) with respect to t, x, and y, and then imitating the analysis
of [23] (3.10) yields (5).

3. The Fully Discrete Method

In this section, we construct the fully discrete method for Problem (1).
Now, we set β := α/2 in the remainder of the paper. From [15] (Lemma 2.1), the

following significant property is stated to construct the numerical method.

Lemma 2. [15] (Lemma 2.1) We let ṽ(t) = v(t)− tv′(0). We suppose function v(t) ∈ C2(0, T];
we have

Dα
t v(t) = Dα

t ṽ(t) = Dβ
t

(
Dβ

t ṽ(t)
)

for α ∈ (1, 2).

Using Lemma 2, Equation (3) can be rewritten as

Dβ
t w − κ2∆p + cp = g(t, x)− t(κ2∆2 φ̃ − c∆φ̃) ∀ (t, x) ∈ Φ,

Dβ
t ũ − w = 0 ∀ (t, x) ∈ Φ,

p + ∆ũ = 0 ∀ (t, x) ∈ Φ,

w(0, x) = 0, p(0, x) = 0, and ũ(0, x) = φ(x) for x ∈ Ω,

ũ|∂Ω = w|∂Ω = p|∂Ω = 0 for 0 < t ≤ T.

(7)

For n = 0, 1, . . . , N, we set tn = T(n/N)r, where N is a positive integer, and r
represents the user’s choice of grading parameter. We denote tn−σ := σtn−1 + (1 − σ)tn for
n = 1, 2, . . . , N and 0 ≤ σ ≤ 1.

For any function v ∈ C[0, T] ∩ C3(0, T], the fractional derivative Dβ
t v(t, x) of (7) can be

calculated at t = tn−σ using the following nonuniform Alikhanov method:

Dβ
t v(x, tn−σ) ≈ (Dβ

Nv)n−σ :=
∫ tn−σ

0

v′(η)
Γ(1 − β)(tn−σ − η)tn−σ

dη

=
n−1

∑
j=1

∫ tj

tj−1

v′(η)
Γ(1 − β)(tn−σ − η)tn−σ

dη

+
∫ tn−σ

tn−1

v′(η)
Γ(1 − β)(tn−σ − η)tn−σ

dη

=
n−1

∑
j=1

∫ tj

tj−1

(I2,jv(η))′

Γ(1 − β)(tn−σ − η)tn−σ
dη

+
∫ tn−σ

tn−1

δtv(tn)

Γ(1 − β)(tn−σ − η)tn−σ
dη

=
n

∑
l=1

dσ
n,n−l(v

l − vl−1), (8)
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in which I2,jv(η) is the quadratic polynomial interpolating at points tj−1, tj and tj+1.
In (8), coefficients dσ

n,n−l are defined as follows: if n = 1, dσ
1,0 = a1

0; otherwise

dσ
n,n−l =


an

0 +
τn−1

τn
bn

1 if l = n,

an
n−l +

τl−1
τk

bn
n−l+1 − bn

n−l if 2 ≤ l ≤ n − 1,

an
n−1 − bn

n−1 if l = 1,

where

an
0 =

1
τn

∫ tn−σ

tn−1

Λ1−β(tn−σ − η) dη, an
n−l =

1
τl

∫ tl

tl−1

Λ1−β(tn−σ − η) dη for 1 ≤ l ≤ n − 1,

bn
n−l =

∫ tl

tl−1

2(η − tl− 1
2
)Λ1−β(tn−σ − η)

τl(τl + τl+1)
dη for 1 ≤ l ≤ n − 1.

Now, the temporal truncation error of the nonuniform Alikhanov scheme is stated in
the following two lemmas.

Lemma 3. [24] (Lemma 3.2) We let σ = 1 − β/2. We suppose ∥∂l
tv(t, x)∥L∞(Ω) ≤ C(1 + tδ−l)

for l = 0, 1, 2, 3; then, we obtain

tβ
n−σ

∥∥(Dβ
Nv)n−σ − Dβ

t v(x, tn−σ)
∥∥

L∞(Ω)
≤ CN−min{3−β,rδ} for 1 ≤ n ≤ N.

