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Abstract: In this work, the practical prescribed performance tracking issue for a class of fractional-
order nonlinear multiple-input multiple-output (MIMO) systems with asymmetric full-state con-
straints and unmeasurable system states is investigated. A neural network (NN) nonlinear state
observer is developed to estimate the unmeasurable states. Furthermore, the barrier Lyapunov
functions with the settling time regulator are employed to deal with the asymmetric full-state con-
straint from the fractional-order MIMO system. On this ground, the prescribed performance adaptive
tracking control approach is designed, assuring that all system states do not exceed the prescribed
boundaries, and the tracking errors converge to the predetermined compact sets within a predefined
time. Finally, two simulation examples are presented to show the effectiveness and practicability of
the proposed control scheme.

Keywords: fractional-order systems; MIMO; asymmetric full-state constraints; prescribed performance;
predefined time

1. Introduction

In the past few decades, the nonlinear systems control issue with uncertainty has be-
come a hot topic. At present, a lot of controller methods have been designed, in which the
backstepping scheme is an effective way for the nonlinear control system [1-5]. However,
for parameterization or for when the structure of the nonlinear system is not linear, the
limitations of the backstepping method become apparent, especially when the nonlinear
systems are more complex. To overcome this shortcoming, the advanced intelligent al-
gorithms have been used as the main tool, in which the fuzzy logic systems (FLSs) and
neural networks (NNs) are employed to construct the nonlinear uncertain structures [6-9].
The authors in [6] design a robust adaptive fuzzy control scheme for the second-order
Euler-Lagrange systems, and the authors in [7] investigate the tracking control issue for the
time-varying pure-feedback system, in which the nonlinearities are approximated by FLSs.
The authors in [8] study an adaptive NN control method for the uncertain flexible manipu-
lator, and the authors in [9] propose an adaptive NN tracking controller for underwater
vehicles in which the NNs are applied to approximate the system uncertainty.

In many engineering applications, there are lots of constraints in the actual systems,
such as the fact that the system states can only change within the fixed physical ranges,
and the system may be unstable when the state constraints are violated. For instance,
trajectory tracking control for underwater vehicles was developed in [10], in which the state
constraints are handled by the transformation functions. In [11], the tracking controller for
firefighting robots with full-state constraints was designed, in which the state-dependent
transformation function was present to address the state constraints. In [12], a two-layer
control scheme was developed for the linear motors with state constraints, in which a
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time-optimal controller was considered as the upper layer and a robust controller was used
as the lower layer. In [13], an adaptive controller for cable tower cranes system with state
constraints is designed, in which the state constraints are from the safety and transportation
requirements. In [14], an adaptive controller with guidance is presented for the ascent
hypersonic vehicle under multiple state constraints, in which the barrier Lyapunov function
(BLF) is used to address the conditions.

The rapid convergence of the closed-loop system may lead to excessive overshoot,
making it difficult to obtain the necessary tracking accuracy, which are the basic goals in the
nonlinear system tracking control. The prescribed performance control scheme can ensure
the tracking errors stay in predefined bounds to improve the transient and steady-state
performance. In [15], an adaptive tracking controller with performance optimization is de-
signed for nonlinear system to guarantee the prescribed performance. In [16], a prescribed
performance tracking controller for strict-feedback nonlinear system is presented, in which
the barrier error transformations is employed. In [17], a global prescribed performance
adaptive control method using backstepping framework is designed for the Markov jump-
ing system. In [18], a prescribed performance adaptive fuzzy control scheme for a robot
system was developed by using the disturbance observer and auxiliary system. In [19], a
prescribed performance optimal adaptive controller for autonomous vehicles was designed,
in which a prescribed performance function with dynamic programming was introduced
to constrain the tracking errors.

Fractional-order calculus, as an extension of integral-order calculus, can accurately
describe many physical systems on account of the infinite memory. As a result, fractional-
order systems show great potential in a variety of areas, such as biological systems [20-22],
viscoelastic materials [23-25], power systems [26-28], financial fields [29,30], and so on.
However, it is worth mentioning that many of the above practical fractional-order systems
are multiple-input multiple-output (MIMO) nonlinear uncertainty systems. In [31], an
adaptive fuzzy controller based on a fuzzy state observer was designed for the fractional-
order uncertain MIMO nonlinear system to ensure the boundedness of all signals. In [32],
a switched adaptive controller for a fractional-order MIMO system was presented in
which the derivation order can be switched between the integer order and fractional
order. In [33], a state observer based on modulating function was designed for an integer
and fractional-order MIMO system, which can estimate both the states and fractional
derivatives simultaneously. In [34], the adaptive fuzzy control method for fractional-order
MIMO system with state constraints was presented in which the BLF was presented for the
states meeting the specified limits. In [35], a novel approach for a fractional-order MIMO
system to generate a low dimension state-space model was proposed, and the realization
condition for state-space model was presented. However, as far as the author knows, the
prescribed performance tracking control schemes for a fractional-order nonlinear MIMO
system with asymmetric full-state constraints and unmeasurable system states have been
hardly investigated, which will be a meaningful and challenging work.

Inspired by the above discussions, a practical prescribed performance tracking control
strategy based on a nonlinear state observer for constrained fractional-order nonlinear
MIMO system is presented to guarantee the tracking performance. The significant contri-
butions are listed as follows:

(1) Different from the existing BLF method in [34], the symmetric full-state constraints
and prescribed performance are both considered here, and the non-piecewise BLF is
presented to deal with the asymmetric state constraints, which is convenient to design
a unified control strategy to handle asymmetric or symmetric full-state constraints.

