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Abstract: Numerous studies have observed and analyzed the dynamics of language change from
a diffusion perspective. As a complex and changeable system, the process of language change is
characterized by a long memory that conforms to ultraslow diffusion. However, it is not perfectly
suited for modeling with the traditional diffusion model. The Caputo nonlocal structural derivative
is a further development of the classic Caputo fractional derivative. Its kernel function, charac-
terized as an arbitrary function, proves highly effective in dealing with ultraslow diffusion. In
this study, we utilized an extended logarithmic function to formulate a Caputo nonlocal structural
derivative diffusion model for qualitatively analyzing the evolution process of language. The mean
square displacement that grows logarithmically was derived through the Tauberian theorem and
the Fourier–Laplace transform. Its effectiveness and credibility were verified by the appearance of
already popular words on Japanese blogs. Compared to the random diffusion model, the Caputo
nonlocal structural derivative diffusion model proves to be more precise in simulating the process
of language change. The microscopic mechanism of ultraslow diffusion was explored using the
continuous time random walk model, which involves a logarithmic function with a long tail. Both
models incorporate memory effects, which can provide useful guidance for modeling diffusion
behavior in other social phenomena.

Keywords: language change; ultraslow diffusion; Caputo nonlocal structural derivative; microscopic
mechanism; continuous time random walk

1. Introduction

Language is an intricate and continuously evolving system, profoundly influenced by
social, cultural, and technological advances [1,2]. Within this complex environment, vocab-
ulary emerges as the most dynamic and responsive constituent [3]. Empirical studies have
consistently demonstrated that language change is a time-dependent phenomenon, and
that its statistical characteristics can be analyzed from a diffusion-based perspective [4–8].
In this context, Ebeling found the relationships formed over a long period of time between
letters and sentences within texts by utilizing the random walk model [6]. Similarly, an
analysis of the correlations at long range in an embedded sentence series based on ‘The
Story of the Stone’ revealed that these series are generated by fractional Brownian mo-
tion, reconciling them with anomalous diffusion [7]. Moreover, the statistical properties
of word use in samples of English, as well as text from French, Chinese, and Japanese
have been found to exhibit a pronounced ultraslow diffusion phenomenon [8]. The inves-
tigation of language dynamics necessitates a holistic approach that integrates empirical
experimentation, theoretical modeling, and rigorous data comparison [9]. While the exis-
tence of ultraslow diffusion has been firmly established, investigations into deterministic
mathematical models remain relatively limited in language change.
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The intricate and multifaceted properties of language change require a comprehensive
knowledge of its underlying dynamical mechanism. Anomalous diffusion occurs in many
physical phenomena, and is typically identified when the mean square displacement
(MSD) follows a power law relationship with respect to time (sub-diffusion when the
time exponent is less than one, and super-diffusion when it is greater than one) [10–12].
Ultraslow diffusion is a diffusion process that is slower than sub-diffusion [13–16]; it has
been observed in a variety of systems including disordered media [13], soft materials [14],
and phospholipid monolayers [15]. In statistical mechanics, ultraslow diffusion reveals the
dynamical properties of particles on long time scales. The MSD of ultraslow diffusion is
given as follows [16]: 〈

x2(t)
〉
∼ (log t)λ (1)

Here, λ > 0, and its value depends on the evolution rate for the ultraslow diffusion of
solute. Equation (1) displays a statistical process that is slower than the power law, and
in some cases, even slower than the logarithmic function. When λ = 4, this process is
considered as the classic Sinai diffusion model, which can depict the heat transport in
disordered topological quantum wire [16,17]. When λ = 0.5, Equation (1) decays to the
Harris law for characterizing the time evolution of aging processes in materials science [18].
When λ = 1, this process is the characteristic way to identify ultraslow diffusion in the
migration of polymers in cells [13].

