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Abstract: The novelty of this work is the development of a new fractional boundary element model
based on the Caputo derivative to investigate anomalous thermal stress effects on cement-based
materials. To obtain the BEM integral equations for the proposed formulation, we employ the
weighted residuals technique, with the anisotropic fundamental solution serving as the weighting
function in the anomalous heat governing equation. The Caputo fractional derivative was employed
as an integrand for the domain integral of the proposed formulation. The time step selection is less
dependent on the time derivative order. This allows the approach to overcome the non-locality of the
fractional operators. The key benefit provided by the suggested formulation is the ability to analyze
situations with tiny values of the fractional time derivative. The current BEM methodology proves
that it is a useful tool for solving fractional calculus problems.

Keywords: fractional order; Caputo derivative; boundary element method; anomalous thermal
stresses; cement-based materials

1. Introduction

Over the last few decades, there has been growing interest in investigating anomalous
heat transmission in various materials. Anomalous behavior is frequently defined by a
power-law spatial fall in temperature within a homogeneous medium, where the heat
equation may be used [1–3]. In many complex media, the heat equation may not be
applicable; thus, the parabolic equation governing heat diffusion can be replaced with
a broader view. For example, fractional differential heat diffusion equations have been
derived for numerous materials incorporating mass fractals. Some media with spatial
non-local behaviors, fractional derivative features, and non-conserving energy may show a
non-local temporal rate of change in the thermal stress tensor [4–7].

Cement-based materials, also known as porous composites, have been widely used in
a range of constructions due to their technical, mechanical, and chemical qualities. Moisture
transport has been widely established to have an impact on the service performance and
life of cement-based materials [8,9]. Because of their variety and complexity, cement-based
materials exhibit more anomalous moisture transport characteristics than other porous
materials [10–13]. Moisture transport systems and moisture distribution exhibit various
anomalous properties in distinct ways. The accessibility of bulk liquid water within the
material, indicating linear passage in the pore space, is measured over time [14–16]. Fick’s
second law describes an ordinary diffusion mechanism that accounts for mass continuity.
It has been widely utilized to determine the liquid or vapor transfer of moisture in cement-
based materials. The study indicated that the Fickian model provides a solid foundation for
predicting the lifespan of cement-based materials by fitting vapor transport measurement
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data [17–19]. Bridges, walkways, slabs, pavements, floors, and walls are among the struc-
tural and prefabricated components constructed with cement-based materials. Concrete is
also utilized to construct storage tanks, swimming pools, subterranean parking lots, and
other structures. Because of climate change, numerous of these elements are constantly
subjected to temperature fluctuations. These fluctuations result in temperature gradients,
which produce internal tensions in the substance. Depending on how the temperature
changes, these forces may cause cracking [20–22].

It is well recognized that thermally generated stresses in concrete can cause serious
problems. These stresses have the potential to fracture or spall concrete due to its low tensile
strength. Although this happens frequently in pavement, temperature gradients and other
boundary circumstances make it more frequent in structural concrete. However, practicing
engineers may not fully comprehend the phenomenon of thermal stresses and their possible
effects on concrete structures [23]. They may think that the lack of a temperature gradient or
other type of temperature difference in a structure is sufficient to stop thermal stresses from
developing, and as a result, the stresses should be disregarded. They ignore how aging
affects the material properties of concrete, including creep, shrinkage, and heat production
from hydration [24–26].

There are more physical mechanisms for strains to originate in concrete. Because
concrete is hot wrought by nature, it lacks a faultless structure free of flaws. When exposed
to a thermal environment, each component of the concrete has a different temperature,
and when it warms or cools, the concrete creates internal strains. After that, the strength
drops, and quick heating can result in extremely high-tension stress in the concrete [27,28].
Tensile stress is an important design consideration for nuclear reactor containment struc-
tures because they can become extremely fragile at high temperatures. Therefore, it is vital
to design a structure so that the maximum stress does not exceed the material’s tensile
strength. The proper application of admixtures can improve the concrete’s durability to
high temperatures; nevertheless, this is heavily dependent on the concrete’s underlying
structure. It has long been recognized that stress development and heat transfer are impor-
tant aspects in the risk assessment and quality analysis of concrete structures exposed to a
variety of temperature histories. Aside from thermal expansion and plain concrete crack-
ing, other current concerns include temperature effects on interactions between multiple
structural members or systems, the combination of mechanical load and hostile environ-
ment, dangerous interactions between transported hazardous materials, and temperature
histories that are either time-dependent or irreversible. To assess the thermal stress related
to encapsulating hazardous waste forms, exact temperature gradients must be identified.
The temperature history also indicates that concrete exposed to high temperatures may
degrade [29–32]. Concrete is a ceramic material composed mostly of cement, water, and
coarse and fine particles. When a concrete structure is exposed to temperature changes,
cement-based materials may not react uniformly, resulting in axial strains and thermal gra-
dients [33,34]. These non-uniform responses cause internal stresses of varying magnitudes,
compromising the specimen’s integrity. These generated stresses can threaten the concrete’s
serviceability or be used to create fracture-mitigation solutions. Understanding and pre-
venting crack propagation necessitates a detailed understanding of heat gradient effects on
cement-based materials [35].

The primary causes of thermal stresses in cement-based materials are inhomogeneous
thermal expansion and inhomogeneous cooling or heating. Inhomogeneous thermal expan-
sion occurs when the heat exchange between the parts of the structure and the environment,
or between different parts of the structure, is very different, or when the strength or vis-
coelastic properties of the materials or the structure under temperature load differ greatly.
During the cooling process, structural elements whose behavior changes between tempera-
tures, from temperature softening to temperature hardening, behave similarly to elements
with a positive coefficient of temperature expansion, and cooling causes compressive
stresses in the interior of the affected parts of the structure. Inhomogeneous heating is most
common when infrared radiators are initially utilized to heat the concrete or formwork
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parts. In this situation, the surface elements of the concrete, or at least the cores of the
formwork parts, are rapidly heated, while the rest of the elements remain virtually cold. In
the second instance, the heating of the entire structure occurs uniformly. Due to possible
consultations, the temperature load changes from homogenous to inhomogeneous. The
development of temperature load and tensile strains on the surface of the heated elements
is depicted schematically. During the initial heating stage, the surface layer may be so
constrained that as the temperature differential between the various components rises,
tensile tensions develop on more than simply the surface. This effect is very likely in
temperature-hardening materials, but it can also happen if interesting thermal processes
occur in temperature-prevailing materials during concrete casting [36].

