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Abstract: The quantification of the irregular morphology and distribution pattern of mineral grains
is an essential but challenging task in ore-related mineralogical research, allowing for tracing the
footprints of pattern-forming geological processes that are crucial to understanding mineralization
and/or diagenetic systems. In this study, a large model, namely, the Segmenting Anything Model
(SAM), was employed to automatically segment and annotate quartz, lepidolite and albite grains
derived from Yichun rare-metal granite (YCRMG), based on which a series of fractal and multifrac-
tal methods, including box-counting calculation, perimeter–area analysis and multifractal spectra,
were implemented. The results indicate that the mineral grains from YCRMG show great scaling
invariance within the range of 1.04~52,300 µm. The automatic annotation of mineral grains from pho-
tomicrographs yields accurate fractal dimensions with an error of only 0.6% and thus can be utilized
for efficient fractal-based grain quantification. The resultant fractal dimensions display a distinct
distribution pattern in the diagram of box-counting fractal dimension (Db) versus perimeter–area
fractal dimension (DPA), in which lepidolites are sandwiched between greater-valued quartz and
lower-valued albites. Snowball-textured albites, i.e., concentrically arranged albite laths in quartz
and K-feldspar, exhibit characteristic Db values ranging from 1.6 to 1.7, which coincide with the
fractal indices derived from the fractal growth model. The zonal albites exhibit a strictly increasing
trend regarding the values of fractal and multifractal exponents from core to rim, forming a featured
“fractal-index banding” in the radar diagram. This pattern suggests that the snowball texture gradu-
ally evolved from rim to core, thus leading to greater fractal indices of outer zones, which represent
higher complexity and maturity of the evolving system, which supports a metasomatic origin of the
snowball texture. Our study demonstrates that fractal analyses with the aid of a large model are
effective and efficient in characterizing and understanding complex patterns of mineral grains.

Keywords: fractal; pattern quantification; large model; SAM; mineral grain; Yichun rare-metal granite

1. Introduction

Fractal geometry provides a powerful mathematical tool for scientific research on natu-
ral phenomena with complex morphological features [1], which allows for effectively reveal-
ing complex patterns in chaotic and irregular natural structures along with their underlying
nonlinear dynamic processes [2]. Over the past several decades, fractal/multifractal theory
has achieved outstanding advancements in quantitatively characterizing complex struc-
tures or phenomena in various fields of geoscience from macro- to micro-scales, including
the following: (a) At a global to provincial scale, the occurrences of giant geological sys-
tems, such as earthquake systems, tectonic systems and metallogenic provinces, are often
characterized by spatial- and/or temporal-domain statistical scaling laws, which can be
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portrayed by diverse fractal dimensions [3–7]. (b) At a regional to deposit scale, fractal
analysis is widely utilized as a quantitative means to characterize the intricate distributions
of ore-forming systems [8–12], i.e., exploring the correlation between mineralization and
ore-related spatial–temporal structures through fractal exponents and searching for min-
eralization patterns [13–16]. The most prominent achievement in this field is the effective
decomposition of geochemical populations using a variety of fractal models [17–26], includ-
ing concentration–area fractal model [19–21], concentration–distance fractal model [22],
concentration–volume fractal model [23], spectrum–area multifractal model [24] and singu-
larity indices [25,26]. (c) At a microscopic scale, fractal dimensions derived from various
fractal/multifractal analyses, such as the box-counting model, perimeter–area model and
number–area model [13,27–29], have been employed to quantify the irregularities in the
shape and distribution pattern of mineral grains.

Fractal and multifractal methods have been shown to be effective in delineating
diverse complex geological patterns, as mentioned above; however, most studies have
focused on recognizable macroscopic geometries, such as structures, geophysical and
geochemical anomalies, and ore-related evidence, while only a few contributions have
employed fractal analyses for mineral pattern characterization at the microscopic scale.
Notably, mineralogical research has long been considered fundamental for ore-forming
systems, while fractal-derived indices are quite suitable for characterizing the main targets
of mineralogical studies, including but not limited to morphological descriptions [30],
micro-structures [31], compositional variance [32,33], special textures [29] and mineral
staging [13]. The microscopic information extracted from these fractal indices and their
underlying scaling properties of mineral patterns can be utilized to trace the footprints of
pattern-forming geological processes, which are crucial to understanding mineralization
and/or diagenetic systems [34,35].

