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Abstract: Remaining useful life prediction guarantees a reliable and safe operation of turbofan
engines. Long-range dependence (LRD) and heavy-tailed characteristics of degradation modeling
make this method advantageous for the prediction of RUL. In this study, we propose fractional Lévy
stable motion for degradation modeling. First, we define fractional Lévy stable motion simulation
algorithms. Then, we demonstrate the LRD and heavy-tailed property of fLsm to provide support
for the model. The proposed method is validated with the C-MAPSS dataset obtained from the
turbofan engine. Principle components analysis (PCA) is conducted to extract sources of variance.
Experimental data show that the predictive model based on fLsm with exponential drift exhibits
superior accuracy relative to the existing methods.

Keywords: remaining useful life; self-similar; long-range dependence; fractional Lévy stable motion;
feature fusion

1. Introduction

Developing algorithms and software modules that allow processing online data from
IoT devices to predict turbofan engines’ remaining useful life (RUL), i.e., the number of
work cycles after the last completed cycle, is a relevant research topic. Remaining useful
life prediction can effectively eliminate potential safety hazards of passenger flights [1].
The traditional approach to equipment maintenance involves a combination of breakdown
and preventive maintenance [2]. The former means repairing and replacing equipment
when it breaks down. The latter indicates the repairing of equipment prior to the failure,
and the best timing of maintenance is chosen by the RUL prediction [3].

The degradation process of turbofan engines is related to environmental temperature,
material, load changes, and other factors, making it difficult to predict the remaining useful
life (RUL). Currently, the mainstream RUL prediction methods are artificial intelligence,
stochastic model, and data-driven, based on acoustic monitoring of turbofan engines.
The primary artificial intelligence algorithms utilized are LSTM and deep learning ap-
proaches. In recent years, various improved LSTM [4,5] and deep learning optimization
algorithms [6–8] have been proposed to improve the accuracy of RUL prediction. These
advancements also aim to combine both approaches [9,10], which necessitates a large
number of data samples. The stochastic model method establishes a stochastic model
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for the non-stationarity and randomness of the degradation process [11–13]. Data-driven
research often needs as many data samples as possible combined with LSTM and deep
learning [14,15].

Each of these methods has its advantages and disadvantages, but the biggest problem
is that the prediction length of non-stationary time series is too short. The reason for the
shortcoming is that the fundamentals of these algorithms are similar to the least squares
fitting methods predictive models of RUL based on artificial intelligence, which aim to
establish a mapping relationship between the monitoring dataset and the failure time.
However, this relationship between the monitoring data and RUL is difficult to express
clearly and is always implemented as a “black box” characteristic [16].

Additionally, a method exists that involves combining turbofan engine vibration
signals and acoustic signals using a multi-sensor fusion to create a two-dimensional signal
image [17–19]. Then, we can apply deep learning to predict the RUL. Deep learning is very
mature in two-dimensional feature extraction. In practical applications, the fluctuations of
aircraft engines during operation are too large, and thus, we hope that the incipient faults
can be identified as early as possible. However, the current deep learning models are not
sensitive and accurate enough.

Degradation is a slow and non-stationary stochastic process. The degradation se-
quence waveform exhibits characteristics of self-similarity and long-range dependence.
This means each segment of the waveform is self-similar to the overall trend of change,
and the degradation state at any given moment is closely related to its previous states; this
property is known as long-range dependence. Based on this concept, the objective is to
establish a non-stationary stochastic prediction model that possesses both self-similar and
long-range dependent characteristics. The data series generated by this model will closely
mimic the actual degradation sequences observed in the turbofan engine, resulting in high
prediction accuracy and extended forecasting capability.

This paper proposes a non-stationary stochastic fractional-order Levy stable operation
model, demonstrating its self-similarity and long-range dependence. By analyzing the
collected time series data of turbofan engine vibrations, we utilize the Hurst exponent to
determine the presence of long-range dependence. Subsequently, the model parameters are
identified, ensuring that the series generated by the model highly resembles the degradation
process of the turbofan engine. The model is trained with the principle components analysis
(PCA) output.