The development of thermal strains in cement-based materials, such as concrete and
mortar, is a common challenge for material designers and practicing engineers. This
problem is widely understood in simple engineering terms, as the essential conditions
required for the generation of bulk thermal stresses have long been recognized. Everyone
understands that if one side of a ceramic disk is heated while the other face remains cool,
the disk will be unable to expand, and if constrained, it will exert significant force on its
supports. The relevance of the development of thermal stresses varies greatly depending
on the distribution of a concrete element. Thermal deformations in small elements will be
modest, and the associated stresses will be relatively minor, assuming that the designer
was aware of the anticipated order of magnitude of the stresses and provided concrete of
sufficient strength. Thermal pressures can have a significant impact on highway bridges.
In these instances, a fast rise in temperature may cause stresses that may only be assessed
over short time periods [37].

Research into fractional boundary element models for anomalous thermal stress
has advanced significantly, resulting in a more nuanced knowledge of how fractional
calculus can be applied to complex thermal phenomena. Ceretani’s work [38] focuses on
time-fractional free boundary concerns of the Stefan type, highlighting the significance of
using appropriate fractional models to accurately depict physical processes, particularly
anomalous phase transitions. According to Ceretani [38], classical conservation equations
may not be consistent with non-local constitutive equations, implying that the complexities
of fractional derivatives must be carefully examined when modeling events such as phase
transitions. This initial study lays the groundwork for a more comprehensive examination
of fractional techniques in thermal stress analysis. Patnaik et al. [39] extend the approach
to incorporate non-local elasticity, utilizing fractional order to study non-local models.

The Boundary Element Method (BEM) has developed into an effective numerical
method that is now recognized as belonging to the broad category of numerical methods
designed to examine continuum mechanics problems [40–42]. BEM is intriguing because
it allows for the introduction of unlimited domains while requiring only boundary infor-
mation for mathematical representation. For these reasons, BEM is ideal for evaluating
fields in unbounded regions [43,44]. The method generates dependable numerical results
that are extensive and accurate, while using only a few field samples from the region
of interest [45–49]. Over the last three decades, BEM applications have grown beyond
their original appeal in the static linear elasticity field. Currently, BEM is an appealing,
efficient, and sophisticated tool for simulating a wide range of problems. The method’s
dependability stems from its primary quality of simulating nature at the physical level of
consideration by employing precise mathematical equations of continuum deformation.
The subjects covered in this issue provide a cross-section of BEM activity areas and may be
useful to readers interested in various BEM features and applications [50–52].

The anomalous heat conduction equation has lately acquired prominence due to
its realistic uses in modeling diverse insulators and semiconductors, ultrashort pulse
phenomena, linear scaling of multi-layer porous silicon, and the rapid heat dissipation
rates of aromatic copper chain complexes. The anomalous heat conduction equation’s main
feature is its dynamical self-similarity, which results from the fact that the length scale of
the heat conduction behavior is essentially quantum mechanical and does not break down
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into any shorter lengths. The boundary element approach was created to solve thermal
stress problems but not anomalous thermal stress problems [53].

In this research, we provide a new two-dimensional boundary element approach
framework that shows the increasing recognition of fractional calculus as a significant
tool for understanding and modeling anomalous thermal stress problems in cement-based
materials. A novel two-dimensional boundary element approach framework that demon-
strates the growing recognition of fractional calculus as an important tool for understanding
and modeling anomalous thermal stress problems in cement-based materials, revealing
both theoretical advances and practical implications in a variety of fields. The suggested
formulation’s boundary integral equation is derived using a weighted residual approach,
with the anisotropic fundamental solution serving as the weighting function in the presence
of a domain integral, including the Caputo derivative. It may characterize the non-local
behavior of the thermal stress tensor in space as well as the rate of change over time
from a thermodynamically compatible perspective. Comparisons of model responses to
experimentally observed thermal stress behaviors in several types of cement composites
demonstrate good agreement across the range of interest. The model’s physical parameters,
which are determined by the materials’ basic thermomechanical properties, also exhibit
fractal-like behavior. The given model could be applied to the thermal stress analysis of
various complex materials exhibiting non-local effects.

2. Formulation of the Problem

The fractional anomalous thermal stress governing equations for anisotropic cement-
based materials are as follows [53,54]:

σij,j = ρ
..
ui + ϕρF

..
vi (1)

.
ζ + qi,i = C (2)

∂a
CT

∂τa = Dx1

∂2T
∂x2

1
+

∂2T

∂x2
2

2 Dx2 , 0 < a < 1 (3)

where
σij = Cijkl eδij − Aδij p − βij T (4)

ζ = Auk,k +
ϕ2

R
p (5)

qi = −k
(

p,i + ρF
..
ui +

ρ0 + ϕρF
ϕ

..
vi

)
(6)

where ρ0 = µφρF , considering µ = 0.66 [53].
For a domain R, with the boundary C, the initial and boundary conditions are

.
ui(x, 0) =

..
ui(x, 0), (7)

ui(x, τ) = ui(x, τ) on C1 (8)

λi(x, τ) = σij(x, τ) nj = λi(x, τ) on C2 (9)

p(x, τ) = p(x, τ) on C3 (10)

L(x, τ) =
∂p(x, τ)

∂n
= L(x, τ) on C4 (11)

