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Abstract: This paper proposes an active disturbance rejection control (ADRC) architecture for a per-
manent magnet synchronous motor (PMSM) position servo system. The presented method achieved
enhanced tracking and disturbance rejection performance with a limited observer bandwidth. The
model-aided extended state observer (MESO)-based ADRC was designed for the current, speed, and
position loops of the PMSM position servo system. By integrating known plant information, the
MESO improved disturbance estimation with a limited observer bandwidth without amplifying the
noise. Additionally, a fractional-order proportional-derivative (FOPD) controller was designed as the
feedback controller for the speed loop to further enhance the disturbance rejection. A simulation and
experimental tests were conducted on a PMSM servo platform. The results demonstrate not only
that the proposed method achieved superior tracking performance but also that the position error
of the proposed strategy decreases to 2.25% when the constant disturbance was input, significantly
improving the disturbance rejection performance.

Keywords: fractional-order control; active disturbance rejection control; extended state observer;
PMSM position servo system; disturbance rejection.

1. Introduction

Permanent magnet synchronous motors (PMSMs) have gained widespread use in
industrial applications [1]. However, the existence of nonlinearities, uncertainties, and
disturbances [2] makes it challenging for a conventional proportional–integral (PI) control
strategy to achieve high-precision control for the PMSM servo system [3,4]. In recent
years, diverse control strategies have been developed for PMSM, aiming to enhance control
effectiveness. Active disturbance rejection control (ADRC) is one of the most popular
control strategies.

Proposed in the 1980s by Jingqing Han [5], ADRC was designed to address extensive
uncertainties and disturbances. The fundamental concept of ADRC involves treating
external disturbances and internal uncertainties collectively as the “total disturbance”,
which is then estimated using the extended state observer (ESO) and actively compensated
for via the ESO-based feedback controller. Despite its theoretical soundness, the intricate
nonlinear structure and intricate tuning process have rendered its practical application
challenging. A linear version (LADRC) and bandwidth parameterization proposed by
Zhiqiang Gao have greatly simplified the structures and tuning of ADRC [6]. As a result,
ADRC can be quickly applied in various industrial areas, such as wind turbines [7], robot
control [8], aerial vehicles [9,10], motor control [11], and so on. In recent years, the field of
ADRC has undergone substantial growth.
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LADRC possesses various superior properties, including a compact structure, model
independence, superior disturbance rejection, and robustness [12,13]. However, there are
still some challenges that necessitate additional research:

• A high observer bandwidth is required to achieve the desired disturbance estimation
and rejection [6], but the high observer bandwidth will amplify the measurement
noise [14].

• The LESO and the feedback controller are mutually coupled, while the tracking
performance cannot be completely separated from the LESO [15,16].

• The design of LADRC based on the bandwidth parameterization method is relatively
conservative, potentially leading to suboptimal control performance [17].

Various versions of ADRC have been proposed to tackle these challenges. Some studies
designed ADRC to incorporate the known plant information to improve the disturbance
rejection performance. For instance, the ADRC strategy with a generalized extended
sta observer (GESO) was presented in [17–19], where the known plant information was
incorporated into the ESO. With a GESO, ADRC shows improved control capability on
non-minimum-phase, unstable, and time-delay systems. Another benefit of GESO-based
ADRC demonstrated in [16] is that it satisfies the separation principle, meaning that the
feedback controller design is separated from a GESO. Ref. [20] applied the ADRC with a
model-aided ESO (MESO) in the current control of a PMSM, obtaining enhanced parameter
robustness performance. Some studies have modified the structure of ADRC to improve the
control performance. Ref. [14] presented an improved ESO to suppress the measurement
noise. Recently, some intelligent algorithms have been applied in ADRC. Ref. [21] applied
a diagonal recurrent neural network in ADRC for the radar position servo system facing
a dead zone and friction nonlinearities. Ref. [22] introduced an ADRC method based on
the deep reinforcement learning algorithm for more electric aircraft. Ref. [23] presented an
optimal ADRC based on a proportional-derivative (PD) control law with particle swarm
optimization to improve the dynamic and steady-state control performance.

In recent developments, integrating ADRC with fractional-order control (FOC) has
garnered attention to enhance control performance. FOC is the extension of traditional
integer-order control, providing more flexibility in controller design and improved control
performance [24]. An application of fractional-order ADRC (FOADRC) was presented for a
linear motor to achieve precise tracking performance [25]. Ref. [16] proposed an FOADRC
controller with GESO to improve tracking and disturbance rejection performance for a
PMSM servo system. The design of FOADRC with fractional-order ESO was investigated
in [26] to suppress noise sensitivity. Ref. [27] proposed a fractional-order ESO-based ADRC
method to address the trade-off between control performance and noise suppression.
Ref. [28] presented a fractional-order ADRC method incorporating the fuzzy self-tuning
method, which achieved an improved dynamic response and disturbance suppression
capability. Ref. [29] proposed an optimal fractional-order ADRC method for the PMSM
speed servo system, which met the requirement for frequency-domain indicators and
achieved optimal performance in the time domain. A comparison of these versions of
ADRC is presented in Table 1.