Mathematical and physical modeling approaches are commonly applied to investi-
gate the mechanisms governing diffusion behavior. Numerous theoretical investigations
rooted in fractional theory and its extensions have been introduced to explain ultraslow
diffusion [19,20]. Examples include the distributed order fractional Fokker–Planck equa-
tion [19] and the nonlocal Fokker–Planck equations [20]. Models like the comb models,
the structural derivative diffusion models, and the distributed order fractional derivative
models have been utilized to capture the logarithmically increasing behavior of MSD
over time [13,21–23]. Microscopic models, such as the random walk model [11] and frac-
tional Brownian motion [12], can be used to explain the evolution law and statistical
characteristics of particles. The random walk is a statistical framework for simulating the
characteristics of particle migration with time and its spatial distribution [24]. Its extension,
the continuous time random walk (CTRW) model, is employed for studying ultraslow
diffusion processes [25]. In ref. [26], the ultraslow diffusion model was developed, incor-
porating a random waiting time with a probability decay following a logarithmic rate.
Havlin et al. [27] presented a CTRW model using the logarithmic function as the asymptotic
waiting time distribution, which recently was extended by Liang et al. [28], substituting the
inverse Mittag–Leffler (ML) function for the logarithmic function. Particularly, Chechkin
studied the relation between distributed order fractional Fokker–Planck equations and
the CTRW model [19]. These contributions have enriched our understanding of ultraslow
diffusion phenomena, and the associated mathematical frameworks.

This study aims to analyze the ultraslow diffusion mechanism of changes in the
Japanese language on Japanese social media using the Caputo nonlocal structural deriva-
tive. The Caputo nonlocal structural derivative can be treated as a further development
of the classic Caputo fractional derivative. Its kernel function is an arbitrary function,
rather than a power law function, which greatly expands its application space in practical
engineering [29–31]. In physical systems, the convolution operator encodes with historical
memory, which has been used to study the creep phenomenon in concrete [30] and super-
fast diffusion in solar cells [31]. Physically, the Caputo nonlocal structural derivative acts
as a memory operator, which is consistent with the time history dependence observed in
language change.

In this paper, we propose the Caputo nonlocal structural derivative ultraslow dif-
fusion model with a logarithmic function to analyze the significant influence of time on
language change. Similar to the Caputo fractional derivative diffusion model, the essential
methodology employed in solving the fundamental solution and the MSD of the proposed
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model lies in Fourier–Laplace transforms [11]. Specifically, the Laplace transform of the
logarithmic function was acquired through the Tauberian theorem [21]. To explain the
feasibility of the proposed model in fitting the ultraslow diffusion of already popular words
on Japanese blogs, we merge theory with experiments in Section 3. Thorough sensitivity
analysis by varying parameters, the applicability and relevance for the proposed model in
capturing the intricacies of linguistic dynamics is enhanced. In addition, we also attempt to
reveal the internal laws of language change using the CTRW model with the long-tailed
distribution of waiting time, an approach which helps to gain a deeper understanding of
the fundamental mechanisms underlying ultraslow diffusion in language.

The remainder of this paper is structured as follows. Section 2 presents the Caputo
nonlocal structural derivative, and establishes the Caputo nonlocal structural derivative
ultraslow diffusion model. In Section 3, the proposed model is utilized to simulate the
experimental data, and employs CTRW theory to analyze the microscopic mechanism. A
brief discussion is shown in Section 4. Section 5 provides the conclusions of this study.

2. Theory
2.1. The Caputo Nonlocal Structural Derivative

The integer derivative depicts the local characteristics of the dynamic process at a
certain space-time point, while the fractional derivative can capture the dynamic processes
with memory and global characteristics. The fractional derivatives are primarily character-
ized by two widely employed definitions: the Riemann–Liouville fractional derivative and
the Caputo fractional derivative [11].