Lemma 4. [24] (Lemma 3.3) We let σ = 1 − β/2. We suppose ∥∂l
tv(t, x)∥L∞(Ω) ≤ C(1 + tδ−l)

for l = 0, 1, 2; then, we have∥∥vn−σ − vn,σ∥∥
L∞(Ω) ≤ Ct−β

n−σ N−min{2,rδ} for 1 ≤ n ≤ N.

For spatial meshes, the uniform step sizes in each directions are defined as hx :=
(xr − xl)/Mx and hy := (yr − yl)/My, where Mx and My are positive constants. We let
Ωh = {(xi, yj) | 0 ≤ i ≤ Mx, 0 ≤ j ≤ My}, Ωh = Ωh ∩ Ω, and ∂Ωh = Ωh ∩ ∂Ω, where
xi := xl + ihx and yj := yl + jhy. We denote un

i,j or un
h as the nodal approximation to

u(tn, xi, yj) for all admissible i, j and n.
For each grid function v on Ωh, ∆v(tn, xi, yj) can be calculated by

∆v(tn, xi, yj) ≈ ∆hvn
h := δ2

xvn
i,j + δ2

yvn
i,j, (9)

where

δ2
xvn

i,j :=
vn

i+1,j − 2vn
i,j + vn

i−1,j

h2
x

and δ2
yun

i,j :=
vn

i,j+1 − 2vn
i,j + vn

i,j−1

h2
y

.

At each point (tn−σ, xi, yj), applying the nonuniform Alikhanov scheme (8) and
Scheme (9) to approximate the Caputo derivative and the Laplacian operator of System (7)
yields our fully discrete Alikhanov scheme:

(Dβ
Nwh)

n−σ − κ2∆h pn,σ
h + cpn,σ

h = gn−σ
h − tn−σ(κ2∆2 φ̃n−σ

h − c∆φ̃n−σ
h ),

(Dβ
N ũh)

n−σ − wn,σ
h = 0,

pn,σ
h + ∆hũn,σ

h = 0

(10)

for n = 1, . . . , N, where ũ0
h = φ(x), w0

h = 0, and p0
h = 0.

4. The Error Estimate of the Fully Discrete Alikhanov Scheme

In this section, the H2-norm stability result of the fully discrete Alikhanov scheme (10)
is given. Moreover, we obtain an α-robust convergent result.
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For any grid function v and η that vanish on ∂Ω, we define the discrete inner product,
(v, η) := hxhy ∑(xi ,yj)∈Ωh

v(xi, yj)η(xi, yj), the discrete L2-norm, ∥v∥ :=
√
(v, v), and the

discrete H1-norm, ∥∇hv∥ :=
√
(v,−∆hv) =

√
(∇hv,∇hv). It is easy to check that

(∆hvh, ηh) = (vh, ∆hηh) (11)

for any vh and ηh that vanish on ∂Ω.
Now, an important property for the Alikhanov scheme (8) is stated.

Lemma 5. [25] (Corollary 1) For any grid function vn, we have

2
(
(Dβ

Nv)n−σ, vn,σ
)
≥
(

Dβ
N∥v∥2

)n−σ
for 1 ≤ n ≤ N.

For 1 ≤ n ≤ N and 1 ≤ j ≤ n − 1, we investigate the complementary discrete
convolution kernels, Θn,n−j, which are defined by

Θn,0 :=
1

dσ
n,0

, Θn,n−s :=
1

dσ
s,0

n

∑
k=s+1

(
dσ

k,k−s−1 − dσ
k,k−s

)
Θn,n−k.

From [26] (5.10), we obtain

n

∑
j=1

Θn,n−j jr(γ−β) ≤ πAΓ(1 + γ − β)

Γ(1 + γ)
Tβ

(
tn

T

)γ

Nr(γ−β) for γ ∈ (0, 1) and 1 ≤ n ≤ N, (12)

where πA := 11/4.
We now present the discrete fractional Gronwall inequality below.