The primary objective of this paper is to improve the disturbance rejection performance
with an observer bandwidth limitation for the PMSM position servo system, integrating the
benefits of the model-aided ADRC and fractional-order control. The primary contributions
of this paper are summarized as follows:

(1) An MESO-based ADRC architecture is introduced for the PMSM position servo sys-
tem, demonstrating improved tracking and disturbance rejection under limited ob-
server bandwidth.

(2) The MESO-based ADRC was designed for the current, speed, and position loops.
Additionally, a fractional-order feedback controller was designed for the speed loop,
further enhancing the disturbance rejection performance on the basis of the MESO.

(3) Simulation and experimental comparison tests on a PMSM position servo system were
conducted to verify the effectiveness of the proposed method.



Fractal Fract. 2024, 8, 54 3 of 20

Table 1. Comparison of different versions of ADRC.

References Linear/Nonlinear ESO Feedback Controller

[5] Nonlinear Nonlinear ESO Error-Based Nonlinear Controller
[6] Linear LESO State Feedback Controller
[14] Linear Improved ESO State Feedback Controller
[17–19] Linear GESO State Feedback Controller
[16] Linear GESO Fractional-Order PD
[20] Linear Model-Aided ESO Model Predictive Control
[25] Nonlinear Nonlinear ESO Fractional-order PD
[29] Linear LESO Fractional-Order PD
[26,27] Linear FOESO PID
[28] Linear FOESO Fuzzy Self-Tuning PD

The subsequent sections of this paper are organized as follows: In Section 2, the MESO-
based ADRC is presented. Section 3 covers the design and tuning of the cascade ADRC
strategy for the PMSM position servo system. Simulation comparisons and a discussion
are presented in Section 4. Section 5 presents experimental verification. Finally, Section 6
presents the conclusion of this paper.

2. The Principle of MESO-Based ADRC

Figure 1 illustrates the structure of the MESO-based ADRC. It comprises an MESO and
a feedback controller. The controlled plant is an n-th order system. The MESO estimates
the lumped disturbance and plant states in real time. The feedback controller and MESO
collaborate to generate the control effort. The specific details of the MESO-based ADRC are
described below.

Figure 1. Block diagram of MESO-based ADRC.

2.1. MESO-Based ADRC

Consider an n-th order plant:

y(n) + an−1y(n−1) + · · ·+ a1ẏ + a0 = bu + d, (1)

where y, u, and d are the plant’s output, input, and external disturbance, respectively; n
is the order of the plant, and ai (i = 0, 1, 2, . . . , n − 1) and b are the plant coefficients. Its
transfer function model is

P(s) =
b

sn + an−1sn−1 + · · ·+ a1s + a0
. (2)

Let f represent the lumped disturbance as

f = −an−1y(n−1) − · · · − a1ẏ − a0y + d, (3)
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the plant (1) is converted to
y(n) = f + bu. (4)

The lumped disturbance f encompasses the known dynamics of the controlled plant and
the unknown external disturbance.

When f is taken as an augmented state and x = [y ẏ . . . yn−1 f ]T , h = ḋ is defined
(assuming d is differentiable), the plant (4) is represented as augmented state-space form:{

ẋ = Ax + Bu + Eh
y = Cx

, (5)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 −a0 −a1 · · · −an−1

, B =


0
0
...
b

−an−1b

,

E =
[
0 0 · · · 0 1

]T , C =
[
1 0 · · · 0 0

]
.

The MESO can be designed based on Equation (5) as{ ˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂

, (6)

where x̂ is the estimation of x, ŷ is the estimation of y, and L is the observer gain vector,

L = [β1 β2 . . . βn βn+1]
T . (7)

Remark 1. The distinction between an MESO and an LESO lies in an MESO’s utilization of
all known plant information, while an LESO does not incorporate this information. The GESO
proposed in [17] also utilizes known plant information, but it does not consider the known plant
dynamics as part of the lumped disturbance f defined in the GESO. The GESO’s disturbance
compensation cannot transform the controlled plant into the ideal cascade integral plant. In contrast,
an MESO can achieve cascade-integral plant equivalence because the known plant dynamics are
considered as part of the lumped disturbance f in the MESO.