(2) Comparing with the results on the finite-time controller for fractional-order sys-
tems [36,37], the tracking error can converge to a predetermined compact set in a
preset time, and the convergence accuracy and setting time do not depend on the con-
trol parameters. The proposed scheme can make the tracking errors converge to the
predetermined compact sets in a predefined time, in which the tracking performance
and settling time are dependent of the adjustable parameters.



Fractal Fract. 2024, 8, 662

3o0f21

(3) Comparing with the results on the prescribed time controller for the integer order
system in [38—40], the prescribed time control scheme for the more general constrained
fractional-order nonlinear MIMO systems is designed, in which external disturbances
are considered and unmeasurable states are estimated by the NN nonlinear observer,
and the tracking performance and stability of the fractional-order closed-loop system
in the specified time can be guaranteed.

2. Preliminaries

Definition 1 ([41]). The fractional-order integral for r(t) € C"([ty, +00)) is defined as:
G = i [ @) a W
oD = T, r(t T T

fo

whereaw >0, t > tgand T'(a) = f0+°° s*~lg=s g,

Definition 2 ([42]). The Caputo’s fractional-order derivative for f(t) € C"([tg, +00)) is defined as:

o 1 ()
SO0 =ty e @

where « € (0,1) and t > ty. The Laplace transform of %Df‘ f(t) is defined as:

E{%D‘;‘ f(t)} = s*E(s) — s 1F(0) 3)
where L{-} is the Laplace transform operator, and F(s) = L{f(t)}.
Lemma 1 ([43]). For functions f1(t) and f,(t), one can obtain:

FDLA() = Df+ i (-0

T'(1—a)
T(m+1 -
KDp(b—t)" = _r(n(qnj+)1) (65"
1 dw f(r)
where 0 <« <1, b >t m > 1andeZ‘ = _F(l—oc)aft (t—T)’XdT' g}Df‘ can be

simplified as D*.

Lemma 2 ([44]). For smooth function f(x):R" — R with x = (x1,...,%,) € Qx C R" and
compact set Qy, if the following Hessian

Pf)  Pf) . Pf)
ox? dx10x; 0x10xy,
Pf)  Pfx) . Pf)
H(f()) _ dxp0x1 8x% 0x20Xy,
P B R
dx;,0X1  0X;0Xp 0x2
. .. e o moof(x) a
is positive semi-definite, one can obtain D* f(x) < Y ox D*x; forVt > 0and 0 < o < 1.
i=1 9X;

Lemma 3. For the continuously differentiable functions f1(t) € Rand f,(t) € RY, the following
inequality holds:
St

O AOREANAOREEY @

where 0 <o <1, t >0 and R is the set of positive real numbers.

020 ) fil)
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Definition 3 ([45]). The Mittag—Leffler function can be defined as:
+o00 5k
E 0)=) —F— 5
alr”Z( ) kg(:] r(ﬂ1k+a2) ( )
where a1,a; > 0, & is a complex number. Then, the Laplace transform is:
_ sfhi—a2 1
{157 Eay iy (—et™) } = Z—— Re(s) > |e|" ©)
wheret >0, a;,a, >0, c € R.
Lemmad. For0 <a <1, ¢ >0andt > 0, one can obtain:
0<Egi(—ct?) <LEgi(—ct’) =0 as t— oo @)
0 < Ega(—ct");0 < tE; 001 (—ct?) < 1
According to [46], a settling time requlator is defined as
2m
Tt
= , 0<t<T
cn = { (7)) 0ses ®
0, t>T

where T > 0, and positive integer m satisfies 2m > n + 1. Then, a performance function can be
defined as:

k) (=) ke, 0<EST
P —{ o [>T ©

where k, € (0,1).

3. System Description

Considering a fractional-order MIMO system as

D"‘xk’ik = hk,ikxk,ik+1 +fk,ik (fk,ik) + dk,ik(t)/ k=1...,m—Lk=1,...1

D*xp, = Mtk + from, () + din, (1) (10)
Yk = Xk1
- =T \T = T ;
where x = (xl,nk lenk cee xl,nk) and Xkiy = (xlll-k X2,i v xk,,-k) € R are the

state vectors, wherein all system signals except xj ; are immeasurable. u; € R and y; € R
are the control input and the system output. /i ; > 0 € R expresses the known constant.
fx,i, € Rstands for the unknown smooth nonlinear function. While dy ; () indicates the
unknown bounded external disturbance, which satisfies dy; (1) < d; with dg; >0
being constant.

Remark 1. It is worth mentioning that fractional-order calculus includes classical integer order cal-
culus when the order is equal to 1. Fractional-order systems (10) can be used to describe lots of practi-

cal systems, such as robotic manipulators [47], mechanical systems [48], power systems [49,50], etc.

Based on (8) and (9), the performance function can be constructed as:

¢ 2m
Pe(t) = (1 —ka)(l - fk) +ky, 0<tLT an
kaz t> Tk



Fractal Fract. 2024, 8, 662

50f21
where k; € (0,1), and the settling time regulator is
2m
Tt <t<
Ck(t)—{(Tk) o 0=r=T (12)
0, t> Ty

According to zy; = Xi1 — Yk4, the constraint on xj ; can be translated as —xy ;1 <
Zr1 < Kk12, Wwhere x; 11,k 12 > 0. Then, both the practical prescribed time tracking and
the preset constraints can be completed if the following inequalities are satisfied:

—K 11 Pr(t) < zg1 < K 12Pr(t) (13)

Through selecting k, = min{ex/xx11,€x/kk12} < 1 with parameter ¢, it yields
|zk1| < e for t > Ty by using (13).