Despite its great significance, fractal-based mineral pattern analyses are still rarely
reported because of the challenging image-processing procedure. This is mainly due to
the fact that considerable manual interventions and labeling are inevitably needed to
annotate microscopic mineral grains from digital images of rock plates and thin sections.
Such work is quite time-consuming and may sometimes be inaccurate and subjective
in the current framework of image processing, since mineral grains in some rocks are
difficult to distinguish. Most recently, benefiting from the rapid development of machine
learning techniques, large models, represented by Chat Generative Pre-trained Transformer
(ChatGPT), have sparked a revolution in industrial and academic fields [36–38]. With the
aid of a large model, highly intelligent image segmentation and annotation of microscopic
objects, such as minerals, have become available [39,40], which provides a promising
solution to the above-mentioned issue.

The aims of this paper are (1) to probe a feasible scenario for efficient annotation
of mineral images that can build a solid foundation for subsequent fractal analyses at
the microscopic scale; (2) to construct a quantitative framework for characterizing the
morphological features and distribution patterns of mineral grains; and (3) to trace the
proxy of pattern-forming processes of target minerals using fractal analyses. Yichun rare-
metal granite (YCRMG), which originated in the famous Yichun Ta-Nb deposit, is chosen as
a case study, since it is well known for its characteristic mineral compositions and textures,
which are deemed special products of highly evolved granite magma [41]. A large model
referred to as Segmenting Anything Model (SAM) was introduced in this study to process
digital images and extract mineral grains, based on which fractal and multifractal analyses
were implemented. The results contribute to quantifying the irregular geometries and
distribution patterns of mineral grains and provide some clues for the controversial issue
of mineral origin.

2. Study Area and Data Used

The Yichun Ta-Nb deposit, which is situated in the northern part of the Cathaysia Block
in southeast China, is the largest Ta producer in China, with an original Ta reserve greater
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than 11 kt [42]. Economic Ta-Nb mineralization is disseminated throughout YCRMG.
YCRMG occurs as a thin sheet confined to the uppermost part of the Yashan granitic
complex (Figure 1), which is supposed to be magmatic and to have intruded into Lower
Proterozoic metasediments during the early Yanshanian granite-forming event in South
China, covering an outcrop area of approximately 9.5 km2 [43,44] (Figure 1). The granitic
complex is supposed to consist of multi-stage intrusive units that exhibit distinct vertical
zonation in the cross section, including mainly protolithionite–muscovite granite, Li-mica
granite and topaz–lepidolite granite from the bottom to the top (Figure 1b).
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Figure 1. Simplified geological map (a) and typical cross section (b) of YCRMG, modified
from [42,44,45].

YCRMG is composed dominantly of quartz, lepidolite and albite (Figure 2a–c), with
minor topaz, K-feldspar, amblygonite and accessory monazite, columbite–tantalite, micro-
lite and Ta-rich cassiterite [43]. The rocks are “porphyritic like” and contain “phenocrysts”
up to 10 mm of quartz (~20–25%), K-feldspar (<5%) and topaz (<2%), as well as fine-grained
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groundmass consisting mainly of albite (~40–60%) and lepidolite crystals (~15–30%) [43,45].
It can be commonly observed that albite laths are concentrically arranged along the growth
zones of anhedral–subhedral “phenocrysts” of quartz or K-feldspar (Figure 2d), which is
generally referred to as “snowball” texture [43–46].

1 
 

 
 
 
 

Figure 2. (a) Scanned image of the polished surface of a hand specimen showing albites and snowball-
textured quartz. (b) Scanned image of the polished surface of a hand specimen showing the three
main minerals of YCRMG. (c) Photomicrograph showing the three main minerals of YCRMG. (d) Pho-
tomicrograph of a representative snowball-textured quartz containing concentrically zoned albite
inclusions. Abbreviations: Ab = albite, Lpd = lepidolite, Qz = quartz.