The control effort is generated for the combination of the estimated disturbance f̂ and
the output of the feedback controller u0 in real time, which is represented as

u =
− f̂ + u0

b
, (8)

Substitute it in (4), and the plant (1) is equivalent to

y(n) = f − f̂ + u0 ≈ u0. (9)

If the MESO is designed appropriately, f̂ completely compensates for the effects of the
lumped disturbance f . Thus, the controlled plant is equivalent to an nth-order integrator
plant. The state-feedback control law is designed as

u0 = k1(r − x̂1)− k2 x̂2 − · · · − kn x̂n. (10)

In summary, the MESO-based ADRC can be expressed as{
˙̂x = (A − LC)x̂ + Bu + Ly,
u = K(r̂ − x̂).

(11)
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where r̂ = [r 0 . . . 0]T , K = [K0 1]/b, and K0 = [k1 k2 . . . kn].

2.2. Parameter Tuning

From (11), the MESO-based ADRC has two sets of gains to tune: the observer gain L
and the state-feedback gain K. Many different methods can be utilized to tune L and K.
The idea of the bandwidth parameterization method places all the poles of the ESO and the
closed-loop system at −ωo and −ωc [6]. ωo and ωc are considered the bandwidths of the
MESO and the closed-loop system.

Therefore, the characteristic equation of the MESO can be obtained using

|sI − (A − LC)| = (s + ωo)
n+1. (12)

The value of βi for L can be solved by comparing the coefficients of the two sides of (12).
Substitute (10) in (9), and the closed-loop system can be represented as

y(n)(t) = k1(r − x̂1)− k2 x̂2 − · · · − kn x̂n. (13)

The characteristic equation of (13) can be expressed as

sn + knsn−1 + · · ·+ k2s + k1 = (s + ωc)
n. (14)

The value of ki for K0 can be solved from (14) as

ki = Cn+1−i
n ωn+1−i

c . (15)

Generally, the observer’s response is faster than the closed-loop system’s. Therefore,
ωo should be larger than ωc, and an appropriate choice is ωo = 2 ∼ 6ωc.

Remark 2. The bandwidth parameterization method, while relatively conservative, facilitates
the achievement of a non-overshoot response in the closed-loop system for setpoint tracking. In
certain scenarios, there might be a need for a faster response. To address this, alternative tuning
methods, including frequency specifications, loop shaping, and optimization, can be employed to
attain the desired response. Moreover, various control laws, including PID, sliding mode control,
and fractional-order control, can be implemented.

2.3. Transfer Function Derivation

The MESO-based ADRC can be equivalent to a two-degrees-of-freedom closed-loop
system, as shown in Figure 2, where H(s) is the setpoint filter, and C(s) is the feedback
controller [30]. They can be obtained from the Laplace transform of (11) as follows:

C(s) =
K[sI − (A − LC)]−1L

1 + K[sI − (A − LC)]−1B
, (16)

H(s) =
k1

K[sI − (A − LC)]−1L
. (17)

From Figure 2, the transfer function from r to y is derived as follows:

GRY(s) =
H(s)C(s)P(s)
1 + C(s)P(s)

. (18)

It is used to derive the transfer function of the closed-loop system Gcl(s). If K0 = 0 is
allowed, GRY is converted to the equivalent plant Pe(s).

The external disturbance transfer function Gd(s) from d to y can be expressed as

GDY(s) =
P(s)

1 + C(s)P(s)
. (19)
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It is used to analyze the disturbance rejection performance of the closed-loop system.

P (s)
r

C(s)
yu

+ _

+
H(s)

d

Figure 2. The transfer function form of the MESO-based ADRC

3. Cascade ADRC Strategy for a PMSM Position Servo System

The block diagram of the cascade ADRC for the PMSM position servo system is shown
in Figure 3. There are three loops for the PMSM position servo system, i.e., current, speed,
and position loops. The modeling of the PMSM and the MESO-based ADRC design for
each loop is subsequently introduced.

Ce

iq

iL
ω

E

+

_

+

_
θuiunuprp

PMSM

Current 
Controller

Speed 
Controller

Position 
Controller

Figure 3. The structure of the cascade ADRC for a PMSM position servo system.

3.1. Modeling of PMSM

The voltage equations for a surface-mounted PMSM in d–q coordinates are expressed
as follows: { did

dt = 1
Ls
(−Rsid + npωLsiq + ud)

diq
dt = 1

Ls
(−Riq − npωLsid − npψ f ω + uq)

, (20)

where ud, uq, id, and iq represent the stator voltages and currents of the d- and q-axes,
respectively; Ls denotes the stator inductance, Rs is the stator resistance, ω signifies the
angular velocity, np is the number of pole pairs, and ψ f stands for the rotor flux linkage.

The current reference of the d-axis i∗d = 0 is used to decouple the stator voltages and
currents. Thus, the voltage equation represented by (20) is simplified to

diq

dt
=

1
Ls

(−Rsiq − Ceω + uq), (21)

where Ce = npψ f is the induced voltage constant.
The motion equation of the PMSM can be expressed as follows:

dω

dt
=

1
J
(Cmiq − TL − B f ω),

dθ

dt
= ω.