Lemma 6. [8] (Theorem 3.1) We let the bounded sequences, { ξn ≥ 0 : n ≥ 1} and { vn ≥ 0 :
n ≥ 0}, satisfy (

Dβ
Nv2

)n−σ
≤ ξnvn,σ for n ≥ 1; (13)

then, we have

vn ≤ v0 + max
1≤k≤n

k

∑
j=1

Θk,k−jξ
j for 1 ≤ n ≤ N. (14)

The next step is to consider the following general case, which includes (10) as a special
case. For any 1 ≤ n ≤ N, we assume the pair of grid functions (ωn

h , νn
h , µn

h) that vanish on
∂Ω satisfy

(Dβ
Nωh)

n−σ − κ2∆hνn,σ
h + cνn,σ

h = ζn−σ
h for n = 1, . . . , N, (15a)

(Dβ
Nµh)

n−σ − ωn,σ
h = f n−σ

h for n = 1, . . . , N, (15b)

νn,σ
h + ∆hµn,σ

h = ςn−σ
h for n = 1, . . . , N, (15c)

where ωn
h , µn

h , and νn
h vanish on ∂Ω, and ζn

h , f n
h , and ςn

h are given grid functions on Ωh.
Next, we present a useful bound of (15), which is applied to derive the stability result

of the fully discrete Alikhanov scheme (10).

Lemma 7. The solution (ωn
h , µn

h , νn
h ) of (15) satisfies√

∥ωn
h∥2 + κ2∥∆hµn

h∥2 + c∥∇hµn
h∥2 ≤

√
∥ω0

h∥2 + κ2∥∆hµ0
h∥2 + c∥∇hµ0

h∥2

+ 2 max
1≤k≤n

[
k

∑
s=1

Θn,k−s

√
∥ζs−σ

h + κ2∆hςs−σ
h − cςs−σ

h ∥2 + ∥∆h f s−σ
h − c

κ
f s−σ
h ∥2

]
(16)
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for 1 ≤ n ≤ N.

Proof. We fix n ∈ {1, 2, . . . , N}. Taking the inner product of Equations (15a), (15b), and
(15c) by ωn,σ

h , κ2∆hµn,σ
h , and κ2∆hωn,σ

h respectively, we have
(
(Dβ

Nωh)
n−σ, ωn,σ

h

)
− κ2(∆hνn,σ

h , ωn,σ
h ) + c(νn,σ

h , ωn,σ
h ) = (ζn−σ

h , ωn,σ
h ),

κ2
(
(Dβ

Nµh)
n−σ, ∆2

hµn,σ
h

)
− κ2(ωn,σ

h , ∆2
hµn,σ

h ) = κ2( f n−σ
h , ∆2

hµn,σ
h ),

κ2(νn,σ
h , ∆hωn,σ

h ) + κ2(∆hµn,σ
h , ∆hωn,σ

h ) = κ2(ςn−σ
h , ∆hωn,σ

h ).

Adding the above three equations, we have(
(Dβ

Nωh)
n−σ, ωn,σ

h

)
+ κ2

(
(Dβ

N∆hµh)
n−σ, ∆hµn,σ

h

)
+ c(νn,σ

h , ωn,σ
h ) = (ζn−σ

h + κ2∆hςn−σ
h , ωn,σ

h )

+ κ2(∆h f n−σ
h , ∆hµn,σ

h ), (17)

where (11) is used. By taking the inner product of Equations (15b) and (15c) with ∆hµn,σ
h

and ωn,σ
h , we have

(
(Dβ

Nµh)
n−σ, ∆hµn,σ

h

)
− (ωn,σ

h , ∆hµn,σ
h ) = ( f n−σ

h , ∆hµn,σ
h ),

(νn,σ
h , ωn,σ

h ) + (∆hµn,σ
h , ωn,σ

h ) = (ςn−σ
h , ωn,σ

h ).