Due to the singularity of the definition, the Riemann–Liouville fractional derivative
is difficult to apply to engineering practice and physical mechanics modeling, and is
mainly employed for theoretical derivation. In scientific and engineering applications,
the Caputo fractional derivative is more efficient and applicable. The classical Caputo
fractional derivative of the continuous function f (x, t) over time is as follows [11]:

C
a Dα

t f (x, t) =
1

Γ(n − α)

∫ t

a
(t − ζ)n−α−1 dn f (x, ζ)

dζn dζ. (2)

Here, n − 1 < α < n. For more complex systems with extremely irregular structures,
the power law metric has some limitations in describing the mechanism effectively. Based
on Equation (2), the Caputo nonlocal structural derivative is the following:

C
t0

δs,t f (x, t) =
∫ t

t0

T(t − ζ) · ∂

∂τ
f (x, ζ)dζ (3)

Here, C
t0

δs,t represents the time Caputo nonlocal structure derivative operator; f (x, t) is
a continuous function in (t0, t); and T(t) is the time structural function. The selection
of the structural functions is the most difficult and important step in modeling. The
existing method is derived from a structural function based on the experience and the
actual problem being solved. Certainly, the singularity of the Caputo nonlocal structural
derivative corresponding to the kernel function is also the focus that should be considered.
If T(t) = t−α

Γ(1−α)
, Equation (3) decays to the Caputo fractional derivative in Equation (2)

with n = 1 [32,33]. Similar to the fractional derivative, the Caputo nonlocal structural
derivative performs the derivative operation first, and then the integral operation, so that
C
t0

δs,tC = 0. This definition establishes the foundation for describing and analyzing specific
features of scientific and engineering applications. For convenience, we introduce the
Laplace transform and Fourier transform [21]:

L [ f (t)] =
∫ +∞

0
f (t)e−stdt = F(s), (4)

F [ f (x)] =
∫ +∞

−∞
f (x)e−iωtdx = F(k). (5)
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Accordingly, L −1[F(s)] and F−1[F(k)] represent the inverse Laplace transform and
Fourier transform, respectively. The Laplace transform of Equation (5) is as follows:

L
[∫ t

t0

T(t − ζ) · ∂

∂ζ
f (x, ζ)dζ

]
= T(s)[sF(x, s)− f (x, 0)], (6)

where T(s) means the Laplace transform of T(t), t0 = 0, and F(x, s) is the Laplace transform
of f (x, t). In fact, the Caputo nonlocal structural derivative follows the Euclidean distance
measure, and the convolution operator involves long-range temporal correlations that can
be used to analyze the characteristics of dynamic processes using different kernel functions.

2.2. The Caputo Nonlocal Structural Derivative Ultraslow Diffusion Model

Based on the definition of the Caputo nonlocal structural derivative in Equation (3),
the Caputo nonlocal structural derivative diffusion equation is directly indicated as follows:

∫ t

0
T(t − ζ) · ∂U(x, ζ)

∂ζ
dζ = Ds

∂2U(x, t)
∂x2 . (7)

If T(t) approaches the power law function, Equation (7) will turn into a fractional
diffusion equation [32]. The structural function with different forms is a memory kernel
that yields substantially different results. According to the MSD of ultraslow diffusion, the
time structural function for language change is assumed to be the reciprocal of a logarithmic
function at long times:

T(t) ≃ (ln t)−1 (8)

Then, substituting Equation (8) into Equation (7), the Caputo nonlocal structural derivative
model of ultraslow diffusion in language change is as follows:

∫ t

0
[ln(t − ζ)]−1 · ∂U(x, ζ)

∂ζ
dζ ≃ Ds

∂2U(x, t)
∂x2 . (9)

Here, Ds is the generalized diffusion coefficient; its dimensions are essentially related
to the structural function T(t); t is the last date of observation; and x is the counts of the
observed words within the data set. U(x, t) means the probability density function (PDF)
of the observed words appearing x times at date t, and U(x, 0) = δ(x) (the Dirac delta
function). By taking the Laplace transform of Equation (9) we obtain the following:

[sU(x, s)− U(x, 0)]L
[
(ln t)−1

]
≃ Ds

∂2U(x, s)
∂x2 . (10)

When t → ∞ , T(t) = (ln t)−1 is a slowly varying function, and its Laplace transform
can be calculated via the Tauberian theorem [21] as follows:

T(s) = L
[
(ln t)−1

]
≃ 1

s ln(1/s)
. (11)

See Appendix A for the Tauberian theorem. Inserting Equation (11) into Equation (10)
leads to the following expression:

[sU(x, s)− U(x, 0)]
1

s ln(1/s)
≃ Ds

∂2U(x, s)
∂x2 . (12)

Using the Fourier transform, Equation (12) becomes the following:

[sU(k, s)− 1]
1

s ln(1/s)
≃ −Dsk2U(k, s). (13)
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And after simplifying the model, Equation (13) can be expressed as follows:

U(k, s) =
T(s)

T(s)s + Dsk2 ≃ 1
s[1 + Dsk2 ln(1/s)]

. (14)

Applying the inverse Fourier transform, Equation (14) yields the following:

U(x, s) ≃
√

1
4s2Ds ln(1/s)

exp(−
√

1
Ds ln(1/s)

|x|). (15)

Then, U(x, t) can be solved via the inverse Laplace transform. Moreover, the MSD
can be determined as was shown in ref. [27] to be the following:

〈
x2(t)

〉
= L−1

[
− ∂2U(k, s)

∂k2

]∣∣∣∣
k=0

≃ L−1
[

2Ds

s2 · K(s)

]
≃ L−1

[
2Ds ln(1/s)

s

]
≃ 2Ds ln t. (16)

Alternatively, ultraslow diffusion could be characterized by the single exponent α
with the structural function T(t) ≃ (ln t)−α, α > 0. Similarly, the Laplace transform of T(t)
satisfies the following:

T(s) ≃ 1
s[ln(1/s)]α

; (17)

thus, the Caputo nonlocal structural derivative ultraslow diffusion model governed through
this function as it occurs in language change is the following:

∫ t

0
[ln(t − τ)]−α · ∂U(x, τ)

∂τ
dτ ≃ Ds

∂2U(x, t)
∂x2 . (18)

And Equation (12) is replaced by the following:

[sU(x, s)− U(x, 0)]
1

s[ln(1/s)]α
≃ Ds

∂2U(x, s)
∂x2 . (19)

By inference, the analytical results occur as the following:

U(k, s) ≃ 1
s[ln(1/s)]α

/
(

s
s[ln(1/s)]α

+ Dsk2
)

≃ 1
s + s[ln(1/s)]αDsk2 , (20)

U(x, s) ≃
√

1
4Dss2 lnα(1/s)

exp(−
√

1
Ds lnα(1/s)

|x|), (21)

〈
x2(t)

〉
≃ L−1

[
2Ds

s2 s lnα(1/s)
]
≃ L−1

[
2Ds lnα(1/s)

s

]
≃ 2Ds lnα(t). (22)

As a generalization of the logarithmic function, the inverse ML function has been
employed in the local structural derivative ultraslow diffusion model. Subsequently, the
corresponding MSD is derived as follows [28]:〈

x2(t)
〉
≃ 2DsE−1

α (t). (23)

In order to more intuitively display the differences between different mean square
displacements of ultraslow diffusion, Figure 1 illustrates the MSDs in Equations (16), (22),
and (23) with α = 0.4, 0.6. For brevity, all of the results are stated with dimensionless units.
It can be seen in Figure 1 that the MSDs exhibit a significantly slower behavior compared
to classical ultraslow diffusion as time increases. All curves indicate that the growth rate
in MSD gradually shortens with decreasing α. Note that the inverse ML function has no
complete analytical expression, so its calculation is more complicated. In this case, the
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simplest and most effective technique should be adopted for the simulation of anomalous
dynamics.
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3. Applications and the CTRW Model of Language Change