(22)

where J is the moment of inertia, Cm = 1.5npψ f iq is the torque coefficient, TL is the load
torque, B f is the viscous friction coefficient, and θ is the mechanical angle of the rotor.

The transfer function model of the PMSM is obtained by applying the Laplace trans-
form to Equations (21) and (22) under zero initial conditions as follows:

Gi(s) =
1/Ls

s + Rs/Ls
, (23)
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Gn(s) =
Cm/J

s + B f /J
, (24)

Gp(s) =
1
s

. (25)

3.2. Current Loop Design

Taking the EMF as part of the lumped disturbance, the controlled plant for the current
loop is Gi(s), as in (23). According to (11), a first-order MESO-based ADRC can be designed
for the current loop with a0 = Rs/Ls and b = 1/Ls.

The bandwidth parameterization method is adopted for the current loop. Given the
observer bandwidth ωoi, the observer gain Li = [β1 β2]

T is calculated using (12) as follows:{
β1 = −a0 + 2ωoi,
β2 = (a0 − ωoi)

2.
(26)

Given the controller bandwidth ωci, the state feedback gain can be obtained using (14)
as follows:

k1 = ωci. (27)

The current closed loop can be obtained via (18) as follows:

Gcli(s) =
ωci

s + ωci
. (28)

3.3. Speed Loop Design

The plant for the speed loop consists of the current closed loop (28) and the speed
motion part (24), which can be represented as

Pn(s) = Gcli(s)Gn(s) =
b

s2 + a1s + a0
, (29)

where b = ωciCm
J , a1 =

ωci J+B f
J , and a0 =

ωci B f
J .

The MESO for the speed loop can be designed based on (29). Given the observer
bandwidth ωon, the observer gain can be obtained via (12) as follows:

β1 = −a1 + 3ωon,
β2 = −a0 + a2

1 − 3a1ωon + 3ω2
on,

β3 = 2a0a1 − a3
1 − 3a0ωon + 3a2

1ωon − 3a1ω2
on + ω3

on.
(30)

The equivalent plant for the speed loop can be obtained via (18) as follows:

Pen(s) =
1
s2 . (31)

Remark 3. The equivalent plant is an ideal double-integrator plant equivalence, which means
Pen(s) is independent of the MESO. The design of the feedback controller is entirely decoupled from
the MESO. This characteristic is also preserved in the designed ADRC for current and position
loops based on the MESO. This separation enables the independent adjustment of disturbance
rejection performance via the MESO without impacting the setpoint tracking determined according
to the feedback controller. In contrast, the traditional LESO does not possess this property, as the
equivalent plant using the LESO is always coupled with the LESO.

A fractional-order PD (FOPD) controller was designed as the feedback controller,
which can be expressed as follows:

u0 = kp(r − x̂1)− kdDα−1 x̂2, (32)
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where Dα−1(·) represents the fractional-order differential, and the order of the derivative is
α − 1. The Caputo definition of the fractional-order derivative was adopted in this paper.
The nominal control system of the speed loop is shown in Figure 4. The parameters of
FOPD were designed based on this nominal control system.

Ptn(s)
r

kp
e yu0

+ _

kd sα

+ _

Figure 4. The nominal control system of the speed loop.

Per Figure 4, the open-loop transfer function is

Gol(s) =
kp

s2 + kdsα
=

kp

sα(s2−α + kd)
, (33)

There is a fractional-order integrator in (33), and α should satisfy α ≥ 1 to ensure the steady-
state error. Given the gain crossover frequency ωcn and phase margin ϕm, the equations
can be obtained as follows:

|Gon(jωcn)| =
kp√

ω4
cn+k2

dω2α
cn−2kdω2+α

cn cos(απ/2)
= 1

arg[Gon(jωcn)] = −tan−1 ω2
cn sin(απ/2)

kdωα
cn−ω2

cn cos(απ/2)
− απ

2 = −π + ϕm

. (34)

Given a specific α, the parameters of kp and kd for (32) can be obtained as follows: kp = ω2
cn sin(απ/2)

sin(ϕm+απ/2)

kd = ω2−α
cn sin(ϕm)

sin(ϕm+απ/2)

. (35)

The choice of α is bounded as α ∈ [1, 2(π − ϕm)/π) for a specific phase margin, ϕm. The
choice of α is a trade-off between disturbance rejection and noise suppression.

The complementary sensitivity function of the nominal control system is

Tn(s) =
Gol(s)

1 + Gol(s)
=

kp

s2 + kdsα + kp
. (36)

It is also the closed-loop transfer function of the nominal control system. The noise sup-
pression specification defined by Tn(s) determines the value of α, which is represented as

|Tn(jωt)| ≤ AT dB, (37)

where

|Tn(jωt)| =
kp√

k2
dω2α

t + (kp − ω2
t )

2
+ DT

,

DT = 2kdωα
t (kp − ω2

t ) cos(απ/2).