Adding the above two equations and applying (11), we have

(νn,σ
h , ωn,σ

h ) =
(
(Dβ

N∇hµh)
n−σ,∇hµn,σ

h

)
+ ( f n−σ

h , ∆hµn,σ
h ) + (ςn−σ

h , ωn,σ
h ).

Substituting the above result into (17) yields(
(Dβ

Nωh)
n−σ, ωn,σ

h

)
+ κ2

(
(Dβ

N∆hµh)
n−σ, ∆hµn,σ

h

)
+ c
(
(Dβ

N∇hµh)
n−σ,∇hµn,σ

h

)
=
(

ζn−σ
h + κ2∆hςn−σ

h − cςn−σ
h , ωn,σ

h

)
+ (κ2∆h f n−σ

h − c f n−σ
h , ∆hµn,σ

h ). (18)

Using a Cauchy–Schwarz inequality and Lemma 5, we have

1
2

(
Dβ

N∥ωh∥2
)n−σ

+
1
2

κ2
(

Dβ
N∥∆hµh∥2

)n−σ
+

1
2

c
(

Dβ
N∥∇hµh∥2

)n−σ

≤ ∥ζn−σ
h + κ2∆hςn−σ

h − cςn−σ
h ∥ ∥ωn,σ

h ∥+ ∥κ2∆h f n−σ
h − c f n−σ

h ∥ ∥∆hµn,σ
h ∥.

Applying Hölder inequality produces(
Dβ

N

(
∥ωh∥2 + κ2∥∆hµh∥2 + c∥∇hµh∥2

))n−σ

≤ 2
√
∥ζn−σ

h + κ2∆hςn−σ
h − cςn−σ

h ∥2 + ∥∆h f n−σ
h − c

κ
f n−σ
h ∥2

×
√
∥ωn,σ

h ∥2 + κ2∥∆hµn,σ
h ∥2 + c∥∇hµn,σ

h ∥2.

Furthermore, applying Lemma 6 yields√
∥ωn

h∥2 + κ2∥∆hµn
h∥2 + c∥∇hµn

h∥2 ≤
√
∥ω0

h∥2 + κ2∥∆hµ0
h∥2 + c∥∇hµ0

h∥2

+ 2 max
1≤k≤n

[
k

∑
s=1

Θn,k−s

√
∥ζs−σ

h + κ2
h∆hςs−σ

h − cςs−σ
h ∥2 + ∥∆h f s−σ

h − c
κ

f s−σ
h ∥2

]
.
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We now present the stability result for the fully discrete Alikhanov scheme (10) in the
following theorem.

Theorem 1. Solution (wn
h , ũn

h , pn
h) of (10) satisfies√

∥wn
h∥2 + κ2∥∆hũn

h∥2 + c∥∇hũn
h∥2 ≤

√
∥w0

h∥2 + κ2∥∆hũ0
h∥2 + c∥∇hũ0

h∥2

+
2πA

Γ(1 + β)
tβ
n max

1≤s≤n
∥gs−σ

h − ts−σ(κ
2∆2 φ̃h − c∆φ̃h)∥ (19)

for 1 ≤ n ≤ N.

Proof. It is clear that (10) is a special case of (15) with ωn
h = wn

h , νn
h = pn

h , µn
h = ũn

h ,
ζn−σ

h = gn−σ
h − tn−σ(κ2∆2 φ̃h − c∆φ̃h), f n−σ

h = 0, and ςn−σ
h = 0. Hence, applying Lemma 7

yields√
∥wn

h∥2 + κ2∥∆hũn
h∥2 + c∥∇hũn

h∥2 ≤
√
∥w0

h∥2 + κ2∥∆hũ0
h∥2 + c∥∇hũ0

h∥2

+ 2 max
1≤k≤n

k

∑
s=1

θn,k−s ∥gs−σ
h − ts−σ(κ

2∆2 φ̃h − c∆φ̃h)∥. (20)

From (20), we obtain (19) immediately by invoking (12) with γ = β.