T(x, 0) = T0(x) (12)
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T(x, τ) = T̂(x, τ), onC5 (13)

q(x, τ) = Dx1

∂T
∂x1

nx1 + Dx2

∂T
∂x2

nx2 = q̂(x, τ), onC6 (14)

3. BEM for Anomalous Fractional Heat Diffusion Equation

The anomalous fractional anisotropic heat diffusion Equation (3) can be defined as the
Caputo derivative as follows:

∂a
CT

∂τa =
1

Γ(1 − a)

τ∫
0

1
(τ − t)a

∂T(t)
∂t

dt, 0 < a < 1 (15)

The weighted residual equation is written as [55,56]

∫
R

[
∂a

CT
∂ta −

(
Dx1

∂2T
∂x2

1
+ Dx2

∂2T
∂x2

2

)]
χdΩ +

∫
C5

(
T − T̂

)
χ̄dΓ +

∫
C6

(q − q̂)χdΓ = 0 (16)

The functions χ̄ and χ were selected as

χ̄ = −
(

Dx1

∂2χ

∂x2
1
+ Dx2

∂2χ

∂x2
2

)
= Q (17)

and
χ = χ (18)

Remembering that

Dx1

∂2χ

∂x2
1
+ Dx2

∂2χ

∂x2
2
= −δ(x − ξ), (19)

Based on the geometry of the considered problem, as shown in Figure 1 and Brebbia
and Dominguez [55], the insertion of Equations (17)–(19) into Equation (16) produces the
following boundary integral equation:

c(ξ)T(ξ, τ) =
∫
C

q(x, τ)w(ξ, x) dΓ(x)−
∫
C

T(x, τ)Q(ξ, x) dΓ(x)

−
∫
R

∂a
CT(x,τ)

∂τa w(ξ, x) dΩ(x)
(20)Fractal Fract. 2024, 8, 753 6 of 24 
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Based on Carrer et al. [57],
c(ξ) = 1, ξ ∈ R

c(ξ) =
1

2π

[
tan−1

(√
Dx1

Dx2

tan θ2

)
− tan−1

(√
Dx1

Dx2

tan θ1

)]
, ξ ∈ C (21)

where angles θ1 and θ2 in Equation (21) are shown in Figure 2.
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The anisotropic fundamental solution is [58]

χ = χ(ξ, x) = − 1
2π
√

Dx1 Dx2

ln

√
(x1 − ξx1)

2 +
Dx1

Dx2

(x2 − ξx2)
2 (22)

For isotropic material, Dx1 = Dx2 = D and Equations (21) and (22) become

χ(ξ, x) = − 1
2πD

ln
√
(x1 − ξx1)

2 + (x2 − ξx2)
2 = − 1

2πD
ln r (23)

and
c(ξ) =

θ2 − θ1

2π
(24)

For the computing integral in Equation (15), we consider τn+1 = (n + 1)∆τ, 0 ≤ τ ≤ τn+1,
and Tk = T(x, τk) = Tk(x) to obtain [59]

T =
(τk+1 − t)

∆τ
Tk +

(t − τk)

∆τ
Tk+1 (25)

and consequently,
∂T
∂t

=
Tk+1 − Tk

∆τ
(26)

Finally, the Caputo derivative is

∂a
CT

∂τa

∣∣∣
t=tn+1

= 1
Γ(1−α)

[
τ1∫
0

1
(τ1−t)α

(u1−u0)
∆τ dt +

τ2∫
t1

1
(τ2−t)α

(u2−u1)
∆τ dt + . . .+

τk+1∫
tk

1
(τk+1−t)α

(uk+1−uk)
∆τ dt + . . . +

τn+1∫
tn

1
(τn+1−t)α

(un+1−un)
∆τ dt

] (27)

Now, Equation (27) yields
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∂a
CT

∂τa

∣∣∣∣
t=tn+1

=
1

Γ(2 − a)∆τa

[
Tn+1 − Tn +

n−1

∑
j=0

(
1

(n + 1 − j)a−1 − 1
(n − j)a−1

)(
Tj+1 − Tj

)]
(28)

which can be expressed as

∂α
CT

∂τα

∣∣∣∣
τ=τn+1

=
1

Γ(2 − a)∆τa

[
Tn+1 − Tn +

n−1

∑
j=0

B(n+1),(j+1)
(
Tj+1 − Tj

)]
, n ≥ 1 (29)

where
B(n+1),(j+1) =

1
(n + 1 − j)a−1 − 1

(n − j)a−1 (30)

For n = 0, Equation (28) can be written as

∂α
CT

∂τa

∣∣∣∣
t=t1

=
1

Γ(2 − a)∆τa [T1 − T0] (31)

Substituting (28) into (20), we obtain

c(ξ)Tn+1(ξ) =
∫
C

qn+1(x)χ(ξ, x)dC(x)−
∫
C

Tn+1(x)Q(ξ, x)dC(x)−

1
Γ(2−a)∆τα

∫
R

[
Tn+1(x)− Tn(x) +

n−1
∑

j=0
B(n+1),(j+1)

(
Tj+1(x)− Tj(x)

)]
χ(ξ, x)dR(x)

(32)

Equation (32) requires that the boundary be discretized into linear elements. Assume
that T and q vary linearly along each element in the border discretization. To compute the
domain integral, the entire domain must be divided into linear triangle cells. Assume that
T varies linearly across the cells in the domain discretization. Thus, the matrix form of
Equation (32) is as follows:[

Gbb 0
Gdb I

]{
Tb

n+1
Td

n+1

}
=

[
Hbb

Hdb

]{
qb

n+1

}
−
[

Nbb Nbd

Ndb Ndd

]{
Tb

n+1 − Tb
n

Td
n+1 − Td

n

}
−
[

Nbb Nbd

Ndb Ndd

]
n−1
∑

j=0
B(n+1),(j+1)

{
Tb

j+1 − Tb
j

Td
j+1 − Td

j

} (33)

which can be expressed as [59] (
Gbb + Nbb

)
Nbd(

Gdb + Ndb
) (

I + Ndd
) { Tb

n+1
Td

n+1

}
=

[
Hbb

Hdb

]{
qb

n+1
}
+

[
Nbb Nbd

Ndb Ndd

]{
Tb

n
Td

n

}

−
[

Nbb Nbd

Ndb Ndd

]
n−1
∑

j=0
B(n+1),(j+1)

{
Tb

j+1 − Tb
j

Td
j+1 − Td

j

} (34)

where source and field locations are indicated by double superscripts, the first of which
shows the location of the former and the second the position of the latter, and superscripts
b and d stand for the boundary and domain variables, respectively.