According to the basic assumption of language change, we theoretically derived the
differential equation for ultraslow diffusion through the relationship between macroscopic
physical quantities. In this section, we merge theory with experiments to verify the accuracy
of the proposed macroscopic constitutive mechanics model of ultraslow diffusion by simu-
lating the appearance of already popular words in the language database from Japanese
social media [34]. Moreover, the CTRW model is employed to analyze the statistical charac-
teristics of language change from the perspective of microscopic statistical mechanics.

3.1. Applications and Results

In the pursuit of revealing the microscopic mechanism of mechanical behavior, statisti-
cal mechanics models are frequently used in the study of anomalous dynamics. Several
investigations have been carried out to delve into the complex dynamic behavior of lan-
guage change [3,4]. In order to elucidate the temporal evolution of frequently employed
adjectives in social media data, Watanabe investigated about three billion Japanese blog
articles over six years, and explained the process of a word appearance by the random
diffusion model [34]. The keywords database is composed of 1771 basic adjectives samples,
meticulously extracted from articles of the aforementioned Japanese blog, and is divided
into three categories to avoid being affected by special events. The results confirmed that the
MSD of a word appearance grows logarithmically. Utilizing the Caputo nonlocal structural
derivative diffusion model, we estimated the ultraslow diffusion of word appearance, and
compared the results with the random diffusion model to verify the validity and credibility.

Figures 2–4 illustrate the experimental data for these three categories of already
popular words on Japanese blogs and the MSD predicted by the Caputo nonlocal structural
derivative diffusion model in Equation (22) (

〈
x2(t)

〉
≃ Ds(ln t)α) and by the random
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diffusion model (
〈

x2(t)
〉
≃ D ln t), respectively. In those figures, the circles represent the

MSD of words in ref. [34]; the red lines denote the Caputo nonlocal structural derivative
diffusion model in Equation (22); and the blue lines indicate the random diffusion model.
Figure 2 illustrates the fitting results of the MSD for the first category words that appear
too frequently at time t on average. The words are sampled from the Poisson distribution
whose Poisson parameter is higher than 20. Although the MSD grows logarithmically
as t increases, the fitting curve of our model with α = 0.62 simulates the experimental
data precisely whether in the initial or final stage. Figure 3 shows the fitting results of the
MSD for the words without significant seasonality on Japanese blogs. Note also that there
is perfect agreement between the Caputo nonlocal structural derivative diffusion model
and the data; even the parameters α and Ds are similar to those of the first category in
Figure 2, while the random diffusion model mismatches the data under the same diffusion
coefficient. In contrast to the former two categories in Figures 2 and 3, Figure 4 shows the
fitting results of the MSD for words excluding significant seasonality and outliers caused
by special news events on Japanese blogs. From this figure, the diffusion coefficient D of
the random diffusion model is almost identical to the Caputo nonlocal structural derivative
diffusion model, and the power index α is close to 1. Meanwhile, the dynamic process
approaches classical ultraslow diffusion as t → ∞ . Essentially, constantly developing
languages mostly meet the basic dynamic law, which involves classical ultraslow diffusion.
Without considering the effect of the seasonal and special news events words, the Caputo
nonlocal structural derivative diffusion model and the random diffusion model can achieve
good accuracy. Although Equation (22) has an additional parameter, it can better illustrate
the complex changes in language systems. Tables 1–3 show the fitting parameters and error
results for different models. The fitting results indicate that the Caputo nonlocal structural
derivative diffusion model outperforms the random diffusion model, as shown by the
lower maximum absolute errors and mean square errors.
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Table 1. The fitting results of different models for words that appear too frequently at time t on
average on Japanese blogs (the diffusion coefficient is dimensionless).