Fifty-six hand specimens were sampled from YCRMG in the Yashan granitic com-
plex. These specimens were then polished and prepared into thin sections. The polished
surfaces of the specimens were scanned with a commercial light scanner with an optical
resolution of 3400 × 2700 pixels. The thin sections were observed and imaged with a Leica
DM2700 P polarization microscope, which can output photomicrographs with a resolution
of 2448 × 2048 pixels (Figure 2c,d). A total of 17 digital images representative of major
minerals of the granite complex, including 2 scanned images of polished hand specimens
(Figure 2a,b) and 15 photomicrographs of quartz, lepidolites and albites (Figure 3), were
selected for the following fractal analyses.
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 Figure 3. Photomicrographs of representative rock-forming minerals from YCRMG. Abbreviations:
Ab = albite, Lpd = lepidolite, Qz = quartz.

3. Methods
3.1. Image Annotation

Large models aim to train large-scale and self-supervised models based on big data [36,47].
In particular, the emergence of ChatGPT has resulted in substantial changes in the field of
artificial intelligence (AI) [37]. Motivated by the success of ChatGPT, the SAM, a new AI
model from Meta AI, provides a promotable segmentation system with zero-shot general-
ization, facilitating the segmentation of unfamiliar objects and images without the need for
additional training [39,48]. The SAM has been trained on more than 1 billion masks derived
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from 11 million images and shows the ability to apply prompt engineering and resolve
various downstream segmentation tasks on new data distributions. The breakthrough
achieved by the SAM simplifies the necessity of executing numerous labeling, stacking and
arithmetically power-consuming algorithms in an image-processing task [39,47].

In this study, an SAM-based image annotation procedure is introduced to process a
variety of mineral photomicrographs. The original photomicrographs and object member-
ship labels are provided as input. After being processed by an image encoder, a prompt
encoder and a mask decoder, masks are generated to indicate the region of the image that
corresponds to the constraints. Such constraints can be well specified by the input prompts
based on the provided points or bounding boxes [39,49] (Figure 4). 
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Figure 4. Flowchart of image annotation using the SAM, modified from [39,40].

The image encoder utilizes a visual transformer that is pre-trained with the masking
strategy of a masking automatic encoder [50,51]. Its functions include encoding photomi-
crographs into vectors; generating image embeddings; and mapping high-dimensional
images to a low-dimensional characteristic space (Figure 4), which handles high-resolution
inputs with minimum adaptation. The prompt encoder tackles various forms of sparse
prompts (points, boxes or sentences) and dense prompts (masks) through several branches
of a fundamental convolutional neural network (Figure 4). Dense prompts (masks) of
photomicrographs, i.e., mineral grain regions, exhibit a spatial correlation with the im-
age, which can then be efficiently queried by input prompts to produce object masks at
amortized, real-time speeds [39] (Figure 4). Subsequently, the mask decoder is trained
to map the causal relationship between the given embeddings and the associated masks.
The algorithm employs prompt self-attention and cross-attention mechanisms from the
transformer to update all the embeddings [52], facilitating the interaction between feature
maps and prompts [40] (Figure 4). The open-source code for image segmentation with
the SAM is accessible at https://github.com/facebookresearch/segment-anything on 15
December 2023. The pseudo code describing the implementation of SAM-based image
segmentation is listed in Algorithm 1.