The foremost objective is to propose an adaptive control strategy so that the following
purposes are satisfied:

The control objectives of this article are listed as follows:

(1) Design an adaptive control strategy to ensure the boundedness of all closed-loop
system.

(2) Tracking error zj; can converge to the preset set O, | = {z1 € R |z¢1| < €1}

(8) The system state satisfies the following bounded constraints

Dy = {21 () |y — K11 < x61(8) < Yied + Ke12}
ka,ik = {Xk,,'k(t)‘ — Kpip 1 < xk/ik(t) < Kki,2 K=2,...,n;k=1,... l}

where Kk ip, 17 Kk ip,2 > 0and Xk iy (0) € /ka,ik .

Assumption 1. The desired signals yi 4(t) and D"y 4(t) and D*(D*yy 4) are continuous
and bounded.

Assumption 2. The function f ; (-) is the Lipschitz function, that is,
cki | X — || is satisfied, where VX,y, 3¢y, > 0.

fiiy ®) = fri@)] <

Remark 2. In this paper, Assumptions 1 and 2 are used to design the adaptive controller. As-
sumption 1 can ensure that the ideal trajectories are bounded and available, which is reasonable and
non-conservative, sinice the desired trajectories in real systems are generally continuous and efficient.
Assumption 2 is used to deal with the relationship between fi; (X, ) and fi; (Xy;, ), which will
be applied to closed-loop system stability analysis.

4. Neural Network State Observer Design

In this section, a fractional-order NN state observer will be presented to estimate the
immeasurable system states, in which RBF NNs with the ability to approximate continuous
functions are used to approximate the unknown function.

The unknown function fi ; (X, ) is presented as [51]:

i Giie) = 083 Sk (Ki) + i i) [enie Frie) | < &, (14)

where

. A AT -~
Gk,ik = argmlnék,ikEQk,ikA sup ’fk,ik (xk,ik) - Gk,iksk,ik (xk,l-k) (15)

xk,,'k EQik,i

and () ;, and Qik- are the compact sets, Sy ;, (-) is the basis function.
Sk 4
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Based on (10), one can obtain
D = hyi Xi 11+ Dfii, (Xki ) + 08 Ski (Xei ) + A
k,lk k,lk k,lk+1 k,lk k,lk kﬂk k,lk k,lk k,lk (16)
D*Xp e = Pt + D fion, (X ) + 60F i St (i) + A

where §k,ik is the estimate value of state Yk,l'k, Afk,ik (§k,ik) = fk,ik (fk,ik) - fk,ik (§k,ik)/ Ak,ik =
ek (Xki,) + dii (£) and | Ay | < Ag;, with Ay, being the positive constant.

For the constrained fractional-order MIMO system (16), all the system states except
X1 are immeasurable, and a state observer must be designed to estimate the states. Then,
the NN observer is constructed as

{ D*%yi, = hii, Rki+1 + ékT, i ki (Xxi,) + Kiei (v — 9x) 17

D* R, = Mtk + 6] i Skne (X ) + Ko (i — J)
where Ky ;, is the design parameter.

The estimation errors are defined as gk/ik = Ok, — ék,ik and Xi; = xg; — ;. By
utilizing (16) and (17), one obtains

i
'D'ka = Akfk + Z BikaT,ikSk,ik (Yk,ik) + Afk (ik,ik) + Ay (18)
i=1
_ T T T
where X = (X1, X2, - Xkw) o Afe = (M1, Miazro - Bfin,) Ak = (A1, Mg, Ayy)
T —Ken M - 0
. - .
By =10---1---0] and Ay = : ; : © | Kk = [Ke Ky, K,
ik _Kk,nk—l 0 T hk,nk—l ¢
Ky, 0 o 0

should be properly chosen so that Ay is Hurwitz. There exists a matrix P, = PkT > ( satisfying:
AP 4 P AL = —2Q (19)

where Q. = QZ > 0.
Consider the Lyapunov candidate as Vj, = f]kafk, and the o — order derivative of
Vk . is presented as

ny R R R
'D“Vk,e = 37; (A[Pk + PkAk)J?k + 297kPk ( Z BikaT,ikSk,ik (fk,ik) + Afk (Yk,ik) + Ak> (20)

=1

According to Assumption 2 and Young's inequality, one can obtain

~ ~T~ 2 g -2
2x, P < Xp X+ || Pe| ‘21 A,

ix= (21)
kaPkAfk S (1 + nkCiHPkH2>fszk
where ¢, = max{c1, k2, ..., Cn, }-
Based on the fact that 0 < Sy, (-)TSk,Z-k (-) <1, it follows that:
L . 1 _
2% P Y By b, Sk, (%) < Amaz (POF %+ Y 016, (22)
=1 =1
Furthermore, substituting (21) and (22) into (20), we obtain
ny _ ’ Ny _
D"Vie < —451 T+ ) 010 + 1Pl ) Ay (23)

=1 =1
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where 7 = Amin(Qk) — 2 — 12| Pell* — A2 (Pr)-

5. Adaptive Controller Design

In this section, the prescribed performance adaptive tracking control approach will
be designed, in which the barrier Lyapunov functions with the settling time regulator are
employed to deal with the asymmetric full-state constraints.

Construct the asymmetric BLF as:

2 2
z z
k1 k1 (24)

Vk 7z =
o Fro =zt Fra t+Zra

where Fj 1, F» > 0. One can find that the boundedness of V. , can ensure —Fj 1 < zx1 < F2.