Models
The Caputo Nonlocal
Structural Derivative

Diffusion Model

The Random Diffusion
Model

Diffusion coefficient Ds = 0.37 D = 0.2
Parameter α = 0.62

Maximum absolute error 0.12 0.27
Mean square error 0.03 0.06

Table 2. The fitting results of different models for words excluding significant seasonality on Japanese
blogs (the diffusion coefficient is dimensionless).

Models
The Caputo Nonlocal
Structural Derivative

Diffusion Model

The Random Diffusion
Model

Diffusion coefficient Ds = 0.38 D = 0.2
Parameter α = 0.62

Maximum absolute error 0.11 0.28
Mean square error 0.04 0.08

Table 3. The fitting results of different models for words excluding significant seasonality and outliers
caused by special news events on Japanese blogs (the diffusion coefficient is dimensionless).

Models
The Caputo Nonlocal
Structural Derivative

Diffusion Model

The Random Diffusion
Model

Diffusion coefficient Ds = 0.22 D = 0.2
Parameter α = 0.96

Maximum absolute error 0.16 0.18
Mean square error 0.05 0.05

The above three sample experimental data clarify the elementary process of a word
appearance over a period of one year. Ultraslow diffusion involves long-term behavior. To
explore the statistical attributes underlying linguistic evolution on long time scales, ref. [8]
conducted a comprehensive examination of three nationwide media language databases
in Japanese, including newspaper articles for 10 years, blog articles for 5 years, and page
views of Wikipedia for 2 years. By tracking the number of occurrences for already popular
words, the development trajectory of already popular words in three language databases
was discovered to obey the law of ultraslow diffusion. The words are sampled from the
Poisson distribution whose Poisson parameter is higher than 30. To correspond with the
previous data, we focused on researching the dynamical statistical properties for word
appearance on blog articles over 5 years using the Caputo nonlocal structural derivative
ultraslow diffusion model. Figure 5 shows the simulation results of the MSD capturing
variations in word counts associated with the growth of the specified keyword over a
period of t days. The corresponding parameters and the fitting errors of different models
are listed in Table 4. The results confirm that the Caputo nonlocal structural derivative
model can provide a qualitative description of language change approximately over a long
time limit.
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Table 4. The fitting results of different models for words appearing in blog articles over 5 years.

Models
The Caputo Nonlocal
Structural Derivative

Diffusion Model

The Random Diffusion
Model

Diffusion coefficient Ds = 1.2 D = 1.1
Parameter α = 0.94

Maximum absolute error 0.17 0.38
Mean square error 0.04 0.05

3.2. The CTRW Model of Language Change

Prior research has shown that CTRW theory is an intuitive and effective statistical
mechanics approach, and the CTRW model with the long-tailed distribution of waiting time
has been proposed to explain ultraslow diffusion [25]. Language change is an ultraslow
dynamic process with irregularity and randomness, and words can be seen as constantly
moving particles. Therefore, the process of language change is suitable for interpretation
using CTRW theory. Based on the characteristics of MSD in ultraslow diffusion, the waiting
time PDF of the observed words appearing λ(t) can be assumed to be the following
logarithmic function [27]:

λ(t) ≃ 1

t[ln(t/T)]γ+1 , t → ∞ , γ > 0. (24)

Then, its Laplace transform can be can be derived as follows:

λ(s) ≃ 1 − 1
[ln(1/sT)]γ

. (25)



Fractal Fract. 2024, 8, 66 11 of 15

See Appendix B for details of the derivation process. Here, T is a characteristic time
that can be set to 1. If an appearing length PDF ϕ(x) is a Gaussian distribution, its Fourier
transform ϕ(k) is the following:

ϕ(k) ≃ 1 − σ2k2. (26)

Combining Equations (25) and (26), the Montroll–Weiss function U(k, s) yields the
following:

U(k, s) ≃ 1
s
{
[ln(1/s)]γ − (1 − σ2k2)