The SAM generates segmentation results for unknown classes without additional
training, owing to its great generalization capability. However, it is necessary to assign
labels to these segmented objects (i.e., quartz, lepidolite and albite) for the subsequent image
processing and fractal analysis. For that, we employed an automatic image annotation tool
referred to as AnyLabeling, which integrates the SAM for assigning labels to segmentation
masks for the target mineral types [53,54]. The open-source code is accessible at https:
//github.com/vietanhdev/anylabeling.

https://github.com/facebookresearch/segment-anything
https://github.com/vietanhdev/anylabeling
https://github.com/vietanhdev/anylabeling
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Algorithm 1: The SAM for mineral photomicrograph image segmentation

Input: Image dataset I, image prompt of classes C (quartz, lepidolite, albite), flag indi cating
whether to generate multiple masks or a single mask Multimask.
Output: Predicted mask set M.
Initialize image mask m
for i in I do

image_tensor← preprocess(i)
prompt_encoding← prompt_encoder(C)
image_embedding← image_encoder(image_tensor)
mask_prediction←mask_decoder(image_embedding, prompt_encoding)
if multimask is True then

m← multiple. mask_prediction
else
m← single. mask_prediction

end if
M.append(m)

end

The automatically annotated photomicrograph dataset was processed with image
binarization utilizing the Python programming language [55,56], which allows for a clear
visual effect with a binary color scheme of black and white. Instead of identifying objects,
the binarization process separates the target mineral grains from the background [57–59].
Subsequently, each pixel in the automatically annotated photomicrograph exhibits only
one of the following two values: 255 (white) or 0 (black), which represent the target mineral
space and background matrix, respectively (Figure 5b).
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Figure 5. Calculating process of the probability mass function. (a) Photomicrograph of a representa-
tive texture of albite. (b) Annotated result of albite grains. (c) Subdivision of annotated image by a
number of boxes with a size of ε pixels. (d) Calculation of the probability mass function in the ith box.
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3.2. Box-Counting Fractal Method

Fractals were first introduced to the natural sciences by Mandelbrot in the 1970s. They
aim to characterize unsmooth and irregular geometries occurring in nature and nonlinear
systems, which are basically characterized by self-similarity or scale invariance [1,2].

The box-counting method is a commonly employed approach for calculating the
fractal dimension of irregular shapes. The result of box counting, which is referred to as
box-counting dimension (Db), is defined by the following formula [60,61]:

Db = − lim
r→0

lgN(r)
lgr

, (1)

where r is the box size and N(r) is the counted number of boxes of length r needed to cover
target fractal geometries.

In this study, the annotated photomicrographs were divided into a grid of boxes with
size r, and the number of those boxes containing at least one pixel of target mineral was
counted and denoted as N(r). The box size progressively varied, and the corresponding N(r)
was counted. A set of point pairs of (N(r), r) were then projected in a double logarithmic
diagram, in which a fitting line was drawn using the least square method. The box-counting
fractal dimension can be obtained from the slope of the fitting line [30].

3.3. Perimeter–Area Fractal Model

The perimeter–area model, initially developed by Mandelbrot, is commonly employed
to represent the power-law relationship between the perimeter and the area of similarly
shaped fractals in two-dimensional space [2,62,63], which is formulized as [19]

P ∝ A
1
2 DPA , (2)

where P is the perimeter of each annotated mineral grain, A is the area of the corresponding
grain and DPA denotes the perimeter–area fractal dimension [13,28,29].

In a practical DPA calculation procedure, the annotated photomicrographs are con-
verted into vector format (Figure 6a) and then imported into ArcGIS 10.2 to calculate the
perimeter and area of each mineral grain (Figure 6b,c). The data pairs of P and A are then
projected to a log–log plot, where the projected points can be fitted by a regression line
using the least square method [18] (Figure 6d). DPA is estimated by doubling the slope of
the regression line according to the following formula [19]:

Log(P) = C +
1
2

DPAlog(A) (3)

where C is a constant. DPA is an effective coefficient for characterizing the irregularities of
areal geometries [64].
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Figure 6. Calculating process of the perimeter–area fractal model. (a) Vectograph of mineral grains
converted from annotated image. (b) Subdivision of vectograph by a number of boxes with a size
of ε pixels. (c) Measurement of the perimeter and area of each mineral grain in the vectograph.
(d) Projection of perimeter (P) and area (A) in a log–log plot for estimating DPA by doubling the slope
of the fitting line.