Derive D*Vj , as:
D"V, < Hyzy (D 21 + My) (25)

where

2F k2 —2Zk1 + 2F k1 +zka
2 7
(Fio—2k1) , (Fiatzin) ,
M, = Zk,l(«Fké}:Zk,l) D Fir+ Zk,l(}—kékJer,l) D Fix
2 2
Gr = (2Fk2 — zk1) (Fia +2zk1)” + 2Fk1 + 2x1) (Fr2 — Zx1)

Define the coordinate transformation as:

Hy =

Zk1 = Xk1 — Yids Zkiy = Fhip — Thig fr Chix = Thip,f — Thip—1 (26)

where T ; 1 is the virtual controller, and 7y ;  is the filter signal from the filter.
According to (10), (18), and (26), the derivative of z ; is

_ T ’
D2k = Meaxe2 + 601 Sk1 (Xk1) + Afia + Akt — DY
s AT 2
Dz = iy Rii+1 + Kii X1 + 0 i Sk (Xki) — D" Tiy s (27)
_ < AT 2
D2k, = hio i + Kiow ¥e1 + 04, Sk (Xen,) — D Tioy,

Step (k,1): Define Lyapunov function candidate as

2 2 2
z z 1 ~ e
k1 k1 AT k.2
Vi1 =Veo + 2 9k16k1+7 (28)
’ T Frip —Zkn Fraatzn o 2mn 2

where 11 > 0, Fi12 = ®%,12Pk(t), Fi1,1 = ki1, Pr(t)-
Based on (25), (27) and (28), one can obtain

D*Viy = DV + He12i1 (D 21 + Mi1) — 1160, D61 + e 2Dk
T~ M s M 2 A
< —qx[ % + '21 0.6;, + |\Pk||2‘21 Aj, + Hyazk (hk,lxk,z +00,Sc1 (k1) (29)
= =

+Afk1 + Ak — D*rg + Mya) — 1y ! ng, D01 + e Do

where
_ zka D" Frap | 21D Fran
M1 = G + &%
H . — 2F k12— %k 2Fk11+2k1
k1 — 2 2
(Fi12—2k1) (Fir1+21)

Gr1 = (2Fi12 — 2x1) (Firn +261)” + 2Fk11 +261) (Fiio — 2x1)’
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Due to Young’s inequality, one can have

he1Hy1zk1 (2o + exp + Xio) < 2h2 1 HE 7 ! + %4 xk X+ 7, (30)

Hy12k1 (A1 + A1) < HE 75, + kl X} X TR

The virtual controller 7 ; and law ék,l are designed as

2
Tk = —hk1 (bk 12k + <1 + )Hklzkl +061Sk1 (Xk1) —D*Yia + M) (31)

D*O1 = 11 Hi 12151 (Xk1) — 010k

where byq,0,7 > 0. Based on (29)—(31) and the fact that %5{ 19;(,1 =

Ok,1
27k1

9 9k,1 +

27’k 1

07 6y yields

k1 5
D*Vi1 < —Fp1 %4 X+ z eTe e F10k1 — b Heazgy + 235
: ”’f 2 Ok 7i1 2
Pl? L A+ 616, :
ex2 + || Pl ikZ:ll i T 21y k1 1+ )
where g, | =7 — 1+C"1
The fract1onal—0rder filter can be designed as:
6k2D" o f + Thof = Ti1s Th2,,(0) = Tr,1(0) (33)
where ¢ k2 > 0.
According to (26) and (33), one can obtain
Dy = D' Tips — D'ty = c T (34)
k2

It is assumed that |'D’XTk,1 | < —Y¥i1(Yk1), where ¥y 1 (Yy 1) is a continuous function
and Yi1 = (241,01, DO 1, Yiar D*Yioat, D*(D*Yka), Fin g D* Fiop, D(D*Fii), D Finz
Fio12 DY (D* Fr12))"

Subsequently, adopting Young’s inequality, we obtain

2 2 2
e o ‘I’k 1

k2
exoD%p < ——= 35
R + > (35)
Thus, the inequality (32) is restated as
91 3T ‘P%I
, aq 2 2 2 1 e
D*Vier < —41 %) % + Z i tk T e 01661 — b1 Haziy + 2k, — akpei, + > 12k (36)
lk 1 ’
DU 2 | O s L A
where By = ||P[|” X Aj + TekT 10,1 + T and a; » is a positive constant guaranteeing
i=1 k1
sz >14+ agp.
Step (k,ix),2 < i < ny — 1: Consider the Lyapunov function presented below
2 2 2
zz . z e
k,i k,i 1 T & kig+1
Vii, = Vii—1+ “—— o+ 5Ok ki + (37)
i e Fliez — Zhiy  Fhigl T Zki,  2rki, 2

where 71 ; > 0 are some constants, and Fy;, 1 and Fj; > are to be created later on. The
a — order derivative of V; ; is organized as
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Dlka,ik = DIXVk,I‘k—l + Hk,ikzk,ikDaZk,lk rk lkek IkD Gk s + ek Zk-‘rlD ek 1k+l
T 3 ~r ix— ~
S i1 X Xk T ‘2 O Ok — '21 2
= =
ir—1 ‘P% k=11 (38)
Z ak,]ek] “‘klk 1+Zkz + Z 9 97‘] rklkekzD gklk
=
+ Hi,i, Zk iy (hk,ikxk,ik+1 + K, X1 + 9k,ik5k,ik (xk,ik) — D, f) +eki 1D 41

where
2’F}(,lk, Zk i sz,lk, Zk Ak

2 2
(‘Fk,lk, Zk lk) (‘Fk,lk, Zk lk)
Construct the virtual controller and adaptive law as