A review of the Brownian motion (BM)-based RUL predictive examines several prob-
lems of this approach [20]. However, there are still some problems with the BM model.
The BM model is a Markov process, but in practice, the aging data exhibit LRD [21]. The
fractional Brownian motion extends the BM model to the fractional order. The fBm model
introduces the LRD characteristics through the Hurst parameter. Song et al. developed a
series of iterative differential predictive models based on the fBm model [22,23]. Gao et al.
obtained the analytical expression of the probability density function (PDF) for the RUL
prediction based on fBm [24]. In fact, Levy stable motion and fractional Brownian motion
were applied to different studies [23,25–28].

This article is organized as follows: Section 2 proposes the fLsm model, and Section 3
provides LRD properties and self-similar characteristics of the fLsm model. The degradation
model based on fLsm is presented in Section 4, and a case study with the C-MAPSS dataset
is provided in Section 5 [29].

2. Fractional Lévy Stable Motion
2.1. Probability Density Function of the Lévy Stable Distribution

The connection between the generalized central limit theorem and Lévy stable dis-
tribution implies that the analytical expression of the PDF in the closed form does not
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exist [30]. Therefore, the properties of the Lévy stable distribution are expressed by its
characteristic function defined by φ(θ : α, β, δ, µ), which is defined as follows:

φ(θ : α, β, δ, µ) = E
[
ejθx

]
=

 exp
{

jµθ − δ|θ|α
[
1 − jβ θ

|θ| tan
(

πα
2
)]}

, α ̸= 1

exp
{

jµθ − δ|θ|α
[
1 + jβ θ

|θ|
2
π ln|θ|

]}
, α = 1

(1)

Usually, X ∼ Sα(β, µ, δ) is used to indicate that the random variable follows the
Lévy stable distribution, described by the characteristic exponent α, which measures the
thickness of the tails of the distribution. β is the skew index, δ is the drift coefficient, and µ
is the diffusion parameter. The shape of the distribution is governed by parameters α and
β. Linear transformation of the distribution is determined by δ and µ. The parameters of
Equation (1) must satisfy the following restrictions: α ∈ (0, 2], β ∈ [−1, 1], µ ∈ R, δ > 0.
The effect of the governing parameters on the PDF is shown in Figure 1.
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Figure 1. Probability density function. (a) Compare α in Levy stable; (b) different β in Levy stable;
(c) influence of different coefficients µ; and (d) different parameter δ.

2.2. Fractional Lévy Stable Motion

fLsm is obtained by extending the Lévy stable motion into the fractional order based
on the derivation of the fBm model. The fBm model can be simply described as:

BH(t) ≜
1

Γ
(

H + 1
2

){∫ 0

−∞

[
(t − u)H− 1

2 − (−u)H− 1
2
]
ω(u)du +

∫ t

0
(t − u)H− 1

2 ω(u)du
}

, (2)

where 0 < H < 1 is the Hurst parameter, ω(u) is the Gaussian white noise with zero
expectation, and Γ(.) is the gamma function. Let us replace H − 1

2 in Equation (2) with
H − 1

α and the Gaussian white noise with Lévy white noise. Then, the expression of the
fLsm takes the form:

LH,α(t) =
∫ +∞

−∞

{
a
[
(t − s)H− 1

α
+ − (−s)H− 1

α
+

]
+ b

[
(t − s)H− 1

α
− − (−s)H− 1

α
−

]}
Mds, (3)
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where (x+) = (−x)− =

{
x, x > 0
0, x ≤ 0

, a and b are real constants, |a|+|b|> 0 , and M is the

Lévy stability measure in the Lebesgue measure space. Note that the fLsm model becomes
the fBm model when α = 2.

2.3. Simulation Algorithm

Fractional Lévy stable noise can be expressed as follows:

XH,α = D−a
t ωa(t) =

1
Γ(a)

∫ t

0
(t − s)a−1ωa(s)ds, 0 < a < 0.5, (4)

where ωa(t) is the Lévy stable white noise and XH,α denotes the generated fractional Lévy
stable noise sequence. The fractional Lévy stable noise degenerates to fractional Gaussian
noise when α = 2.