4. BEM for Displacement of Cement-Based Materials

Using the weighted residual approach on Equations (1) and (2), we get∫
R
(
σij,j + Ui

)
u∗

i dR = 0 (35)

∫
R
(

q,i +
.
ζ i −Ci

)
p∗i dR = 0 (36)

where u*
i and p*

i are weighting functions, Ui = −
(
ρ

..
ui + ϕρF

..
vi
)
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By integrating Equations (35) and (36), we get

−
∫

Rσij u∗
i,j dR +

∫
RUi u∗

i dR = −
∫

C2 λi u∗
i dC (37)

−
∫

Rq p∗
i,i dR +

∫
R

.
ζ i p∗

i dR −
∫

RCi p∗
i dR = −

∫
C4 Li p∗

i dS (38)

Huang and Liang [60] suggested the following boundary integral equation:

−
∫
R σij,j u∗

i dR +
∫
R Ui u∗

i dR−
∫
R q p∗

i,i dR+
∫
R

.
ζ i p∗

i dR−
∫
RCi p∗

i dR
=
∫
C2

(
λi − λi

)
u∗

i dC+
∫
C1

(ui − ui) λ∗
i dC+

∫
C4

(
Li − Li

)
p∗

i dC+
∫
C3

(pi − pi) L∗
i dC

(39)

By integrating (39), we get

−
∫
R σij ε∗ij dR +

∫
R Ui u∗

i dR−
∫
R q p∗

i,i dR+
∫
R

.
ζ i p∗

i dR−
∫
RCi p∗

i dR
= −

∫
C2

λi u∗
i dC−

∫
C1

λi u∗
i dC+

∫
C1

(ui − ui) λ∗
i dC−

∫
C4

Li p∗
i dC−

∫
C4

Li p∗
i dC

+
∫
C3

(pi − pi) L∗
i dC

(40)

Eringen [61] defines elastic stress as

σij =
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ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

ijkl εkl , where
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ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

ijkl =
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(42)
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ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚
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Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)
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ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚
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ௌ  (48)
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ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚
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𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

klij (41)

Consequently, Equation (40) can be written as

−
∫
R σ∗

ij εij dR +
∫
R Ui u∗

i dR−
∫
R q p∗

i,i dR+
∫
R

.
ζ i p∗

i dR−
∫
RCi p∗

i dR
= −

∫
C2

λi u∗
i dC−

∫
C1

λi u∗
i dC+

∫
C1

(ui − ui) λ∗
i dC−

∫
C4

Li p∗
i dC−

∫
C4

Li p∗
i dC

+
∫
C3

(pi − pi) L∗
i dC

(42)

By integrating (42), we get∫
R σ∗

ij,j ui dR = −
∫

Cu∗
i λi dC −

∫
Cp∗

i Li dC +
∫

Cλ∗
i ui dC +

∫
CL∗

i pi dC (43)

Now, the weighting functions and the fundamental solution for Ui = ∆n are [62]

σ∗
l j,j + ∆nel = 0 (44)

u∗
i = u∗

li el , λ∗
i = λ∗

li el , p∗i = p∗li el , L∗
i = L∗

li el (45)

Also, the weighting functions and the fundamental solution for Ui = 0 are [62]

σ∗∗
ij,j = 0 (46)

u∗
i = u∗∗

li el , p∗i = p∗∗li el , λ∗
i = λ∗∗

li el , L∗
i = L∗∗

li el (47)

Now, from Equation (43), we have

gn
liu

n
i = −

∫
Sλ∗

li ui dS −
∫

SL∗
li pi dS +

∫
Su∗

li λi dS +
∫

S p∗li Li dS (48)

0 = −
∫

Sλ∗∗
li ui dS −

∫
SL∗∗

li pi dS +
∫

Su∗∗
li λi dS +

∫
S p∗∗li Li dS (49)

which can be expressed as

gnFn = −
∫

SE∗FdS +
∫

SF∗EdS +
∫

S
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By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚
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Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

∗ p dS +
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Equation (54) can be represented as 

෍𝔾௜௝ே೐
௝ୀଵ 𝔽௝ = ෍ℍ෡௜௝𝔼௝ + ෍𝕒ෝ௜௝𝑝௝ே೐

௝ୀଵ + ෍𝕓෡௜௝ே೐
௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 

∗ ∂p
∂n

dS (50)
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

∗ =

[
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

∗
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)
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Equation (54) can be represented as 

෍𝔾௜௝ே೐
௝ୀଵ 𝔽௝ = ෍ℍ෡௜௝𝔼௝ + ෍𝕒ෝ௜௝𝑝௝ே೐

௝ୀଵ + ෍𝕓෡௜௝ே೐
௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 
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eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 
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∗
2

]
(51)

We now present the following equations:

F = Ψ Fj,E = Ψ Ej, p = Ψ0 pj,
∂p
∂n

= Ψ0

(
∂p
∂n

)j
(52)

The discretization of the boundary allows us to use (52) into (50) to obtain

gnFn =
Ne

∑
j=1

[
−
∫

ΓjE
∗ Ψ dΓ

]
Fj +

Ne

∑
j=1

[∫
ΓjF

∗ Ψ dΓ
]
Ej +

Ne

∑
j=1

[∫
Γj
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
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ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)
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ௌ  (50)
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∗ Ψ0 dΓ
]

pj +
Ne

∑
j=1

[∫
Γj
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௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

ij pj +
Ne

∑
j=1

ˆ
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Equation (54) can be represented as 