3.4. Multifractal Method

Multifractal theory is regarded as an extension of fractal theory and requires a spec-
trum of fractal dimensions, i.e., the multifractal spectrum, to characterize the multifractal
features [2,65]. In comparison, fractal is used mainly to describe irregular geometric forms
and sets, while multifractal is used to describe the normalized probability distributions
over a range of different measures. Multifractal measures can be calculated with a statistical
physical moment method [66–68], which is fundamental for practical multifractal analyses
of spatial data and images.

The annotated photomicrographs were divided into a certain number of boxes with a
size of ε pixels (Figure 5c). The probability mass function in the ith box is expressed as [66]

Pi(ε) =
Ni(ε)

Nsum(ε)
, (4)

where Ni(ε) is the counted number of annotated mineral pixels in the ith box of scale ε and
Nsum(ε) is the total number of annotated mineral pixels within all boxes (Figure 5d).

In the case of minerals with multifractal characteristics, Pi(ε) is equivalently described
by a probability distribution that scales with different exponents for each box size ε [2]:

Pi(ε) ∝ εαi , (5)

where αi is the Lipschitz–Hölder exponent, namely, the singularity index.
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Nα(ε) is defined as an evaluation of the number of boxes that have a specific singularity
strength α, which is formulized as [2,69]

Nα(ε) ∝ ε− f (α), (6)

where f (α) is the spectral function of fractal dimensions that describes the abundance of the
set of boxes with α.

The partition function, χq, is a foundational quantity and is expressed as follows [2,66]:

χq(ε) = ∑n
i=1 pq

i (ε), q ∈ R, (7)

where q is the moment of the weighted sum and n is the number of boxes that constitute
the sampling space.

In practice, the mass exponent function, τ(q), is initially estimated from χq(ε). τ(q)
describes the local density of the fractal ensemble, which is formulized as [70]

τ(q) = lim
ε→0

log χq(ε)

log(ε)
= lim

ε→0

log
(

n
∑

i=1
pq

i (ε)

)
log(ε)

(8)

The total number of pixels in the mineral region of the ith box is measured as Pi(ε).
With different q, χq(ε) has a simple power-law relationship with the box of size, ε [2,65]:

χq(ε) ∝ ετ(q), (9)

where τ(q) is the power exponent of the qth-order moment. An apparent linear relationship
exists between χq and ε in a log–log diagram, based on which τ(q) can be estimated from
the slope of the fitting line at a specific q (Figure 7b). The generalized fractal dimension
(Dq) is derived from τ(q), which is formulized as follows [69,71]:

Dq =

{
τ(q)/1− q, q 6= 1
−τ′(q), q = 1

(10)

The generalized fractal dimension explains the scaling behaviors of a multifractal
set [72,73], where Dq is the fractal dimension of the moment order (q) (Figure 7c). With q = 1
and 2, the corresponding D1 and D2 denote the information dimension and correlation
dimension, respectively [74].

Equations (5), (6) and (9) are combined as [2,65]

χq(ε) =
∫

εqα− f (α)dα, (11)

If τ(q) is a smooth function of q, α(q) is obtained with the following formula [2]:

α(q) =
∂τ(q)

∂q
(12)

All singularity indices α(q) are diffusely distributed, thus constituting a continuous
spectrum of f (α) (Figure 7d) [2,70]:

f (α(q)) = qα(q)− τ(q), (13)

where α(q) indicates how the fractal ensemble is distributed at various scales and f (α) is a
function that represents the distribution of fractal dimensions. The fractal dimensions at
different scales can be characterized by the multifractal spectrum curve, which presents a
bell-shaped unimodal curve if the geometry is multifractal.
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4 

(a)

Figure 7. Multifractal calculation of target mineral grains. (a) Subdivision of annotated image by a
number of boxes with a size of ε pixels. (b) The partition function (χq) obtained for different box sizes
(ε). (c) Generalized fractal dimension (Dq) spectrum. (d) Multifractal fractal spectrum curve of f (α)
consisting of diffusely distributed singularity indices (α(q)).