The fractional Lévy stable noise is the incremental process of the fLsm model, so the
simulation sequence of the fLsm model can be obtained by integrating or accumulating
Equation (4) as follows:

LH,α = D−1
t XH,α =

1
Γ(a + 1)

∫ t

0
(t − s)aωa(s)ds, 0 < a <0.5, (5)

Figure 2 shows the simulated sequences of the fLsm for H = 0.8 and α = 1.4, 2.
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Figure 2. Simulation sequence of the fLsm model for H = 0.8 and α = 1.4, 2.0.

3. The Property of the fLsm

The self-similar nature of the fLsm is represented by parameter H (H ̸= 1/α) [31], and
its LRD characteristic is given by the relationship between α and H:αH > 1.

3.1. LRD Property

To ensure that the fLsm model effectively fits the LRD of stochastic sequences, we
limit the range of parameters α and H to α ∈ (1, 2) and H ∈ (1/2, 1), respectively.

LH,α(t) =
∫ ∞

−∞

{
a
[
(t−s)H− 1

α
+ − (−s)H− 1

α
+

]
+ b

[
(t−s)H− 1

α
− − (−s)H− 1

α
−

]}
Mα(ds), (6)

Allowing us to derive the following equation can be derived:
1⃝ when H = 1

α , the value of fLsm is as follows:

LH,α(t) =
∫ ∞

−∞
(a − b)Mα(ds), (7)

if a and b are constants, then the LH,α(t) series is mutually independent without any
relativity.
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2⃝ when H < 1
α , the fLsm integration kernel includes all the states of the past time, but

the integration is inversely proportional to the past states; therefore, the predicted results
are inversely proportional to the actual results. This is called short-range dependence (SRD).

3⃝ when H > 1
α , the fLsm integration kernel contains all the states of the past time

s, but the integration is directly proportional to the past state; this is called long-range
dependence (LRD).

The LRD properties of the fLsm model are determined by H and α. The larger the
product, the stronger the LRD properties. Special note 0 < α ≤ 1: the fLsm model does not
have LRD characteristics because H is limited to the interval (0, 1), as shown in Figure 3.
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3.2. Self-Similarity Property

A stochastic time series X(t) is defined as having the following characteristics below:

X(t) d⇒ X(ct) d⇒ cHX(t), (8)

Furthermore, X(t) is referred to as a self-similar process with exponent H.
The fLsm model is presented below:

LH,α(t) =
∫ t

−∞
(a(t − s)H− 1

α − bsH− 1
α )M(ds), (9)

For any n ≥ 1, the series M(∆1), M(∆2), · · · , M(∆n) are mutually independent and
∆1, ∆2, · · · , ∆n are mutually disjoint. Therefore, the series can be expressed using the
self-similar parameter H = 1

2 :

M(cds) = c
1
2 M(ds), (10)

From (9) and (10), we obtain:

LH,α(ct) =
∫ ct
−∞

(
a(ct − s)H− 1

α − bsH− 1
α

)
M(ds)

= cH− 1
α +

1
2
∫ t
−∞ (a(t − s)H− 1

α − bsH− 1
α )M(ds) = cH− 1

α +
1
2 LH,α(t),

(11)

Fundamentally, fLsm is a self-similar process characterized by the parameter H − 1
α + 1

2 .

4. Degradation Modeling of Fractional Lévy Stable Motion
4.1. Model Derivation

Lévy movement is the Brownian movement extend. In terms of the Langevin equation,
the degradation model based on the fBm model is defined as follows:

dX(t) = µBdt + δBdBH(t), (12)

where {X(t), t ≥ 0} is the degradation process and µB is the coefficient of the drift term,
which describes the degradation speed rate; the term occupies a dominant position. δB is
the coefficient of the diffusion term, which describes the stochastic and LRD characteristics.
{BH(t), t ≥ 0} is the standard fBm model. dBH(t) is an increment.
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dLH,α(t) replaces dBH(t) so that we obtain

dX(t) = µBdt + δBdLH,α(t), (13)

µB is a time-varying function µ(t; θ), which is called drift function; θ is the parameter
vector in the drift function, and

∫ t
0 µ(t; θ)dt can change as demonstrated below:

∫ t

0
µ(t; θ)dt = µϕ(t), (14)

ϕ(t) usually has three defined functions: linear, nonlinear, and exponential power rate.
The iterative degradation model based on the fLsm is represented as follows:

X(tk + ∆tk) = X(tk) +
∫ tk+∆tk

tk

µ(s; θ)ds + δω(∆tk), (15)

ω(∆tk) = LH,α(tk + ∆tk)− LH,α(tk), (16)

As a self-similar stochastic process, the following condition is satisfied for fLsm:

LH,α(at)− LH,α(0) ≜ aH [LH,α(t)− LH,α(0)], (17)

and according to the Maruyama model:∫ t

0
f (τ)(dτ)a = a

∫ τ

0
(t − τ)a−1 f (τ)dτ, (18)

dx = f (t)(dt)a, (19)

Then, it can be concluded that:

LH,α(tk + ∆tk)− LH,α(tk) = ωα(t)(∆tk)
H− 1

2+
1
α , (20)

where ωα(t) is the Lévy white noise conforming to Sα(0, 1, 0).
Therefore, the iterative form of the degradation model is transformed into:

X(tk + ∆tk)− X(tk) =
∫ tk+∆tk

tk

µ(s; θ)ds + δωα(t)(∆tk)
H− 1

2+
1
α , (21)

Assume that α = 1.75, β = 0, δ = 0.195, H = 0.75, ∆tk = 2, and the simulation time is
100. Figure 4 presents the simulated degradation path.
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4.2. Parameters Estimation

The Hurst parameter H plays a key role in the modeling process of fLsm. The rescaled
range method is the most widely used Hurst parameter estimation algorithm. Therefore,
we propose to adopt the rescaled range method to calculate the Hurst parameter.

Other parameters of fLsm are estimated by the improved eigenfunction-based method.
The steps are shown in Figure 5.
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The proposed eigenfunction method first calculates diffusion parameter δ. This pro-
cedure allows the value of the diffusion parameter δ to be estimated directly without the
need to base it on the other three parameters. In addition, there are two auxiliary points to
note in the estimation process of the new eigenfunction method: θ = 1 and θ0. One is the
auxiliary point located at θ = 1. This is because the absolute value of the eigenfunction at
θ = 1 is equal regardless of the value taken for the parameters of the eigenfunction:

|φ(θ; α, β, µ, δ)| = e−δ|θ|α |θ=1 = e−δ, (22)

The second is the auxiliary parameter θ0, which is introduced to calculate the estimate
of the stability index α and can be obtained with the help of the diffusion parameter δ.

In order to estimate the diffusion parameter δ of the sample sequence {X(t), t = 1, 2, 3, · · ·},
the eigenfunction of Equation (23) can be considered as a complex function associated with θ.

|φ(θ; α, β, µ, δ)| =
∣∣∣E{ejθx

}∣∣∣ = e−δ|θ|α , (23)

Then, the logarithm is found for each side of Equation (23).

ln|φ(θ; α, β, µ, δ)| = −δ|θ|α, (24)

Calculate the value of Equation (24) assuming θ = 1 to obtain an estimate of the
diffusion parameter δ.

δ = −ln|φ(1; α, β, µ, δ)| = −ln
∣∣∣E{ejx}∣∣∣, (25)

The estimated value of the diffusion parameter δ is given by the following equation.

δ̂ = −ln|φ̂(1; α, β, µ, δ)| = −ln
1
N

∣∣∣∑N
i=1 ejxi

∣∣∣, (26)

Before calculating the estimate of the stability index α and the second auxiliary pa-
rameter θ0 needs to be calculated in addition to the known auxiliary point θ = 1. The
characteristic functions can degenerate to different models when the stability index α equals
different values. Therefore, the new eigenfunction method uses the Cauchy and Gaussian
eigenfunctions corresponding to α = 1 and α = 2 to calculate the auxiliary parameter θ0.
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This is carried out by calculating the maximum distance between the absolute values of the
Cauchy eigenfunction e−δθ and the Gaussian eigenfunction e−δθ2

.