Next, we state the error analysis of our fully discrete scheme. First, we denote

en
w := wn

h − w(tn, xi, yj), en
u := ũn

h − ũ(tn, xi, yj), and en
p := pn

h − p(tn, xi, yj).

Now, we begin to present the error equation of coupled system (10). For 1len ≤ N, we
define

φn−σ
w := Dβ

t w(·, tn−σ)− (Dβ
Nw)n−σ, Rn−σ

p := pn−σ − pn,σ,

φn−σ
u := Dβ

t u(·, tn−σ)− (Dβ
Nu)n−σ, Rn−σ

w := wn−σ − wn,σ,

ρn,σ
p := ∆pn,σ − ∆h pn,σ, ρn,σ

u := ∆ũn,σ − ∆hun,σ.

From (7) and (10), we obtain the following error equations:

(Dβ
New)

n−σ − κ2∆hen,σ
p + cen,σ

p = χn−σ, (21a)

(Dβ
Neu)

n−σ − en,σ
w = φn−σ

u − Rn−σ
w , (21b)

en,σ
p + ∆hen,σ

u = ρn,σ
u , (21c)

where χn−σ is defined by

χn−σ := φn−σ
w − κ2∆Rn−σ

p − κ2ρn−σ
p + cRn−σ

p .

The optimal error estimate for Scheme (10) is given by combining the regularity results
given in Section 2.

Theorem 2. We let lN = 1/lnN. At each time level tn, we let (wn, ũn, pn) and (wn
h , ũn

h , pn
h) be

the solutions of (7) and (10), respectively. Then, we have

∥∆hũn − ∆hũn
h∥+ ∥wn − wn

h∥ ≤ CπAtβ
n

Γ(1 + β)

(
h2

x + h2
y

)
+

CπAerΓ(1 + lN − β)

Γ(1 + β)
N−min{2,rβ} (22)
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for 1 ≤ n ≤ N.

Proof. It is clear that System of error equations (21) is a special case of (15) with ωn
h = en

w,
νn

h = en
p, µn

h = en
u, ζn−σ

h = χn−σ, f n−σ
h = φn−σ

u − Rn−σ
w , and ςn−σ

h = ρn,σ
u . Hence, invoking

Lemma 7 offers√
∥en

w∥2 + κ2∥∆hen
u∥2 + c∥∇hen

u∥2 ≤
√
∥e0

w∥2 + κ2∥∆he0
u∥2 + c∥∇he0

u∥2

+ 2 max
1≤k≤n

k

∑
s=1

Θk,k−s

√
∥χs−σ + κ2∆hρs,σ

u − cρs,σ
u ∥2 + ∥∆h(φs−σ

u − Rs−σ
w )− c

κ
(φs−σ

u − Rs−σ
w )∥2

≤ 2 max
1≤k≤n

k

∑
s=1

Θk,k−s

(
∥χs−σ∥+ (cCΩ + κ)∥∆hρs,σ

u ∥+ (1 +
cCΩ

κ
) (∥∆h φs−σ

u ∥+ ∥∆hRs−σ
w ∥)

)
, (23)

where e0
u = 0, e0

w = 0, and ∥v∥ ≤ CΩ∥∆hv∥ are used.
Applying the triangle inequality and regularity Result (5), we obtain

∥χs−σ∥ ≤ ∥φs−σ
w ∥+ κ2∥∆Rs−σ

p ∥+ κ2∥ρs−σ
p ∥+ c∥Rs−σ

p ∥

≤ Ct−β
s−σ N−min{3−β,rβ} + Ct−β

s−σ N−min{2,rα} + C(h2
x + h2

y)

≤ C
(

h2
x + h2

y + t−β
s−σ N−min{2,rβ}

)
, (24)

where Lemma 3 and Lemma 4 are used. Applying the Taylor expansion, we arrive at

∆hρs,σ
u =

∫ 1

0

[
∂xxρs,σ

u (xi − lhx, yj) + ∂xxρs,σ
u (xi + lhx, yj)

]
(1 − l) dl

+
∫ 1

0

[
∂yyρs,σ

u (xi, yj − lhy) + ∂yyρs,σ
u (xi, yj − lhy)

]
(1 − l) dl.