Given the frequency ωt, |Tn(jωt)| is calculated using (37) and (35) by sweeping α in
1 < α < 2(π − ϕm)/π. Then, α is obtained from the curve of |Tn(s)| with reference to α
satisfying the gain limit of AT dB. A flow chart of the design procedure for the speed loop
is presented in Figure 5.
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Start

Obtain speed plant by Eq.(29) and given
the observer bandwidthωon

Calculate observer gain by Eq.(30)

Sweep

Given the gain crossover frequencyωcn
and phase margin ϕm

Calculate kp and kd according to Eq. (35)

Given AT and ωt and Calculate |Tn(jωt )|
according to Eq. (37)

dB

kp, kd and α are determined

End

Figure 5. Flow chart of the design procedure for the speed loop.

The speed closed-loop transfer function can be obtained using (18) with K0 = [kp kds1−α 1]
as follows:

Gcln(s) =
kp

s2 + kdsα + kp
. (38)

It is the same as the closed-loop transfer function of the nominal control system using (36).

3.4. Position Loop Design

Neglecting the fractional order, the designed speed closed-loop was approximated
as an integer-order system. The difference in order was treated as part of the lumped
disturbance. Therefore, according to (38) and (25), the controlled plant of the position loop
can be represented as

Pp(s) =
b

s3 + a2s2 + a1s + a0
, (39)

where b = kp, a2 = kd, a1 = kp, and a0 = 0.
The MESO for the position loop can be designed based on (39), according to (5) and (6).

Given the observer bandwidth ωop , the observer gain can be obtained using (12) as follows:

β1 = −a2 + 4ωop,
β2 = −a1 + a2

2 − 4a2ωop + 6ω2
op,

β3 = −a0 + 2a1a2 − a3
2 − 4a1ωop + 4a2

2ωop − 6a2ω2
op + 4ω3

op,
β4 = a2

1 + 2a0a2 − 3a1a2
2 + a4

2 − 4a0ωop + 8a1a2ωop − 4a3
2ωop

−6a1ω2
op + 6a2

2ω2
op − 4a2ω3

op + ω4
op.

(40)
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The bandwidth parameterization method was used to tune the feedback controller for
the position loop. Placing all the poles of the closed loop at −ωcp allowed the parameter’s
value to be solved from (14) as follows:

k1 = ω3
cp, k2 = 3ω2

cp, k3 = 3ωcp. (41)

4. Simulation and Discussion

The mathematical models of the experimental PMSM were identified as

Gi(s) =
403.48

s + 153.57
, (42)

Gn(s) =
333.85

s + 0.4889
. (43)

Such a PMSM device was used for the subsequent simulation and analysis.
Three control strategies are presented for comparison: the traditional LESO-based

ADRC [6], the proposed MESO-based ADRC with a PD feedback controller, and the
proposed MESO-based ADRC with an FOPD feedback controller. The control strategies
designed for comparison are listed in Table 2.

Table 2. Control strategies designed for comparison.

Current Loop Speed Loop Position Loop

LESO-based P-LESO PD-LESO PD-LESO
MESO-based P-MESO PD-MESO PD-MESO
FOC- and MESO-based P-MESO FOPD-MESO PD-MESO

4.1. Current Loop

The plant parameters can be determined as a0 = 153.57 and b = 403.48 via (42). Given
ωci = 1000 rad/s and ωoi = 5000 rad/s, the parameters of the MESO-based ADRC for
the current loop can be designed as β1 = 9846.43, β2 = 2.3488 × 107, and k1 = 1000. The
parameters designed for the LESO-based ADRC are β1 = 10, 000, β2 = 2.5 × 107, and
k1 = 1000.

4.2. Speed Loop

The controlled plant of the speed loop is represented by (29), with a0 = 488.9,
a1 = 1000.49, and b = 3.34 × 105. The design specifications for the speed loop included
ωcn = 100 rad/s, ωon = 500 rad/s, ϕm = 70◦, ωt = 1000 rad/s, and AT = −24.8 dB.
Subsequently, the MESO for the speed loop could be designed.

Considering ϕm = 70◦, the fractional order bound for FOPD can be calculated as
α ∈ [1, 1.22). By sweeping α within this range, the parameters kp and kd can be determined
using (35). The parameter curve for FOPD is illustrated in Figure 6a. As α approaches its
upper bound, kp increases rapidly. The gain of Tn(s) at ωt can be calculated using (37).
The curve of |Tn(jωt)| with respect to α is depicted in Figure 6b. It indicates that the gain
in Tn(s) increases with a rising α, leading to a gradual decrease in the noise suppression
ability. For α ∈ (1, 1.18], the constraint in (37) is satisfied. Hence, α = 1.18 was selected to
achieve better disturbance rejection performance.