d
dθ

∣∣∣e−δθ2 − e−δθ
∣∣∣ = 0, (27)

2θe−δθ2
= e−δθ , (28)

Taking the logarithm of Equation (28) yields the following Equation (29).

ln2θ

θ2 − θ
|θ0 = δ̂, (29)

The value of the auxiliary parameter θ0 is obtained by solving Equation (29). Substi-
tuting the obtained θ0 into Equations (24) and (25):

θα
0 =

ln
∣∣E{ejθ0x}∣∣

ln
∣∣E{ejx

}∣∣ =
ln|φ̂(θ0; α, β, µ, δ)|
ln|φ̂(1; α, β, µ, δ)| , (30)

Therefore, the estimated value of the stability index α can be expressed as:

α̂ =

ln|φ̂(θ0;α,β,µ,δ)|
ln|φ̂(1;α,β,µ,δ)|

lnθ0
∗ logθ0

(
ln|φ̂(θ0; α, β, µ, δ)|
ln|φ̂(1; α, β, µ, δ)|

)
, (31)

where φ̂(θ0; α, β, µ, δ) = 1
N

∣∣∣∑N
i=1 ejθ0xi

∣∣∣.
The estimates of skewness index β and drift coefficient µ are calculated from the

logarithmic form of the characteristic function.

ln|φ(θ; α, β, µ, δ)| = −δ|θ|α + j
[

δ|θ|αβ
θ

|θ| tan
(πα

2

)
+ µθ

]
, (32)

Suppose θ = 1, then Equation (32) can be expressed as:

ln φ(1; α, β, µ, δ) = −δ + j
[
δβtan

(πα

2

)
+ µ

]
, (33)

Equation (33) reveals that the estimated value of the diffusion parameter can be
expressed in terms of the real part. This is expressed as follows:

δ̂ = −Re{ln φ̂(1; α, β, µ, δ)}, (34)

Furthermore, considering ln y = ln|y|+ jarg(y + 2kπ), we can obtain:

Re{ln φ̂(1; α, β, µ, δ)} = ln|φ̂ (1; α, β, µ, δ)|, (35)

Im{ln φ̂(1; α, β, µ, δ)} = argφ̂(1; α, β, µ, δ), (36)

Considering the two auxiliary parameters θ = 1 and θ0, one can solve Equations (35)
and (36) to obtain the skewness index β and the drift coefficient µ.

β̂ =
Im{ ln|φ̂ (θ0; α, β, µ, δ)|−θ0 ln|φ̂ (1; α, β, µ, δ)|}

δ̂tan
(

πα̂
2
)
(θ0

α − θ0)
, (37)

µ̂ =
Im

{
θ0

α̂ ln|φ̂ (1; α, β, µ, δ)|− ln|φ̂ (θ0; α, β, µ, δ)|
}

θ0
α − θ0

, (38)
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5. Case Study

The datasets consist of multiple multi-dimensional time series data. Each data set is
divided into training and test samples. A separate time series comes from different engines
of the same type and represents changes in various characteristics: pressure, temperature,
equipment rotation speeds, etc. Systems start up with different degrees of initial wear and
production changes. Each engine has 21 sensors that collect various measurements related
to the engine’s condition during operation. The engine runs normally at the beginning
of each time series, and a malfunction occurs at some point during the series. The error
grows in magnitude in the training set until the system crashes. The proposed method was
applied to the subset FD001 of the C-MAPSS dataset [29] for aero-engine unit prognostics.
A schematic representation of the engine is depicted in Figure 6.
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5.1. Feature Selection of Health Indicators

The subset FD001 varies in operating and fault conditions, and the data are contami-
nated with sensor noise. Therefore, we applied filtering to the training data. The filtering
was carried out using the smooth filter function in MATLAB with a setting window of 10.
Since there are considerable differences between the magnitudes of the data, we applied
normalization to the data after filtering. In order to enhance degradation features, we
applied PCA and fusion in the construction of HI (Figures 7 and 8).
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5.2. Prediction of Remaining Useful Life

The definition of RUL is given as

T = in f {tk : X(tk) ≥ ω|X(t0) < ω}, (39)

where ω indicates the degradation threshold. The non-Gaussian nature of fLsm makes it
impossible to obtain the analytical formulas for the RUL prediction; therefore, we refer to
the Monte Carlo method [32,33]. The point RUL prediction is the mode of a large number
of RUL simulations [34,35]. The empirical threshold value ω was set to be 4.25. The fLsm
model with three drift terms was chosen. The corresponding parameters are listed in
Table 1. The corresponding results of RUL are shown in Figure 9.