Hence, combining the above Taylor expansion with regularity Result (5a) yields

∥∆hρs,σ
u ∥ ≤ C

(
h2

x + h2
y

)
. (25)

Similarity to the estimation of ∥∆hρs,σ
u ∥, we have

∥∆h φs−σ
u ∥+ ∥∆hRs−σ

w ∥ ≤ Ct−β
s−σ N−min{3−β,rβ} + Ct−β

s−σ N−min{2,rβ}

≤ Ct−β
s−σ N−min{2,rβ}. (26)

Substituting (24), (25), and (26) into (23) yields√
∥en

w∥2 + κ2∥∆hen
u∥2 + c∥∇hen

u∥2 ≤ 2C max
1≤k≤n

k

∑
s=1

Θk,k−s

(
h2

x + h2
y + t−β

s−σ N−min{2,rβ}
)

. (27)

However,

t−β
s−σ ≤ t−β

s−1 = T−β(s − 1)−rβNrβ ≤ T−β
( s

2

)−rβ
Nrβ ≤ 2rβT−βNrβsr(lN−β).

Utilizing the above bound and using (12) with γ = lN offers

k

∑
s=1

Θk,k−st−β
s−σ N−min{2,rβ} ≤ CπAerΓ(1 + lN − β)

Γ(1 + β)
N−min{2,rβ}. (28)
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Invoking (12) with γ = β for the term h2
x + h2

y, we have

k

∑
s=1

Θk,k−s

(
h2

x + h2
y

)
≤ πA

Γ(1 + β)
tβ
k

(
h2

x + h2
y

)
. (29)

Substituting (28) and (29) into (27) offers√
∥en

w∥2 + κ2∥∆hen
u∥2 + c∥∇hen

u∥2 ≤ CπAtβ
n

Γ(1 + β)

(
h2

x + h2
y

)
+

CπAerΓ(1 + lN − β)

Γ(1 + β)
N−min{2,rβ}.

Finally, the desired Result (22) is obtained immediately.

Remark 1. In [23], the Caputo fractional derivative of Problem (1) is decomposed into Dα−1
t v and

ut by investigating the variable v = ut, then they are approximated by the nonuniform L1 scheme
and the nonuniform Crank–Nicolson scheme respectively. Furthermore, the proposed numerical
method achieves the min{rα/2, 3− α} order in time, which is suboptimal. However, our convergent
result given in Theorem 2 attains the 2 order in time. In addition, Theorem 2 shows that our error
analysis is α-robust as α → 2−. Nevertheless, the convergent result given in [15] contains the term
Γ(1 − α/2), which blows up as α → 2−.

Corollary 1. We suppose r ≥ 4/α; then, we obtain that numerical solution (ũn
h , wn

h) satisfies

∥∆ũn − ∆hũn
h∥+ ∥wn − wn

h∥ ≤ CπAtα/2
n

Γ(1 + α/2)

(
h2

x + h2
y

)
+

CπAerΓ(1 + lN − α/2)
Γ(1 + α/2)

N−2

for 1 ≤ n ≤ N.

5. Numerical Experiments

In this section, two numerical experiments with weakly singular solutions are pre-
sented to verify the theoretical result of our fully discrete Alikhanov scheme (10).

Example 1. We consider Equation (1) with κ = 1, c = 1, Ω = (0, π) × (0, π), T = 1,
φ(x, y) = 0, φ̃(x, y) = 0, and the source term g is chosen by

g(t, x, y) =
[

Γ(1 + α) +
6

Γ(4 − α)
+ 6(tα + t3)

]
sin x sin y.

The theoretical solution of this numerical example is u(t, x, y) = (tα + t3) sin x sin y, which
displays weak singularity at t = 0.