(1 (P S 1Y E Y 07 S (R ) — DR
Tk!1k71 - k,ik kllk 4 4 2 kllk Zkflk k,ik k,lk (xkllk) Tk,lk,f (39)

A

D6 i, = 7ii, Hi i, Zk i, Skiy, (Xici ) — iy Ok

where by, , 0%, > 0.
Then, one can have

3 2 2 kzk+1
i Hii 2k i (Zk i+l T ek 1k+1) < zh Hk i Zp; t tz kzk+1 (40)
A ki 2 T~ | 13T 3
Hiiy 2k, (Kk i Xk1 — szksk i Xk )) < -+ )Hk zkzk,ik + X Xk + 50 Ok
Ok,i T Ok,i .
Due to £ Gk lkgk/ik = 27’k1 9 Gk I v Ak Gk lkek/ik and (38), one can obtain
« T N = 1
D Vk,ik < i, Xk Xk +j§ Gk’jek’]’ — ]';1 21’ ‘9 91(,] + Z k]ek,]
ir—1 ir—1 IY ] (41)
- E bk,]Hk,]Zk] E ak,]ek] + E +&E ki + Zk iy + e zk+1D x, Jik+1
here g, =7 Tand ;= B g + 22507 Oy
where g ;. = Ggi—1 — L and o, = =i —1 + g, kg Kok
Design the fractional-order filter as
Skip+1D" T £+ T, f = Thip—10 Thoip, £ (0) = Tk, (0) (42)
Then, one can have
ki +1
D1 = D'ty f — D' Tejy1 = ———— — DTy, 1 (43)
Ckig+1

Assume |D*7y; 1| < =¥, (Yii,), where ¥y, (Yi;,) is a continuous function and
A s\ T
Yii, = (Zk,ik,Gk,ik,D“Gkrik) . Then

e eiikﬂ e%ikJrl 1\{, m
. . < Mk, ST C
Ck,ip+1 Ckig+1 = Chipt1 + 2 + 2 k,ig ( )
Based on (41) and (44), one can obtain
- B T s ey
DVeie = =i XXk + X 00— 1 5070 O + Z 9 Ok
j=1 =1 27k, (45)
i—1 -1 i %,],
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where gy ;, 11 > 0, satisfying o i1+1 > 14 ag 11
'k

Step (k,ny): Select the Lyapunov function as:

Z% Ny ZI% Ny ]- AT A
an = an 1+ - + - + ek Gkn (46)
My M Fimer = Zkne  Fhmd T2k, 2k, Ko
where 7y, > 0, and Fy , 1 and Fy ,, » will be given later.
From (46), one can have
DV n, = D* Vi -1 + Hin Zion, D" 2k, — 17 nkBk nkD”‘Gk e
T~ ny r s m—1 o k,j T ng—1
S o175 Xk ,Z Gk,jgk,]'gk,]' Z 2rk]9 Ok — Z bijHi, 74

(47)

/] 2 -1 T %3}
Z ayjeg ; + Z + Z Gk ]9k it Em—1 T2y~ T O, P Ok,
j=2 j=2 2 j=2 k

+ Hk,nkzkﬂ’lk (hk,nk U + Kk/”kka + Gk,nk Sk,nk (fk,ﬂk) - DaT’@”mf)

2 2
Where Hk,i’lk - (2]:k,nk,2 - Zk,nk) / (]:k,i’lk,Z - Zk,i’lk) + (Z‘Fk,}’lk,l + Zk,i’lk) / (]:k,}’lk,l + Zk,i’lk) .
Design the actual control signal uy and the adaptation law 6y ,,, as

=—h7' ((1+0D Ky LYH 0 S, (X D
e =~y { (1+ b )z + | =15+ 3 | Hion Zion, + 0, Some (Xiome) — DT f

~

(48)
’Dlxek,nk = rk,nka,nka,nkSk,nk (yk,nk) - ‘Tk,nkgk,nk
where by, , 0%, > 0.
Using Young’s inequality, one has

IN

Ki, 1 1
~ o k, ~T ~ N
Hign, Zkny (Kk/”kxl - alZ:nk Sk,ny (xk,ﬂk)> ( 4nk + 2) le,nkzi,nk + xl{xk + Eagjnkgk,nk (49)

knk A _ Tk 3" Tkny AT
Consequently, due to Qk nka e = "2, Ok 9k e T D 0 nka n» it can be further
deduced that
e . ~ Mk Ok ~
w = =T T Ak AT
DV, < — i, Xje Xk + '21 Ok, Ok, — ‘21 2 ki Ok
= = lk
50
ny 1 NT ~ ny 5 Ny Ti 1k ( )
+ Z Eek,ikek/ik - E bk,l'ka,l'ka,l E ak lkek iy + Z 2 + Hk My
Zk:2 Zkil =2
G, =7 2. o= ’”’k
where Dy = D1 — 1 and Sy = Sn—1 Bk nka,nk.

Theorem 1. Consider the fractional-order MIMO nonlinear system (10) under Assumptions 1
and 2, if an adaptive controller and adaptive laws (31), (39) and (48) with state observer (17)
are designed, for any xi; (0) € D xy,5, O1€ CAN obtain that all the signals closed-loop system are

bounded, the practical prescribed time tracking and the states confined to predetermined constraints
are guaranteed.