The spectral width, ∆α, of the multifractal spectrum quantifies the range of singularity
strength, i.e., the magnitude of the probability distribution, which is described as [74]

∆α = αmax − αmin, (14)

where αmax and αmin are the maximum value and minimum value, respectively, of the singu-
larity strength. The low-probability subset is reflected by αmax, whereas the high-probability
subset is reflected by αmin. The pseudo code of the moment method for multifractal analysis
is listed in Algorithm 2. In addition, we provide an open-source repository designed
to facilitate the application of fractal-based pattern quantification of mineral grains, in-
cluding box-counting calculation, P-A fractal modeling, multifractal analysis. The source
code can be found at https://github.com/YueLiuxx/Python-for-Fractal-based-Pattern-
Quantification-of-Mineral-Grains (accessible on 15 December 2023) and enables researchers
to easily implement the fractal-based framework of mineral characterization proposed in
this study.

https://github.com/YueLiuxx/Python-for-Fractal-based-Pattern-Quantification-of-Mineral-Grains
https://github.com/YueLiuxx/Python-for-Fractal-based-Pattern-Quantification-of-Mineral-Grains
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Algorithm 2: The moment method for multifractal analysis

Input: Image dataset I, list of q values Q, list of box sizes B.
Output: The generalized fractal dimension Dq; the singularity index α, multifractal spectrum F.
for image in I do

for q in Q do
for box size in B do

P← pixels(box size)/total_pixels(image)
end
probabilities.append (P)
moment← (probabilities, q)
fractal_dimension = (B, moment, q)
alpha← (q, fractal_dimension)
spectrum← (Q, I, alpha)

end
Dq.append(fractal_dimension)
α.append(alpha)
F.append(spectrum)

end

4. Results and Discussion
4.1. Annotation Effectiveness and Scaling Invariance of Digitized Mineral Grains

The effectiveness of mineral annotation is a prerequisite for fractal analysis and thus
must be assessed. Three different annotating methods are taken into account in this study,
namely, manual annotation, direct image binarization and automatic annotation. All three
methods are implemented on both the scanned images of polished hand specimens and the
photomicrographs of thin sections (Figures 8 and 9). 

5 

 
 
 

 
 
 

 
 

Figure 8. Annotated results of scanned images of polished specimens. (a) Original quartz-bearing
image. (b) Direct binarization of quartz grains. (c) Manual annotation of quartz grains. (d) Automatic
annotation of quartz grains. (e) Original albite-bearing image. (f) Direct binarization of albite grains.
(g) Manual annotation of albite grains. (h) Automatic annotation of albite grains.
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Figure 9. Annotated results of photomicrographs of thin sections. (a) Original quartz-bearing image;
(b) Direct binarization of quartz grains. (c) Manual annotation of quartz grains. (d) Automatic
annotation of quartz grains. (e) Original albite-bearing image. (f) Direct binarization of albite grains.
(g) Manual annotation of albite grains. (h) Automatic annotation of albite grains.

Manual annotation of target minerals is quite time-consuming but the most accurate.
We serve the results of manual annotation as benchmark patterns. Direct binarization
implemented based on RGB color thresholds and automatic annotation conducted with
the aid of the SAM are compared with the template of manual annotation. As shown
in Table 1, the annotated results of direct binarization exhibit relatively stable accuracy
of Db, with errors ranging from 0.88% to 1.62%, regarding different target minerals in
both specimens and thin sections. Such errors are attributed to the similarity in the gray
distribution of a portion of quartz and albites (Figures 8b,f and 9b,f), especially in some
thin sections where the color contrast between these two minerals is extremely subtle (e.g.,
upper-left corner of Figure 9e). Therefore, this approach is considered valid only when
the mineral grains can be clearly distinguished by natural color. In contrast, the results of
automatic annotation show a remarkable accuracy difference between specimens (5.71%
error for quartz and 6.90% error for albite) and thin sections (0.58% error for quartz and
0.61% error for albite). On the one hand, automatic annotation also suffers from low color
contrast among adjacent mineral grains (Figure 8d,h), leading to poor performance in
mineral annotation for scanned images of specimens. On the other hand, benefiting from
the employment of the crossed-polarized light of a microscope, each target mineral in thin
sections shows an exclusive interference color, which results in a precise annotated result
of mineral grains in photomicrographs.