෍𝔾௜௝ே೐
௝ୀଵ 𝔽௝ = ෍ℍ෡௜௝𝔼௝ + ෍𝕒ෝ௜௝𝑝௝ே೐

௝ୀଵ + ෍𝕓෡௜௝ே೐
௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 

ij
(

∂p
∂n

)j
(54)

By employing the following formula:

Gij =

{
Ĝij i f i ̸= j
Ĝij + gi i f i = j

(55)
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∑
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

ij pj +
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∑
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Equation (54) can be represented as 

෍𝔾௜௝ே೐
௝ୀଵ 𝔽௝ = ෍ℍ෡௜௝𝔼௝ + ෍𝕒ෝ௜௝𝑝௝ே೐

௝ୀଵ + ෍𝕓෡௜௝ே೐
௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 

ij
(

∂p
∂n

)j
(56)

This can be stated as
GU = HT+
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−න 𝜎௜௝∗  𝜀௜௝ 𝑑ℝ⬚
ℝ + න 𝑈௜ 𝑢௜∗ 𝑑ℝ⬚

ℝ −න 𝑞 p௜,௜∗  𝑑ℝ⬚
ℝ + න 𝜁ሶ௜ p௜∗ 𝑑ℝ⬚

ℝ −න ℂపഥ  p௜∗ 𝑑ℝ⬚
ℝ= −න  𝜆̅௜ 𝑢௜∗ 𝑑ℂ⬚

ℂమ − න  𝜆௜ 𝑢௜∗ 𝑑ℂ⬚
ℂభ + න (𝑢ത௜ − 𝑢௜) 𝜆௜∗ 𝑑ℂ⬚

ℂభ − න 𝐿ത௜  p௜∗ 𝑑ℂ⬚
ℂర − න 𝐿௜  p௜∗ 𝑑ℂ⬚

ℂర+ න (pത௜ − p௜) 𝐿௜∗ 𝑑ℂ⬚
ℂయ  

(42)

By integrating (42), we get න  𝜎௜௝,௝∗  𝑢௜ 𝑑ℝ⬚
ℝ = −න 𝑢௜∗ 𝜆௜ 𝑑ℂ⬚

ℂ − න p௜∗ 𝐿௜ 𝑑ℂ⬚
ℂ + න 𝜆௜∗ 𝑢௜  𝑑ℂ⬚

ℂ + න 𝐿௜∗ p௜  𝑑ℂ⬚
ℂ  (43)

Now, the weighting functions and the fundamental solution for 𝑈௜ = ∆௡ are [62] 𝜎௟௝,௝∗ + ∆௡𝑒௟ = 0 (44)𝑢௜∗ = 𝑢௟௜∗  𝑒௟ , 𝜆௜∗ = 𝜆௟௜∗  𝑒௟ ,    𝑝௜∗ = 𝑝௟௜∗  𝑒௟ ,   𝐿௜∗ = 𝐿௟௜∗  𝑒௟ (45)

Also, the weighting functions and the fundamental solution for 𝑈௜ = 0 are [62] 𝜎௜௝,௝∗∗ = 0 (46)𝑢௜∗ = 𝑢௟௜∗∗ 𝑒௟ ,𝑝௜∗ = 𝑝௟௜∗∗ 𝑒௟ ,    𝜆௜∗ = 𝜆௟௜∗∗ 𝑒௟ , 𝐿௜∗ = 𝐿௟௜∗∗ 𝑒௟ (47)

Now, from Equation (43), we have g௟௜௡𝑢௜௡ = −න 𝜆௟௜∗  𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗  𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗  𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗  L௜  𝑑𝑆⬚

ௌ  (48)

0 = −න 𝜆௟௜∗∗ 𝑢௜⬚
ௌ 𝑑𝑆 − න L௟௜∗∗ 𝑝௜⬚

ௌ 𝑑𝑆 + න 𝑢௟௜∗∗ 𝜆௜  𝑑𝑆⬚
ௌ + න 𝑝௟௜∗∗ L௜  𝑑𝑆⬚

ௌ  (49)

which can be expressed as g௡𝔽௡ = −න 𝔼∗ 𝔽⬚
ௌ 𝑑𝑆 + න 𝔽∗ 𝔼⬚

ௌ 𝑑𝑆 + න 𝕒∗ p  𝑑𝑆⬚
ௌ + න 𝕓∗  𝜕p𝜕𝑛   𝑑𝑆⬚

ௌ  (50)

in which g௡ = ቂgଵଵ gଵଶgଶଵ gଶଶቃ ,𝔽∗ = ൤𝑢ଵଵ∗ 𝑢ଵଶ∗𝑢ଶଵ∗ 𝑢ଶଶ∗ ൨ ,𝔼∗ = ൤𝜆ଵଵ∗ 𝜆ଵଶ∗𝜆ଶଵ∗ 𝜆ଶଶ∗ ൨ ,𝔽 = ቂ𝑢ଵ𝑢ଶቃ, 
𝔼 = ൤𝜆ଵ𝜆ଶ൨ ,𝕒∗ = ൤𝕒ଵ∗𝕒ଶ∗൨ ,𝕓∗ = ൤𝕓ଵ∗𝕓ଶ∗൨ (51)

We now present the following equations: 𝔽 = Ψ 𝔽௝ ,𝔼 = Ψ 𝔼௝ ,𝑝 = Ψ଴ 𝑝௝ ,𝜕𝑝𝜕𝑛 = Ψ଴ ൬𝜕𝑝𝜕𝑛൰௝   (52)

The discretization of the boundary allows us to use (52) into (50) to obtain 

g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)
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Equation (54) can be represented as 

෍𝔾௜௝ே೐
௝ୀଵ 𝔽௝ = ෍ℍ෡௜௝𝔼௝ + ෍𝕒ෝ௜௝𝑝௝ே೐

௝ୀଵ + ෍𝕓෡௜௝ே೐
௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 
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where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 
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at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 