[
[ln(1/s)]γ − 1

]} , (27)

and by performing the inverse Fourier–Laplace transform on the above equation, U(x, t) is
obtained as follows:

U(x, t) ≃

√
[ln(t)]γ

σ2 exp

−

√
2[ln(t)]γ

σ2 |x|

. (28)

From Equation (28), the MSD is calculated as follows:

〈
x2(t)

〉
= L−1

[
−∂2 p(k, s)

∂k2

]∣∣∣∣
k=0

= L−1

[
σ2λ̂(s)

s
[
1 − λ̂(s)

]] ≃ σ2 lnγ(t), (29)

which is related to the Caputo nonlocal structural derivative model in Equation (22).
Figure 6 displays plots of the PDF versus waiting time λ(t) with γ = 0.5, 0.75, 1, the
exponential and the power law distributions. From these curves, one can see that the
long-time tail of the logarithmic function is more sustained than that of the exponential
and power law distributions. When the parameter γ increases, the logarithmic function
moves closer to the power law distribution.
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Figure 6. The PDF of waiting time with γ = 0.5, 0.75, 1, and the exponential and power
law distributions.

Figure 7 shows the motion path particle trajectory of the CTRW model with γ = 0.5,
0.75, 1. Note that with a decrease in γ, the waiting time between two adjacent jumps
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gradually increases, while the tail gradually strengthens, and the diffusion rate of particles
becomes slower. As the value of γ increases, the time interval between consecutive jumps
decreases, leading to a diminished prominence of the tail. Building upon this theory,
it is possible to interpret the long-range dependence as a scale transformation, which
is represented by time in the context of language change. Statistically, the relationship
between ultraslow diffusion and time scale is strong. In contrast to Brownian motion, the
ultraslow behavior of language change exhibits long-range dependence, which can be
explained through the waiting time probability density function. Thus, the CTRW model is
instrumental in providing insights into the dynamics of language change.
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Figure 7. The motion path particle trajectory of the CTRW model with γ = 0.5, 0.75, 1.

4. Discussion

This study investigates the elementary dynamics of language change using the Caputo
nonlocal structural derivative ultraslow diffusion model, and employs the fading memory
concept of CTRW theory to analyze its microscopic mechanism. The analytical solutions
including the corresponding PDF and the MSD are derived. Although the language
diffusion process is classified as ultraslow diffusion, the traditional logarithmic model is
inadequate for accurately reflecting this phenomenon. In practice, simulating dynamic
processes that occur in complex systems is challenging due to various factors. The Caputo
nonlocal structural derivative model of ultraslow diffusion provides a valuable tool for
describing long-range correlations, while the waiting time distribution in CTRW theory
can reveal the underlying dynamics. These features may offer valuable guidance for
modeling diffusion behavior in other social phenomena. It is important to emphasize that
language diffusion in linguistics is a complex dynamical phenomenon, and the current
study addresses only a part of the whole system. So while the empirical and theoretical
findings on language change have already been revealed, this study proposes a novel
theoretical insight for a more precise and comprehensive description of language evolution.

When exploring the characteristics of ultraslow diffusion, the MSD has always been a
convenient and effective statistical measure. This study examines the trend and change
behaviors of language using both mechanical constitutive and statistical mechanical mod-
els. The Caputo nonlocal structural derivative model provides a macroscopic view that is
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consistent with CTRW theory, and both methods yield the same result. The classic fractional
derivative diffusion model originates from the CTRW model [11]. However, the correlation
between the CTRW model and the Caputo nonlocal structural derivative diffusion model
need a comprehensive examination. Meanwhile, the CTRW model considers the micro-
scopic motions of words, and the utilization of the waiting time probability density function
provides a means to elucidate the dynamic characteristics observed in word time series.
Nevertheless, the significance of the structural function of the Caputo nonlocal structural
derivative model is somewhat ambiguous in our framework. It may reflect a scale change of
time or a time-dependent parameter that reflects the language structure. Furthermore, the
quantitative relation between the parameter α of the structural function and the parameter
γ of the waiting time PDF cannot be fully determined. Therefore, the subsequent focus of
this research should be on relating the structural function to the language medium and
developing efficient numerical algorithms to simulate these processes. Additionally, we
need to investigate other characteristics of word selection and use in language to better
understand the impact of the Caputo nonlocal structural derivative and CTRW theory on
dynamic processes.