Table 1. Evaluation results of different digitization methods.

Type
Manual Annotation Direct Binarization Automatic Annotation

Db Db Error of Db Db Error of Db

Quartz in hand specimen 1.8584 1.8885 1.62% 1.7522 5.71%
Albite in hand specimen 1.6439 1.8755 1.41% 1.5305 6.90%

Quartz in thin section 1.8616 1.8452 0.88% 1.8508 0.58%
Albite in thin section 1.6889 1.7335 2.64% 1.6786 0.61%

Db: box-counting dimension.

The fractality of the target mineral in YCRMG was evaluated using three different
scales of hand specimens and thin sections (Figure 10), namely, a thin-section scale of
1.04~1270.5 µm under tenfold (10×) magnification, a thin-section scale of 2.10~2571.43 µm
under fivefold (5×) magnification and a hand-specimen scale of 21.37~52,300 µm. As
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depicted in Figure 10, N(r) and r show a great power-law relationship at all three scales, with
coefficients of determination (R2) greater than 0.995. The fractal dimensions are obtained
from the slopes of the fitting lines, which are 1.6618, 1.6786 and 1.6439, respectively. It can
be concluded that mineral grains derived from YCRMG exhibit strong scale invariance
within the range of 1.04 to 52,300 µm and that the fractal dimensions calculated at three
scales are numerically similar.

Based on the above assessment of both method effectiveness and scale variation, it can
be inferred that automatic annotation aided by the SAM is favorable for processing a large
number of photomicrographs in thin sections due to its high efficiency and perfect accuracy
(Table 1). In addition, the fractal dimension calculated through automatic annotation at
the thin-section scale can well represent the fractality in the whole observed microscopic
range (Figure 10b). In this regard, automatic annotation is deemed the optimal method in
this study to extract microscopic morphological information of mineral grains utilized for
fractal analyses.
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Figure 10. (a) Photomicrographs showing target albites under fivefold magnification (Scope B) and
tenfold magnification (Scope C). (b) Fractal calculation at three different scales within a range of
1.04 µm~52,300 µm.

It is noteworthy that the SAM-based automatic annotation employed in this study
is an initial exploration of the SAM in mineralogical research. The results of our study
demonstrate its distinguishing advantages when tackling photomicrographs of mineral
grains. Essentially, the SAM offers zero-shot generation for irregular mineral geometries
without any additional training. This capability is of great significance for segmenting and
identifying diverse minerals, which often exhibit various colors, phases, crystal shapes and
textures. In this regard, the SAM holds a promising future perspective in image-related
mineralogical research. For instance, the SAM can be used in image segmentation and object
detection in remote sensing data, assisting in mapping hydrothermally altered minerals on a
regional scale. The feasibility of this application is supported by a recently published study
which employs the SAM to effectively map land cover based on remote sensing data [75].
In addition, the framework of SAM-based automatic annotation can be readily applied
to segment scanning electron microscopy (SEM) images, which would greatly boost the
micrometer-dimensioned characterization of mineral identity, morphology, microstructure
and petrological context, which is currently based on manual segmentation [31,76]. To sum
up, the SAM exhibits favorable potential to benefit mineral-related image processing in a
wide range spanning from kilometer-level mapping to micron-scale annotation.
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4.2. Fractal Results of Regular Minerals

The mineral grains of quartz, lepidolite and albite were automatically annotated from
the original photomicrographs (Figure 11), based on which a series of fractal dimensions
were calculated, and the results are listed in Table 2.