The PD-LESO and PD-MESO controllers were also designed for comparison using the
same design specifications. The parameters of the design controllers for the speed loop are
shown in Table 3.

(1) Disturbance rejection and noise suppression for the ESO: When the estimation error
is defined as ex = x − x̂, the dynamics of the estimation error can be obtained using (5)
and (6) as follows:

ėx = (A − LC)ex + Eḋ − Ln. (44)
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where n is the sensor noise. By applying the Laplace transform to (44), the transfer function
from d to ex3 (ex3 = f − f̂ ) can be obtained as follows:

Ged(s) = C f [sI − (A − LC)]−1Es, (45)

The transfer function from n to ex3 can be derived as follows:

Gen(s) = C f [sI − (A − LC)]−1L, (46)

where C f = [0 0 . . . 0 1]n+1. Ged and Gen are used to evaluate the MESO’s disturbance
rejection and noise sensitivity, respectively. Therefore, Ged(s) and Gen(s) for the speed loop
can be obtained as follows:

Ged =
s2 + β1s + β2

(s + ωon)3 , (47)

Gen =
β3s2 − a0β2s
(s + ωon)3 . (48)

The Bode plots of Ged(s) and Gen(s) are depicted in Figure 7a,b. With the same observer
bandwidth ωon, Figure 7 illustrates that the MESO exhibits superior disturbance estimation
performance compared to the LESO, while both maintain the same noise suppression
performance. The disturbance estimation performance of the LESO improves as ωon
increases, but the noise suppression performance decreases simultaneously.

|T
n(j

t)| 
(d

B
)

X 1.1806
Y -24.8001

(a) (b)

Figure 6. Curves for FOPD design: (a) parameters curve; (b) |Tn(jωt)| w.r.t. α.

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

LESO-
o
=500

LESO-
o
=1500

MESO-
o
=500o

 increase

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

LESO-
o
=500

LESO-
o
=1500

MESO-
o
=500

o
 increase

(a) (b)

Figure 7. Frequency responses comparison of a different ESO for the speed loop: (a) disturbance
estimation ; (b) noise suppression.
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Table 3. Parameters of the designed controllers for the speed loop.

k1 k2 α β1 β2 β3( × 108)

PD-LESO 29,238.0 274.75 1 1500 750,000 1.25
PD-MESO 29,238.0 274.75 1 499.51 249,755 −1.2512
FOPD-MESO 144,897 618.93 1.18 499.51 249,755 −1.2512

Remark 4. Since the MESO incorporates the plant information as the known part of the total
disturbance, the burden of MESO tracking f is lower compared to the traditional LESO. It is well
known that the selection of observer bandwidth involves a trade-off between disturbance estimation
and noise sensitivity. Therefore, the MESO alleviates this conflict and achieves better disturbance
estimation and noise suppression performance simultaneously compared to the LESO under a limited
observer bandwidth.

(2) The equivalent plant: The Bode plots of the equivalent plant are presented in
Figure 8. It shows that the MESO-based equivalent plant is identical to the nominal plant,
represented as 1/s2. However, the LESO-based equivalent plant differs significantly from
the nominal plant. Although the differences between the equivalent plant and the nominal
plant decrease as ωon increases, the LESO becomes more sensitive to noise at a high ωon.
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o
 increase

o
 increase

Figure 8. Bode plots of the equivalent plant for the speed loop.

(3) Open-loop Bode plots: Open-loop Bode plots are illustrated in Figure 9a. It is
evident from the plots that the designed PD-MESO and FOPD-MESO met the design
specifications, whereas the PD-LESO did not. Due to the significant difference between the
LESO-based equivalent plant and the nominal plant, the designed PD feedback controller
based on the nominal plant could not meet the design specifications in the real system. In
the case of the FOPD-MESO, the gain at the low-frequency range increased with a rising α,
leading to an improvement in the steady-state error. However, simultaneously, the gain
in the high-frequency range also increased with a rising α, indicating a decrease in noise
suppression performance.

(4) Closed-loop Bode plots: The closed-loop transfer function is identical to the comple-
mentary sensitivity function, as per (38) and (36). The Bode plots are depicted in Figure 9b.
It is observed that the PD-MESO exhibited the lowest resonance peak. The resonance peak
of the PD-LESO was notably higher than that of the other controllers. The resonance peak
of the FOPD-MESO increased with a rising α, accompanied by an increase in the gain in
the high-frequency range. The relative stability and noise suppression of the FOPD-MESO
decreased as α increased.
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Figure 9. Bode plots of the transfer functions for the speed loop: (a) the open loop; (b) the closed loop.