Proof. Forz; € Q) ;- One can obtain

H,. 2. — 2F ki 2= %ki, 2 n 2F ki1t 2 o
ki Zki, = 22 i, 27} i,
<]:k,ik,2*Zk/ik) (fk,ik,1+lk,ik> (1)
2 2
Zkif Zkir

= Frig2 =2k, Thig1 T2k,
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Fhi 272 Fhi 172 .
where N = ™ R 5 + LS > > 0. Thus, one can obtain
(-Fk,ik,z *Zk,ik> (J:k/z‘k,l +2kiy )
by 72 by 72
> Jik 2k, iy kix %k i,
—bri Hy iz, < — - (52)

T Fri2 — Zki, kil T Zki

Define the compact sets as: (), = {W% DDy Wyt (DY) + (D Dy)f < %}
z, 72,
and QVk,z‘k = { kak + Z Gk lkek i + Z ek i + Z ( i + ki ) < Ck,ik}

=1\ Fhin2 = Zki, Tkl T Zkiy
with @y, ,, Cy;, > 0. Then, Y (Yk,lk) § Dy,i, with Dy, > 0 on compact set Qy,, < O

Ykd®

l
Consider Lyapunov function as: V = ) V. . From (50), one can obtain
k=1

1
DYV = ¥ DV,

k_

< BV 47y

1k AT A Loom Ok,i
<—2 xxk+):Z O, — L L 0] O +Z): 9 9k,'
qknk k _1lk kzk A _11k 121,ka ki kik K= i 22 klk Tk (53)
n Df, 7, 7 !
—EZﬂké’ +ZZ —* ZZk - + -k + 2 &
Clima R T T 2 3T U\ Frie2 — Zkie . Fhigl T Zki i
where
l g Dk lk
k=1i=2
. Tk, (Ukl > Okjit1 3 (54)
=min{ ———,b;; , 2 — —1),2| —=— — = |, 2a;;
p {/\max(Pk) i\ 2 2rgj41 2 Bt
k= 1,2,...,l;ik = 1,2,...,I’lk;jk = 1,2,...,1’lk—1.
(1) Define B(t) satisfying
DYV +B(t) = —BV + 7 (55)
From Definition 2, the Laplace transform of (55) is
V(s) = s V(0) — L%(s) + _r (56)
s+ B s+ B s(s* + B)

where V(s) = L{V(t)} and B(s) = L{B(t) }. By using Laplace’s inverse transformation,
one can have

V(t) = V(0)Eq1(—pt") + 1" Eqar1(—pt*) — B(t) * t* Enu(—pt") (57)

From Lemma 4, one can obtain —B(#) * t* 1Ey o (—Bt*) < 0, Yt*Eyur1(—Bt*) < /B,
and

V(t) S V(0) B (=Bt") + 2 < H (58)

+ 7T <
B~
where H = V(0) + % > 0.

Therefore, V is bounded, and Xy ;,, 7y ;, , 0k, and ey ; are also bounded.

(2) Due to z; being bounded, one can have —#xy 1 1Pi(t) < z1(t) < —xp21Px(t). Ac-
cording to Py (t) in (9), it is true that |zk,1‘ < ¢ for t > Ty. Then, the tracking errors
keep the predefined performance with parameters €, and Tj.

(3) Dueto Zk’]'k,ék,jk and ey, (jx = 1,2,...,n;) being bounded, 7 ;, ¢(ix = 2,3,..., 1) in
(31) and (39) is also bounded and satisfies Ry ; 1 < Ty, r < N, 2, where Ry ; ; and
Ny 2 are some constants. Due to boundedness of X, assume fy;, 1 < X; <
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figi, 2, where fiy ;1 and fig j, » are some constants. Using z; = Rk, — Tk, fr Xkip, =
xk,ik — J?k,ik and _Kk,ik,l < xk,ik < Kk,ik,Z/ one can have _]:k,ik,l + Nk,ik,l + ﬁk,ik,l
X, < Frig2 + Nei2 + i 2 Define Frjo 1 = kij 1+ Nej1+ fgi 1 and Fij o =
kii2 — Ng i 2 — T iy 2, one has —xg i 1 < X, < K, 2. The proof ends here. [J

A

Remark 3. From (58), we can obtain |zy;, | < \/FV,(0) + Fy/p with F = max

ir=1,..,n;k=1,..1
{Fria+ Frin}s < V2Vu(0) +2v/8, ‘gk,ik < \/ZTk,ikVn(O) + 21 /B ik =

1,...,nk = 1,...Ljx = 2,...,n, and the upper bounds of Zk,ikfgk,ik and ekj, can be re-
duced by increasing B or decreasing -y, which can be achieved by selecting appropriate param-
eters G .., b i,s Okips ki, and ay;, due to the definitions of vy and B in (54). The performance
function found in (9) shows Ty, k, and m, in which the tracking performance improved by reduc-
ing k, and Ty improves, but that may come at the cost of the bigger control signals. Furthermore,
the oy ;, reflects the convergence rate of ék,ik/ in which it may not be enough to prevent parameter
estimation drift when oy ; is too small. Therefore, in practical applications, it is often necessary to
strike a balance between proper control efforts and satisfactory tracking performance.

€k ji

To clarify the system’s components and the interactions, the schematic diagram of the
proposed method is shown in Figure 1.