(57)

where U symbolizes displacements and T represents tractions.
Equation (57) can now be expressed as
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g௡𝔽௡ = ෍൥−න 𝔼∗⬚
୻ೕ Ψ 𝑑Γ൩ே೐

௝ୀଵ 𝔽௝ + ෍൥න 𝔽∗⬚
୻ೕ Ψ 𝑑Γ൩𝔼௝ே೐

௝ୀଵ + ෍൥න 𝕒∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ 𝑝௝ே೐

௝ୀଵ + ෍൥න 𝕓∗⬚
୻ೕ Ψ଴ 𝑑Γ൩ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (53)

It is possible to state as 

g௜𝔽௜ = −෍𝔾෡௜௝ே೐
௝ୀଵ 𝔽௝ + ෍ℍ෡௜௝𝔼௝ே೐

௝ୀଵ + ෍𝕒ෝ௜௝𝑝௝ே೐
௝ୀଵ + ෍𝕓෡௜௝ே೐

௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ (54)

By employing the following formula: 𝔾௜௝ = ቊ𝔾෡௜௝             𝑖𝑓  𝑖 ≠ 𝑗𝔾෡௜௝ + g௜  𝑖𝑓  𝑖 = 𝑗  (55)

X =
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6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 

(58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. [63]
method has been efficiently applied for solving Equations (34) and (58).

5. Thermal Stress Intensity Factor of Cement-Based Materials

Based on crack propagation of mode-I fracture in concrete [64] as an example for con-
sidered cement-based materials and using [65,66], the mathematical relationship between
the cohesive stress σc and crack opening displacement u, which is used to describe the
softening behavior of concrete, is as follows:

σc(x) = st − (st − σb)
u
us

, 0 ≤ u ≤ us (59)

σc(x) = σb
u0 − u
u0 − us

, us ≤ u ≤ u0 (60)

σc(x) = 0, u ≥ u0 (61)
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The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused
by cohesive force for the considered problem is

KI =

∫ a
a0

2σc(x)G
(

x
𝓁 , 𝓁d

)
√

π𝓁dx
(62)

where
G(x/𝓁,𝓁/d) = F −
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Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
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the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 
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3.52(1 − x/𝓁)

(1 − 𝓁/d)3/2 ,

Fractal Fract. 2024, 8, 753 10 of 24 
 

 

Equation (54) can be represented as 

෍𝔾௜௝ே೐
௝ୀଵ 𝔽௝ = ෍ℍ෡௜௝𝔼௝ + ෍𝕒ෝ௜௝𝑝௝ே೐

௝ୀଵ + ෍𝕓෡௜௝ே೐
௝ୀଵ ൬𝜕𝑝𝜕𝑛൰௝ே೐

௝ୀଵ  (56)

This can be stated as 𝔾𝕌 = ℍ𝕋 + 𝕒𝕚 + 𝕓𝕛 (57)

where 𝕌 symbolizes displacements and 𝕋 represents tractions. 
Equation (57) can now be expressed as 𝔸 𝕏 = 𝔹  (58)

In Matlab (R2018a), a modified hybrid explicit group (MHEG) of the Salama et al. 
[63] method has been efficiently applied for solving Equations (34) and (58). 

5. Thermal Stress Intensity Factor of Cement-Based Materials 
Based on crack propagation of mode-I fracture in concrete [64] as an example for 

considered cement-based materials and using [65,66], the mathematical relationship be-
tween the cohesive stress 𝜎௖ and crack opening displacement 𝑢, which is used to describe 
the softening behavior of concrete, is as follows: 𝜎௖(𝑥) = 𝑠௧ − (𝑠௧ − 𝜎௕) 𝑢𝑢௦ , 0 ≤ 𝑢 ≤ 𝑢௦ (59)𝜎௖(𝑥) = 𝜎௕ 𝑢଴ − 𝑢𝑢଴ − 𝑢௦ ,𝑢௦ ≤ 𝑢 ≤ 𝑢଴ (60)𝜎௖(𝑥) = 0, 𝑢 ≥ 𝑢଴ (61)

The thermal stress intensity factor (SIF) at the crack tip in a three-point beam caused 
by cohesive force for the considered problem is 

𝐾ூ = ׬ 2𝜎௖(𝑥)௔௔బ 𝐺 ቀ𝑥ℓ , ℓ𝑑ቁ√𝜋ℓ𝑑𝑥  (62)

where 𝐺(𝑥/ℓ, ℓ/𝑑) = 𝐹ത − 𝐹ധ + 𝐺̅ × 𝐺̿ 𝐹ത = 3.52(1 − 𝑥/ℓ)(1 − ℓ/𝑑)ଷ/ଶ , 𝐹ധ = 4.35 − 5.28(𝑥/ℓ)(1 − ℓ/𝑑)ଵ/ଶ , 𝐺̅ = ቈ1.3 − 0.3(𝑥/ℓ)ଷ/ଶඥ1 − (𝑥/ℓ)ଶ + 0.83 − 1.76(𝑥/ℓ)቉ 
𝐺̿ = ሾ1 − (1 − 𝑥/ℓ)(ℓ/𝑑)ሿ 

6. Numerical Results and Discussion 
To demonstrate the numerical results produced utilizing the proposed methodology, 

we considered anisotropic asphalt concrete properties, as given in reference [23], as an 
example for considered cement-based materials at ∆𝜏 = 0.0001. 

Figure 3 depicts the anomalous temperature 𝑇 distribution in cement-based materi-
als, where the anomalous temperature 𝑇 begins at zero and then oscillates as the distance 𝑥ଵ increases, reaching a maximum value for 𝑎 = 0.50, which is greater than the 𝑇 values 
at fractional-order parameter value 𝑎 = 1.0, which corresponds to the classical tempera-
ture model. It is also obvious that oscillation increases with small fractional-order param-
eters and reduces with large fractional-order parameters. This figure also illustrates that 
the fractional parameter has a considerable impact on temperature 𝑇  in cement-based 
materials. 