(5) The disturbance rejection of the closed loop: According to (19), the disturbance
transfer function of the speed loop is

Gdn(s) =
b(β2 + kp)s + b(β1 + s)(s2 + kdsα)

(s2 + kdsα + kp)(s + ωo)
3 . (49)

Bode plots of the disturbance transfer function Gdn(s) are presented in Figure 10. It is
evident that the MESO-based ADRC exhibited superior disturbance rejection performance
compared to the other controllers. Moreover, the disturbance rejection performance of
the FOPD-MESO improved with an increasing α. Therefore, in addition to the MESO, the
FOPD-MESO can enhance the disturbance rejection performance by adjusting α. The choice
of α involves a trade-off between disturbance rejection and noise suppression.

M
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Figure 10. Bode plots of the disturbance transfer function for the speed loop.

(6) The disturbance rejection tuning with ωon and α: Based on the analysis above, it
can be concluded that the disturbance rejection performance of the FOPD-MESO can be
simultaneously tuned by adjusting ωon and α. To explore this property, the step responses
with disturbance for various ωon and α values are depicted in Figure 11a,b. Figure 11a
demonstrates that the disturbance rejection performance improved as the value of ωon
increased, while the tracking performance remained unchanged. This verifies that the
MESO-based ADRC satisfied the separation principle. The tracking performance was
independent of the observer gain. Figure 11b illustrates that the disturbance rejection
performance improved as α increased. However, the overshoot of the setpoint tracking also
increased simultaneously. Therefore, the FOPD provides another tunable parameter α to
enhance the disturbance rejection performance based on the MESO.
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Figure 11. The step response of the MESO-based ADRC for the speed loop (simulation): (a) different
ωon values (α = 1); (b) different α values (ωo = 500 rad/s).

(7) Step response comparison for different control strategies: The step response of the
speed loop is depicted in Figure 12. It is evident that the MESO-based ADRC exhibited
superior tracking and disturbance rejection. The PD-LESO exhibited a worse transient
response compared to the other controllers. When a disturbance was applied, the speed
drop of the FOPD-MESO was 8.3%, significantly less than the PD-MESO’s 15.9%. Compared
to the PD-MESO, the overshoot of the FOPD-MESO increased slightly from 3.0% to 8.4%.
Therefore, the fractional order α can be adjusted to balance tracking and disturbance
rejection performance.
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Figure 12. The step response comparison for the speed loop (simulation).

4.3. Position Loop

The approximate plant of the position loop can be determined using (39), with
b = 29,238.0, a0 = 0, a1 = 29,238.0, and a2 = 274.747. When the design specifications of the
position loop are set as ωcp = 50 rad/s and ωop = 250 rad/s, PD-MESO and PD-LESO can
be designed based on this plant. The parameters of the design controllers for the position
loop are presented in Table 4.

Table 4. Parameters of the designed controllers for the position loop.

k1 k2 k2 β1 β2 β3( × 106) β4( × 108)

PD-LESO 125,000 7500 150 1000 375,000 62.5 39.0625
PD-MESO 125,000 7500 150 725.252 146,500 1.04435 −6.64074
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Figure 13 presents the step response of the position loop. It is evident that the LESO-
based ADRC strategy exhibited a greater overshoot and position error when the disturbance
was applied. This did not meet the design expectations, as the equivalent plant based on
the LESO was significantly different from the nominal plant. However, the step response
of the proposed MESO-based ADRC and FOC- and MESO-based ADRC could closely
match the step response of the nominal system when using the same observer bandwidth.
Additionally, the FOC- and MESO-based ADRC exhibited the smallest position error after
disturbance input at 2.0%, compared to the MESO-based ADRC’s 4.5%. Therefore, the
simulation indicated the best disturbance rejection performance of the FOC- and MESO-
based ADRC compared with the other controllers.
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Figure 13. The step response comparison for the position loop (simulation).

5. Experimental Verification
5.1. Experimental Setup

Experimental validation was performed on a PMSM servo system, illustrated in
Figure 14. The experimental setup consisted of essential components, including a PMSM, a
servo drive, a DC generator, and a PC. The servo driver was powered via DSP-TMS320F28335.
The structure of the PMSM position servo system based on field-oriented control is depicted
in Figure 15. The control sampling frequencies for the current, speed, and position loops
were 10 kHz, 5 kHz, and 2 kHz, respectively. The specifications of the PMSM are provided
in detail in Table 5.

Figure 14. The experimental PMSM position servo system.
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Figure 15. The structure of the PMSM position servo system based on field-oriented control.

Table 5. Specifications of the PMSM.