Control law Fractional-order MIMO nonlinear

o Sh}f1 A - . system
Ty = =H| BraZis + 1+T Hyy2,, 46045, (xm)_D Yia +Mk,1)
, Sh:v‘k ,25_% 1 ~ ~ Y u" Daxk,x,, = h}c,z,, X T fﬂc.:,, (fk,zk )+ d)‘c,xk (t) | % _
Teig—1 = 7hk,i,t 1+b1c,1k + 2 T 5 Hk,zk Zpiy + Hk,‘k Sk,ik (xk,zk ) -D Ceivr i, = L. n, — Lik=1..1
K2 1 quk,nk = h}c,nk Hy +fic,m, (x)+ d}c,n,, (I)
_ e A ~ @
U = 7hic,lnk (1 +bk,nk ) L +[ + Z}Hk,nk e + Hf,nk Sk,nk (xic,nk )7 D Tt Ve =X,

!

D8

(3N

D,

(7S

= Fes

Hy 20,8,

= r)‘c,nka,nk Ly Sk

Fractional order adaptation law

a A — z
D 91:,1 - r}c,lHk,le.ISk,l (xk,l)7 Ori

NN state observer

4

k1

R N iy D&xAk,‘k = hk,zkfk,ik+l + éfzik Sk,‘k (im,t ) + Kk,‘,c (yk - j}k)
(fk,s,, ) - Crk,x,, ek,x,, & AT S n
A D Xy = hk,nkuﬂc + Hﬂc.n,, S}c,n,, (xk,nk ) + Kk,n,, (yic Ve )

a

Ty

(xk,n,[ ) - gic,nk

£

Figure 1. The schematic diagram of the proposed method.

6. Simulation Results

In this section, two fractional-order numerical simulation examples are performed to
illustrate the reliability and validity of the proposed tracking control strategy.

6.1. Example 1
Consider a fractional-order nonlinear MIMO system modeled as:

3 (%1,1)

Dixy g = 0.8 + 4 2 — 0.01sin(2t) 59)
D*x15 = 1.5u1 — 0.02x1 5 — sin(x1x22) + 0.3 sin(x71) cos(x12) + 0.02 cos(t)
and
D*xp1 = 0.6x32 + cos (x5 X272 ) + 0.05cos(0.1¢
(x4 1322) (0.16) )

Dixy 5 = 26113 + 0.508(x2,1 X2.2) Sin (0.5x1,2x§,2) — 0.01sin(0.6¢)
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where &« = 0.6. Assumptions 1-2 are satisfied for the systems (59) and (60). The initial states
are x11(0) = x12(0) = x21(0) = x22(0) = 0. The constrained sets are chosen as k111 =
K112 = 0.35, K121 = 1.3, K122 = 1.35, K211 = 0.65, K212 = 0.85, K221 = 0.5, K22 = 2.9.
The desired output trajectory signals are chosen as y; ; = 0.3sin(10¢t) cos(5t) + 0.01 and
Y24 = 0.5sin(8t) cos(3t) + 0.05.

The design parameters are shown as: K11 = 21,K; 5 = 11,Ky; = 61,Kp0 = 11,011 = 15,
bl,Z =5, bZ,l =15, bz,z =5,5, "n1=nmn2="r1="m2= 0.01, 011 =012 =021 =022 = 0.001,
Ty =T,=2,k;, =045,and m = 3.2.

Figures 2—-6 show the simulation results. The trajectories of system outputs, reference
signals, and the predefined constraints are presented in Figure 2 to show the tracking
performance of the closed-loop fractional-order system. It demonstrates that the reference
signals y1 4,y 4 could be tracked well by the output signals x7 1, xo ; staying within the
predefined constraints, respectively. Figure 2 displays the trajectories of system states
X172, X2 and state estimations £y o, £, respectively. It can be found that %15, %2, can
estimate x1 5, X2 5, respectively, which all stay in the predefined constraints all the time.
Figure 4 shows the response curves of the errors z;; and z;;, which converge to the
compact sets (), = {z1]|z11]| < 0.015} and Q¢ = {2z31]|z1| < 0.02} within 2s, respectively.
Figure 5 shows the norm of parameters estimation of the RBF NN, and system control
inputs u; and u; are presented in Figure 6, which are all bounded. It is clear that the state
constraints and prescribed tracking performance are fulfilled, and all the signals in the
closed-loop fractional-order system are bounded.

1.2F T T T T
Yid+ K12 == == Yid Y1
1 T I I 211 Y1d — K111
0.8 _

Time(sec)

Figure 2. The trajectories of desired signals and system outputs.
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2 T T T
Ki2a = === T12

—K121

1.5

0.5 7 /IX 7
\ ’\ 1 ‘\ ’\ /I ’ fr ¥ ’\
\ SN AN I S AN R SAR (N N AN

Z22

—K221 l_

1 ! K222 —==-=-T22

TN N F AN TN\
2.5 =
-3

Time(sec)

Figure 3. The trajectories of system states x1 5, X » and state estimations £1 5, £3>.

Fiz
--=--z11

— =Fu1

N

] S - S g R

-0.5

-1.5

-2

0 5 10 15 20 25
Time(sec)

Figure 4. The trajectories of the errors z; ; and zp ;.
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Figure 5. The norm of parameters estimation.
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—— -
Uz
1.5
1
’ 4 ~
0.5 Aol N R A
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VAR V] (W \V4 v (. . W
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1.5 .
-2
-2.5
3 L
0 5 10 15 20 25

Time(sec)
Figure 6. The trajectories the control inputs 17 and u5.

6.2. Example 2 (Permanent Magnet Synchronous Motor System)

Consider the fractional-order permanent magnet synchronous motor (PMSM) model
as follows [52]:
DY@ = k(iy — @)
DO, = —ig — @ig + %@ + h1uq (61)
Do'glid = —ig— (Diq + houy
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where @ represents the angular velocity of the rotor. For d — g axis currents, iy and i, are
variables. u, and u4 denote the voltages. ¢ = 1,k = 4,y = 20 and hy = 15 are parameters.