=
4.35 − 5.28(x/𝓁)

(1 − 𝓁/d)1/2 , G =

1.3 − 0.3(x/𝓁)3/2√
1 − (x/𝓁)2

+ 0.83 − 1.76(x/𝓁)


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= [1 − (1 − x/𝓁)(𝓁/d)]

6. Numerical Results and Discussion

To demonstrate the numerical results produced utilizing the proposed methodology,
we considered anisotropic asphalt concrete properties, as given in reference [23], as an
example for considered cement-based materials at ∆τ = 0.0001.

Figure 3 depicts the anomalous temperature T distribution in cement-based materials,
where the anomalous temperature T begins at zero and then oscillates as the distance x1
increases, reaching a maximum value for a = 0.50, which is greater than the T values at
fractional-order parameter value a = 1.0, which corresponds to the classical temperature
model. It is also obvious that oscillation increases with small fractional-order parameters
and reduces with large fractional-order parameters. This figure also illustrates that the
fractional parameter has a considerable impact on temperature T in cement-based materials.

Figure 4 shows the anomalous heat flux q distribution in the cement-based materials,
where the magnitude range of the anomalous heat flux q expands with the fractional-order
parameter for small and medium values, reaching a maximum value at a = 0.75, within
the high-value range of the anomalous displacement model, while q values during the
high values of anomalous displacement model are higher than the q values at fractional-
order parameter value a = 1.00, which corresponds to the classical displacement model.
The anomalous q begins at zero, then oscillates as the distance x1 increases. It is also
clear that the oscillation grows as the fractional-order parameter’s value increases. This
figure also shows that the fractional parameter significantly impacts the anomalous q in
cement-based materials.

Figure 5 shows the anomalous fluid flux qa distribution in the cement-based materials,
where the magnitude range of the anomalous fluid flux qa, expands with the fractional-
order parameter for small and medium values, reaching a maximum value at a = 0.75,
within the high-value range of the anomalous displacement model, while qa values during
the high values of the anomalous displacement model are higher than the qa values at
fractional-order parameter value a = 1.00, which corresponds to the classical displacement
model. The anomalous qa begins at zero and then oscillates as the distance x1 increases. It
is also clear that the oscillation grows as the fractional-order parameter’s value increases.
This figure also shows that the fractional parameter significantly impacts the anomalous qa
in cement-based materials.
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Figures 5–7 show the anomalous thermal stress σ11, σ12, and σ22 distributions along
x1 axis for various fractional parameter values (a = 0.25, 0.50, 0.75, and 1.00) in cement-
based materials.

Figure 6 demonstrates that the magnitude range of the anomalous thermal stress
σ11 increases with the fractional-order parameter until the maximum value at a = 1.00,
which corresponds to the classical thermal stress model. This figure also shows that the
thermal stress σ11 begins at zero and oscillates as the distance x1 grows. It is also obvious
that the oscillation increases as the value of the fractional-order parameter increases. The
figure shows how the fractional-order parameter affects the anomalous thermal stress σ11
of cement-based materials.

Figure 7 indicates that the magnitude range of the anomalous thermal stress, σ12,
expands with the fractional-order parameter, reaching a maximum value at a = 1.00, which
corresponds to the classical thermal stress model. The thermal stress σ12 starts at zero
and oscillates as the distance x1 increases. It is also clear that the oscillation grows as the
fractional-order parameter’s value increases. This graphic illustrates how the fractional
parameter has a considerable impact on the anomalous σ12 of cement-based materials.

Figure 8 shows a distinct status for the anomalous thermal stress σ22 in the cement-
based materials, where the magnitude range of the anomalous thermal stress, σ22, expands
with the fractional-order parameter for small and medium values, reaching a maximum
value at a = 0.75, within the high-value range of the anomalous thermal stress model, while
σ22 values during the high values of the anomalous thermal stress model are higher than the
σ22 values at fractional-order parameter value a = 1.00, which corresponds to the classical
thermal stress model. The anomalous σ22 begins at zero, then oscillates as the distance x1
increases. It is also clear that the oscillation grows as the fractional-order parameter’s value
increases. This figure also shows that the fractional parameter significantly impacts the
anomalous σ22 in cement-based materials.
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There are no findings available for the problem being investigated. As a result, var-
ious publications can be viewed as special cases within our BEM general problem. For
comparison reasons with the exceptional circumstances of other methodologies treated by
other authors, we examined the conditions of these investigations [67–70] and compared
their findings to those of the current study. In the special instance under examination, the
findings are displayed in Figures 9–11 to show the anomalous thermal stresses σ11, σ12,
and σ22 distributions along x1 axis for various approaches. Comparison with previously
published results [67–70], which are also provided as a particular instance of our results
concerning anomalous thermal stresses in cement-based materials, where we compared
our BEM results to those of the finite element method (FEM) results of Cifuentes et al. [67],
which match the experimental results of RILEM [68] and the combination model FDM-FEM
of Do [69], which matches ABAQUS finite element model of Lin and Chen [70]. These
findings show that the existing BEM is very consistent with FEM [67] and FDM-FEM [69],
demonstrating the reliability and accuracy of our proposed technique. The computational
results for the topic at hand were achieved.
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Table 1 shows the CPU timings and iteration counts for the modified hybrid explicit
group (MHEG) of Salama et al. [63], the modified symmetric successive overrelaxation
(MSSOR) of Darvishi and Hessari [71], and the modified accelerated successive overrelax-
ation (MAOR) of Hadjidirnos et al. [72] iterative approaches at every discretization level,
with equation numbers included in brackets. This table demonstrates that the MHEG
methodology performs better than the MSSOR and MAOR strategies.
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Table 1. Processor timings and execution counts for MSSOR, MAOR, and MHEG.