By combining theory with experiment, this study delved into the dynamic process
of language change. The validity of the proposed models was tested using various ap-
plications. It is important to note that the aim of our modeling was not only to describe
the measured results in practical experiments quantitatively, but to demonstrate the un-
derlying reasons for the existence of such phenomena through qualitative analysis. Thus,
before using the proposed models, we needed to first investigate the basic characteristics
of language change. In this study, several sets of experimental data for language were
analyzed to verify the ultraslow diffusion models. However, a single property cannot fully
match the physical phenomena and mathematical models. To gain a more comprehensive
understanding of the mechanism of ultraslow diffusion, more actual data are needed for
examination. Moreover, the applicable range of the models must also be determined.

5. Conclusions

In this study, we presented a qualitative analysis for the ultraslow diffusion of language
change through the macroscopic mechanical constitutive model and microscopic statistical
models. Our findings led to the following conclusions:

1. By employing a logarithmic function family, the Caputo nonlocal structural derivative
diffusion model provides a new model for the ultraslow diffusion of language change.
Its MSD is inversely proportional to the structural function.

2. The MSD of the continuous time random walk model is equivalent to the Caputo
nonlocal structural derivative diffusion model, which provides a new way to find the
statistical moments of language change.

3. Compared to the random diffusion model, the Caputo nonlocal structural derivative
diffusion model is more effective in characterizing ultraslow diffusion of language
change, as demonstrated by improved fitting curves and errors.
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Appendix A. Tauberian Theorem

In the Tauberian theorem [21], for the function h(t), t ≥ 0 when its Laplace transform
has the following asymptotic form:

h(s) ≃ s−θG(1/s) , s → 0 , θ ≥ 0 (A1)

Then, h(t) satisfies the following:

h(t) = L−1[h(s)] ≃ 1
Γ(θ)

tθ−1G(t) , t → ∞ (A2)

and vice versa. Here, G(t) should be a slowly varying function at infinity, which satisfies
lim
t→∞

G(at)
G(t) = 1; a is a positive constant.

For example, if G(t) = ln t, lim
t→∞

ln(at)
ln(t) = 1 by the l’Hospital’s rule, so the G(t) = ln t is

a slowly varying function at infinity.

Appendix B. Laplace Transform of the Long-Tailed Pausing Time Densities

If G(t) is a slowly varying function, and h(t) is defined as a long-tailed pausing
time density:

h(t) ≃ 1

t[G(t)]γ+1 , γ > 0, (A3)

the Laplace transform of the Equation (A3) h(s) is the following:

h(s) =
∫ ∞

0
e−st 1

t[G(t)]γ+1 dt , s → 0 . (A4)

Now, rewrite h(s) = 1 − [1 − h(s)] and analyze the properties of H(s) = 1 − h(s) [27],
as follows:

H(s) = 1 − h(s) =
∫ ∞

0

[
1 − e−st] 1

t[G(t)]γ+1 dt, (A5)

then, differentiate and match with respect to s:

dH(s)
ds

=
∫ ∞

0
e−st 1

[G(t)]γ+1 dt. (A6)

Note that Equation (A6) is just the Laplace transform of [G(t)]−(γ+1). Then, using the
following Abelian theorem:

dH(s)
ds

≃ 1

s[G(1/s)]γ+1 , s → 0 ; (A7)

thus, h(s) ∝ 1 − H(s) is derived from the integral.
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