In our following calculation, we estimate the global H2-norm error max1≤n≤N ∥∆un −
∆hun

h∥ of the Alikhanov scheme by taking r = 4/α. Table 1 shows the H2-norm error and
the rate of the Alikhanov scheme for α = 1.2, 1.5, 1.8, where N = Mx = My is taken. The
results displayed indicate that temporal convergence rates are N−2, in agreement with
Theorem 2. Table 2 shows the errors and their associated spatial orders for different α,
where N = 200 and Mx = My are taken. Form Table 2, we observe O(h2) convergence,
again as predicted by Theorem 2.
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Table 1. Convergent results of max
1≤j≤N

∥∆un − ∆hun
h∥ in temporal direction with r = 4/α.

N = 20 N = 40 N = 80 N = 160 N = 320

α = 1.2 3.4823·10−2 9.1635·10−3 2.3618·10−3 5.9906·10−4 1.5053·10−4

1.9261 1.9959 1.9791 1.9925
α = 1.5 3.2409·10−2 8.3604·10−3 2.1279·10−3 5.3611·10−4 1.3425·10−4

1.9547 1.9740 1.9888 1.9976
α = 1.8 3.1744·10−2 8.1407·10−3 2.0645·10−3 5.1916·10−4 1.2969·10−4

1.9632 1.9793 1.9915 2.0010

Table 2. Convergent results of max
1≤j≤N

∥∆un − ∆hun
h∥ in spatial direction.

Mx = My = 10 Mx = My = 20 Mx = My = 40 Mx = My = 80

α = 1.2 9.9170·10−3 2.4773·10−3 6.1757·10−4 1.5528·10−4

2.0014 2.0040 1.9917
α = 1.5 9.9080·10−3 2.4771·10−3 6.1970·10−4 1.5699·10−4

1.9999 1.9990 1.9836
α = 1.8 1.0077·10−2 2.5205·10−3 6.3258·10−4 1.6172·10−4

1.9993 1.9943 1.9677

Example 2. Let us solve the original Problem (1) with κ = c = 1, Ω = (0, π)× (0, π), T = 1,
φ(x, y) = sin x sin y, φ̃(x, y) = 0, and g = 0.

Due to the fact that the solution of this numerical example is unknown, we use the two
mesh principles given in [27] to verify the theoretical result of Theorem 2. Figure 1 displays
the error max

1≤n≤N
∥∆un − ∆hun

h∥ in time for different α, where N = Mx = My is chosen. It is

shown that the rate of convergence attains the 2 order in time, as predicted by Theorem 2.
Figure 2 presents the numerical solution at tn = 1 for α = 1.1, 1.9. The displayed result of
this figure shows that the solution of this problem behaves diffusive as α → 1+, and the
characteristic of the initial solution φ(x, y) is well maintained as α → 2−, which indicates
that the propagation speed of waves is finite. Moreover, the attenuation of the numerical
solution gradually slows down as α → 2−, verifying the wave feature again.

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

log(1/N)

-4

-3.5

-3

-2.5

-2

lo
g

(e
rr

o
r)

Slope=2

=1.2

=1.5

=1.8

Figure 1. The plot of error max
1≤n≤N

∥∆un − ∆hun
h∥ for α = 1.2, 1.5, 1.8.
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(a) (b)

Figure 2. The numerical solution for Example 2 at tn = 1. (a) α = 1.1; (b) α = 1.9.

6. Conclusions

This paper investigates the regularity result of Equation (1), which indicates that the
solution behaves as a weak singularity at t = 0. In order to construct a fully discrete
scheme, the nonuniform Alikhanov scheme in time is used along with the finite difference
method in space. Then, the stability analysis and an α-robust optimal convergent result
under H2-norm for the proposed scheme are obtained. Finally, two numerical examples
are provided to verify the theoretical result. In the future, we will extend the proposed
scheme to the Equation (1) with a nonlinear term and present the unconditional optimal
error estimate. In addition, we will extend the proposed scheme to fractional equations
with the Caputo-Hadamard fractional derivative.
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