Table 1. Input parameter of the fLsm model for different degradation trends.

Model H α β µ δ

M1 0.8669 1.7019 0.0686 1.3723 1.9623
M2 0.8669 1.9473 0.0700 1.2531 2.0652
M3 0.8669 1.9564 0.0715 1.3275 1.9514
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We use four standard error evaluation metrics to compare the predictive accuracy:
mean absolute error, root mean square error, mean absolute percentage error, and Health
Degree [36].

MAE =
1
m∑m

i=1

∣∣∣ri − r*
i

∣∣∣, (40)

RMSE =

√
1
m∑m

i=1

(
ri − r*

i
)2, (41)

MAPE =
1
m∑m

i=1

∣∣∣∣∣ ri − r*
i

r*
i

∣∣∣∣∣× 100%, (42)

HD = 1 − ∑m
i=1

(
ri − r*

i
)2

∑m
i=1(ri − r)2 , (43)

where ri denotes the predicted value of the RUL, which is obtained for the i-th prediction
starting point. r∗i is the actual value of the RUL at the i-th prediction starting point, m is the
number of predictions, and r denotes the mean value of ri. The results of error estimation
are given in Table 2. As we can see, the exponential drift term of model M3 is superior to
the power drift term of model M2 and the linear drift term M1.
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Table 2. Prediction accuracy of RUL.

Model MAE RMSE MAPE HD

M1 1.5000 1.6432 0.0147 0.9869
M2 1.3000 1.4491 0.0153 0.9898
M3 1.2000 1.3416 0.0054 0.9913

The fLsm model with an exponential drift is compared with the fGC model [37,38],
the fBm model [22,23], and the LSTM model [39]. The results are shown in Figure 10. The
LSTM neural network uses a single-input–single-output model with 200 hidden units in
LSTM layers, a stacking layer of 2, and an initial learning rate of 0.005. The results of
error estimation are shown in Table 3. Thus, the proposed approach outperformed other
predictive models.
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Table 3. Prediction accuracy of RUL.

Model MAE RMSE MAPE HD

fLsm 1.2000 1.3416 0.0054 0.9913
fGC 1.4000 1.5632 0.0151 0.9893
fBm 1.6000 1.8439 0.0373 0.9815

LSTM 1.9000 1.9748 0.0476 0.9811

6. Conclusions

This paper proposes an iterative degradation model based on fLsm with LRD and
heavy-tailed characteristics. We have also demonstrated that fLsm has LRD property and
a heavy probabilistic tail. The RUL prediction is based on the Monte Carlo simulation of
the degradation model, which is the Langevin-type stochastic differential equation driven
by fLsm. A new eigenfunction method and rescaled range method were applied for the
parameter identification of the model.

The model’s training data, i.e., the HI, underwent PCA analysis, identifying degrada-
tion features and enabling us to construct HI using the dimension reduction PCA algorithm.
The proposed model with an exponential drift is compared with the fGC, fBm, and the
LSTM model. Real turbofan engine data were used for the case study, and the results
indicate the advantage of the fLsm prediction model over other methods. We may utilize a
more advanced drift term in the RUL prediction model based on fLsm.

In the future study, we will expand application fields, and the prediction accuracy and
prediction length in time will be further improved by parameter optimization [40,41].
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Abbreviations

fLsm fractional Lévy stable Motion
fBm Fractional Brownian Motion
fGC Fractional Generalized Cauchy
HI Health Indicator
LSTM Long Short-Term Memory Neural Networks
LRD Long-Range Dependence
SRD Short-Range Dependence
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
PDF Probability Density Function
RMSE Root Mean Square Error
RUL Remaining Useful Life
HD Health Degree
PCA Principal Components Analysis
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