Define x11 = @, x12 = ig, U1 = Ug, X2, = ig, Uz = Ug, then the PMSM system can be
considered as the following two subsystems as:

DO.91x1,l = k(x1,2 — x1,1) + dl,l (t)
DO'91x1,2 = —Xx12 —X11X12 + 0x11 + hyuy + dl,Z(t) (62)
Y1 = X1

and
{ D0.91x2,1 — _x2,l — xllllel + h2u2 + dz,l(t) (63)
Y2 =X21

Choose the parameters as 111 = %112 = 0.35, k121 = k122 = 1.5, k211 = 1.65,
K2’1,2 = 1.85. K1,1 = 181, Kl,Z = 11, K2,1 = 31, bl,l = 15, b1,2 = 3, b2’1 = 15, 7’1,1 = 7’1,2 =
1= 0.001, T1 =T, =05, 011 =012 =021 = 0.002, k, = 0.43, and m = 3.5. The outputs
track to the desired trajectory y; 4 = 0.85sin(0.6t) and y, 4 = 0.85 cos(0.6t).

To illustrate the validity of the proposed method, an adaptive backstepping control
scheme (ABCS) is used for comparison from [53]. The simulation results are shown in
Figures 7-11. Figure 7 presents the trajectories of system outputs, reference signals, and
the predefined constraints to show the tracking performance of the closed-loop fractional-
order system. It demonstrates that the reference signals 1 4,1, 4 could be tracked well
by the output signals x1 1, x5 1 staying within the predefined constraints, respectively. the
trajectories of system states x; 5, x7, and state estimations %, is displayed in Figure 8,
respectively. It can be found that £1 » can estimate x; », which are all stay in the predefined
constraints all the time. The response curves of the errors z; 1 and z; ; are shown in Figure 9,
which converge to the compact sets (), = {z1]|z11| < 0.2} and Q¢ = {z31||z1] < 1} within
0.5s, respectively. The norm of parameter estimation of the RBF NN is shown in Figure 10,
and system control inputs u; and u; are presented in Figure 11, which are all bounded.

—Y1d T K112
2r ‘ | === Y

y1 by ABCS
.51 |  E— y1 by proposed method J
&1, by proposed method

1+ | | Y1.d — K111

ESS

Yo.d + K212
------ Y2

3l | | y2 by ABCS n
R y» by proposed method

#91 by proposed method N
Y2.d — K2,1,1

-1 —— — -

= ;7777/ i Qni’/ 1 =|

5 10 15 20 2

-3
0

Time(sec)

Figure 7. The trajectories of desired signals and system outputs.
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/ A i |
/ W 7 L)
/ ) 4 WM
F A /I N
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0 v n
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\ \
% / VY
\‘. \\ i \'\_ )
AN I \ /
05 - 7 = /
LAY A \ i
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N7/ NN
\ 7 \ /
Kl — N,
-1.5
1
0 5 10 15 20
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Figure 8. The trajectories of system state x; ; and state estimation %1 ».

25

1 T T T
rl.Z
- = = = z11 by ABCS
z11 by proposed method
0.5 —Fi1 -
0‘_____.—‘ il S e==" e R -
-0.5
-1 I I L
5 T T T
Fap
—————— 221 by ABCS
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'
i
i
-5 I I I
0 5 10 15 20
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Figure 9. The trajectories of the errors z; ; and zp ;.
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x10* :
T ———1[6..]| by ABCS
- = == ||;2]| by ABCS
ol 61| by ABCS
---------------- 01.1|| by proposed method
————612|| by proposed method
5k 02,1|| by proposed method

Time(sec)

Figure 10. The norm of parameters estimation.

T T

- - - - u; by ABCS
——————— uy by ABCS
0.3 uy by proposed method
uy by proposed method
0.25 i
0.2

Time(sec)

15 20 25

Figure 11. The trajectories the control inputs u; and u;.

The overall tracking error OTE = /Y7, Z,%,l (X) is defined to compare the perfor-
mance under different external disturbances, where X is the sample index. Table 1 shows
the OTE by the proposed method and ABCS. Obviously, the proposed method can have
better tracking accuracy compared with ABCS.
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Table 1. Performance comparisons.

Disturbances OTE by ABCS OTE by Proposed Method
dig(t) =dip(t) =dpi(t) =0 0.0526 0.0026
dl,l (t) =0.01 Sil’l(t)
di5() = 0.01 cos(t) 0.1835 0.0139
dp1(t) = 0.01sin(1.5¢)
() = O-1sin(t) 0.3261 0.0675

(t
dip(t) = 0.1cos(t)
d2,l (t) =01 sin(1.5t)

Based on the above simulation results, it is clear that the state constraints and pre-
scribed tracking performance are fulfilled, and all the signals in the closed-loop fractional-
order system are bounded by using the proposed method.

7. Conclusions

A prescribed performance tracking control scheme is developed for the fractional-order
nonlinear MIMO under systems with asymmetric full-state constraints and unmeasurable
system states. The NN nonlinear state observer is developed to estimate the unmeasurable
states. The asymmetric BLFs with the settling time regulator are presented to deal with
asymmetric full-state constraints and achieve the tracking accuracy in the predefined time.
The stability analysis for closed-loop fractional-order MIMO system is presented on the
basis of the fractional-order stability theory. The simulation examples including fractional-
order PMSM system illustrate the validity of the proposed scheme. In the future, the
scalability or performance in the fractional-order large-scale systems will be considered
and investigated, and the practical applications will be implemented as far as possible.
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