Parameters Unit Value

Rated power kW 2.0
Rated speed rpm 2000
Rated current A 9.4
Line resistance Ω 0.38
Line inductance mH 2.48
Induced voltage coefficient V/krpm 67.4
Moment of inertia kg · m2 24.3 × 10−4

5.2. Experimental Tests for the Speed Loop

The fractional-order differential s0.18 was approximated using a five-order discrete
transfer function obtained through the impulse response invariant discretization method
of [16]:

s0.18 ≈ N
D

, (50)

where

N = z5 − 3.05222z4 + 3.43539z3 − 1.71645z2 + 0.352724z − 0.0193436,

D = 0.248528z5 − 0.708956z4 + 0.730482z3 − 0.321782z2 + 0.0534573z − 0.00163956.
(51)

The Bode plot of the approximated s0.18 is shown in Figure 16. It can be seen that the approx-
imated fractional-order operator matched the true Bode plot of s0.18 around ω = 100 rad/s,
the gain crossover frequency of the speed loop, which means the approximated fractional-
order ADRC could perform as the real fractional-order ADRC approximately.
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Figure 16. The Bode plot comparison of approximated and true s0.18.
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Figure 17a,b illustrates the step response of the PMSM’s speed loop with varying val-
ues of ωon and α. The experimental results validated the effectiveness of tuning disturbance
rejection performance using ωon and α, as observed in the simulation. It was observed
that the tracking performance remained unaffected by the MESO bandwidth, while the
disturbance rejection performance improved with an increasing ωon. Furthermore, the
disturbance performance improved with an increasing α, but it accompanied an increase in
the overshoot.
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Figure 17. The step response of the MESO-based ADRC for the speed loop (experiment): (a) different
ωon values (α = 1); (b) different α values (ωon = 500 rad/s).

Figure 18 presents the step response of the PMSM’s speed loop employing different
control methods. The performance indices are listed in Table 6. Consistent with the
simulation results, the experimental results validated the findings. In comparison to
the PD-LESO, the PD-MESO exhibited a significant improvement in both tracking and
disturbance rejection performance using the same observer bandwidth. Additionally, the
FOPD-MESO can enhance disturbance rejection performance by tuning the order of the
feedback controller based on the MESO. The speed drop of the FOPD-MESO was 8.19%,
versus the PD-MESO’s 16.29%.
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Figure 18. Step response comparison for the speed loop (experiment).

Table 6. Indices of the step responses for the speed loop.

Overshoot Settling Time Speed Drop Recovery Time

PD-LESO 35.75% 0.225 s 25.92% 0.181 s
PD-MESO 1.51% 0.0205 s 16.29% 0.029 s
FOPD-MESO 8.36% 0.085 s 8.19% 0.0238 s
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5.3. Experimental Tests for the Position Loop

Figure 19 illustrates the step response of the PMSM’s position loop. The legend
names represent the different control strategies for comparison, which can be found in
Table 2. Consistent with the simulation, the experimental results aligned with the expected
outcomes. The setpoint tracking of the LESO-based ADRC exhibited a large overshoot,
deviating significantly from the behavior of the nominal control system. In contrast, the
setpoint tracking of the MESO-based and the FOC- and MESO-based ADRC aligned with
the nominal control system. The disturbance rejection performance of the MESO-based
ADRC was significantly improved compared to the LESO-based ADRC. Moreover, the
FOC- and MESO-based ADRC further enhanced the disturbance rejection performance
based on the MESO-based ADRC, When the disturbance was applied, the position error of
the FOC- and MESO-based ADRC improved to 2.2 % from the MESO-based ADRC’s 4.3%.
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Figure 19. The step response comparison for the position loop (experiment).

6. Conclusions

This paper has proposed a cascade FOADRC architecture with an MESO for a PMSM
position servo system. The MESO-based ADRC was designed for the current, speed, and
position loops of the PMSM position servo system. Moreover, a fractional-order PD feed-
back controller was designed for the speed loop to further improve disturbance rejection
performance on the basis of the MESO. The simulation and experimental verification were
conducted on a PMSM servo platform. The results demonstrate that the proposed method
achieved the desired tracking performance. Additionally, using the same observer band-
width, the position error of the proposed strategy decreased to 2.25% when the disturbance
was input, in contrast to the traditional LADRC’s 14.9% and the MESO-based integer-order
ADRC’s 4.3%. The proposed method achieved superior tracking and disturbance rejection
performance with a limited observer bandwidth.

Author Contributions: Conceptualization, Y.L., X.L. and Y.C.; methodology, S.W.; software, S.W. and
H.G.; validation, S.W. and H.G.; formal analysis, S.W.; investigation, S.W.; writing—original draft
preparation, S.W.; writing—review and editing, Y.L., X.L. and Y.C.; visualization, S.W.; supervision,
Y.C.; project administration, Y.L. and X.L.; funding acquisition, Y.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number: 51975234).

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflicts of interest.



Fractal Fract. 2024, 8, 54 19 of 20

Abbreviations
PMSM Permanent magnet synchronous motor
ADRC Active disturbance rejection control
LADRC Linear ADRC
PID Proportional-integral-derivative
FOC Fractional-order control
FOPD Fractional-order proportional-derivative
FOADRC Fractional-order ADRC
ESO Extended state observer
GESO Generalized ESO
MESO Model-aided ESO
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