Discretization
Level

Preconditioning
Level

MSSOR MAOR MHEG

Processor
Timings

Execution
Counts

Processor
Timings

Execution
Counts

Processor
Timings

Execution
Counts

1 (28) 0 0.07 7 0.09 7 0.06 7

2 (56)
0 0.19 9 0.24 9 0.17 8
1 0.16 7 0.2 7 0.12 7

3 (112)
0 0.48 11 0.64 12 0.42 10
1 0.44 9 0.56 10 0.34 7
2 0.38 7 0.5 8 0.3 5

4 (224)

0 2.42 14 2.52 18 1.88 12
1 1.86 12 2.1 16 1.58 8
2 1.58 8 1.84 12 1.42 6
3 1.44 6 1.58 8 1.38 4

5 (448)

0 10.86 16 13.01 20 8.78 14
1 9.2 14 11.12 18 7.79 10
2 9.28 12 10.28 16 7.08 8
3 8.26 10 9.42 12 6.69 6
4 8.1 6 8.98 8 6.12 4

6 (896)

0 42.3 22 48.6 24 36 16
1 38.6 20 46.7 22 34.2 14
2 37.5 18 44.4 20 32.5 12
3 35.4 14 40.7 16 30.7 10
4 28.5 12 30.6 14 26.6 8
5 24.8 10 28.8 12 20.8 4

Table 2 compares the computational needs for modeling anomalous thermal stress
effects on cement-based materials utilizing current BEM, FEM [67], and FDM-FEM [69].
This table illustrates the effectiveness of the proposed BEM technique.

Table 2. An analysis of the computational power required to predict anomalous thermal stress effects
on cement-based materials.

BEM FEM [64] FDM-FEM [66]

Number of nodes 56 60,000 58,000

Number of elements 20 11,000 10,000

CPU time [min] 2 200 220

Memory [Mbyte] 1 160 150

Disk space [Mbyte] 0 270 290

Accuracy of results
[%] 1.0 2.6 2.2

Based on a comparison of the calculated and experimental results of RILEM [68], mesh
convergence research is performed utilizing Ne = 10, 50 and 90 linear elements for thermal
stress intensity factor (SIF) distribution along the x1 axis, as shown in Figure 12. This
figure shows that increasing the number of elements, or reducing their size, improves the
accuracy of the BEM results. In addition, a time convergence analysis is performed with
∆τ = 0.01, 0.001, and 0.0001 for the thermal stress intensity factor (SIF) distribution along
the x1 axis, as shown in Figure 13. This figure shows that the time step size has a substantial
effect on accuracy, with smaller steps generally improving BEM accuracy.
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7. Conclusions

The analysis of the numerical results allows us to make some final observations:

1. A novel fractional BEM has been developed to address anomalous thermal stress
issues in cement-based materials.

2. The suggested formulation determines the unknown values of temperature and heat
flux at time τn+1 using their current values and all preceding temperature data.

3. The proposed formulation can overcome the non-locality of the fractional operators.
4. The proposed fractional BEM formulation produces precise and dependable findings;

even a modest value of the fractional time derivative, a = 0.005, resulted in good
agreement with previously reported results. This led us to believe that the fractional
BEM formulation can cover the entire range 0 < a ≤ 1.

5. The equality sign in 0 < a ≤ 1.0 is permitted because the conventional thermal stress
problem is a specific case of an anomalous thermal stress problem.

6. The proposed Caputo derivative BEM shows that the boundary element technique is
a valuable tool for solving fractional and fracture problems in cement-based materials.

7. BEM solves problems more efficiently and accurately than domain techniques, mini-
mizing the processing costs.

8. BEM emerges as the most appropriate solution for the situation under consideration.
9. The versatility of cement-based materials has led to their extensive use throughout

human society. Hydraulic binders were adjusted to meet functional requirements in
various settings. To safeguard the environment from contamination, cement-based
compounds have been used in several sectors, including water and soil. To improve
these materials’ functionality in a variety of applications,

I. Consider investigating the effects of incorporating industrial waste into ce-
ments, such as ordinary Portland cement (OPC), to increase productivity.

II. Create models, such as the proposed model, that forecast materials’ long-term
behavior.

10. Cement-based products have been widely employed in numerous applications, such
as bridges, walkways, slabs, pavements, floors, and walls and are among the structural
and prefabricated components constructed with cement-based materials. Concrete is
also utilized to construct storage tanks, swimming pools, subterranean parking lots,
and other structures.

11. Future work on the numerical model will focus on anomalous moisture transport,
thermal stress sensitivity assessment, and optimization calculations of elastic and
elastic-plastic formulations in cement-based materials, all while lowering operation
and maintenance costs.
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Nomenclature

a Fractional-order parameter Dx1 & Dx2 Diffusion coefficients
∆τ Time interval d Height of three-point beam
βij Stress–temperature coefficients N/K m2 e = εkk = ϵkk Dilatation
δij Kronecker delta (i, j = 1, 2) k Permeability

(
m4/Ns

)
εij Strain tensor 𝓁 Crack length
ζ Fluid volume variation

(
m3) Ni,o(t) Basis functions of order o

λ Tractions, Pa nx1 & nx2 Unit outward normal components
ξ = (ξx1 , ξx2 ) Source point p Pore pressure, Pa
µ Shape factor q Heat flux
ρ = ρs(1 − ϕ) + ϕρF Bulk density

(
kg/m3) qa Fluid specific flux

ρF Fluid density
(
kg/m3) R Solid–fluid coupling parameter

ρs Solid density
(
kg/m3) R Domain

σij Total stress tensor, Pa st Splitting tensile strength of concrete
σb Break point stress T Temperature functions, K
σc Cohesive stress u Crack opening displacement
τ Time, s u0 Stress-free crack width
ϕ = Vf

V Porosity ui Solid displacements, m
φ Interpolation function us Break point displacement
χ̄ & χ Weighting functions V = Vf + Vs Bulk volume

(
m3)

A Biot’s effective stress coefficient Vf Fluid volume
(
m3)

Cijkl Constant elastic moduli, GPa Vs Solid volume
(
m3)

C Boundary vi Fluid–solid displacements
C Source term x = (x1, x2) Field point
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