The results of the box-counting analysis indicate a strong power-law relationship
between the number of boxes (N) and box size (r) with high coefficients of determination
(R2), greater than 0.98 (Figure 12). The resulting Db denotes the inhomogeneity of the
mineral grain distribution [30], which reveals that quartz (average Db = 1.8254) is more
inhomogeneous than lepidolite (average Db = 1.7903) and albite (average Db = 1.6811). DPA,
commonly serving as an exponent indicative of the irregularity degree in the boundaries of
different grains [19], was obtained from Figure 13, which shows a good scaling invariance
of perimeter versus area. Quartz yields the greatest average DPA value of 1.3288, followed
by lepidolite (1.2299) and albite (1.1402), which is consistent with the order of Db values.
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Figure 11. Annotation of typical minerals from original photomicrographs (exhibited in Figure 3).
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Figure 12. Results of the box-counting fractal analyses conducted in the log–log graph of box number
(N(r)) versus box size (r).
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Table 2. Results of fractal parameters for different types of mineral grains.

Type Sample ID Db DPA ∆α ∆f (α) D1 D2

Quartz

YC-1 1.8200 1.4669 3.6286 −1.8697 2.2145 2.1590
YC-2 1.8574 1.2687 4.0856 −1.9460 2.1887 2.1429
YC-3 1.8508 1.3864 3.8167 −1.8730 2.2424 2.1868
YC-4 1.8185 1.3047 4.3445 −1.8898 2.1370 2.0755
YC-5 1.7802 1.2175 3.0268 −1.5048 2.2179 2.1514

Average 1.8254 1.3288 3.7804 −1.8167 2.2001 2.1431

Lepidolite

YC-6 1.8282 1.2519 4.9942 −2.0312 2.1434 2.0944
YC-7 1.8103 1.2279 2.7845 −1.6092 2.0748 2.0339
YC-8 1.7036 1.1859 4.5831 −1.4189 1.9764 1.8883
YC-9 1.8171 1.2250 3.9381 −1.8866 2.1777 2.1198

YC-10 1.7925 1.2588 4.1050 −1.8987 1.9925 1.9438
Average 1.7903 1.2299 4.0810 −1.7689 2.0730 2.0160

Albite

Regular
albite

YC-11 1.6786 1.1272 3.9592 −0.6902 2.1336 1.9467
YC-12 1.7081 1.1420 2.7851 −1.0666 2.1837 2.0538
YC-13 1.7582 1.1525 2.6094 −1.2967 2.1727 2.0609
YC-14 1.6186 1.0885 3.1784 −0.5825 1.8114 1.7302
YC-15 1.6421 1.1908 4.7901 −1.3589 1.8019 1.7415

Average 1.6811 1.1402 3.4644 −0.9990 2.0207 1.9066

Semi-snowball-
textured

albite

YC-26 1.5010 1.1056 3.0812 −0.7106 1.5031 1.4325
YC-27 1.4350 1.1514 3.9009 −0.7469 1.6429 1.4895

Average 1.4680 1.1285 3.4910 −0.7288 1.5730 1.4610

Snowball-textured
albite

YC-16 1.6435 1.1772 2.7874 −0.8400 2.1933 2.0679
YC-17 1.6210 1.2128 3.6872 −1.5564 2.1624 2.0762
YC-18 1.6648 1.1684 3.5903 −0.6507 2.2799 2.1949
YC-19 1.5735 1.2008 3.0605 −1.3445 2.2126 2.1110
YC-20 1.5700 1.2208 2.9349 −1.3785 2.2424 2.1424
YC-21 1.6491 1.2582 3.4213 −1.0524 2.1445 2.0488
YC-22 1.6269 1.1812 2.2822 −0.9818 2.2500 2.1664
YC-23 1.6328 1.2071 3.3678 −0.9127 2.2508 2.1638

Average 1.6227 1.2033 3.1415 −1.0896 2.2170 2.1214

Outer albite crystal

YC-21 1.7305 1.2789 3.1526 −1.3348 1.8325 1.7693
YC-25 1.7186 1.2486 2.7577 −1.4705 1.8181 1.7745
YC-27 1.7772 1.2159 3.9384 −1.3343 1.9612 1.8913

Average 1.7421 1.2478 3.2829 −1.3799 1.8706 1.8117

Db: box-counting dimension; DPA: perimeter–area fractal dimension; ∆α: spectral width of the multifractal
spectrum; ∆f (α): difference between f (αmin) and f (αmax); D1: information dimension; D2: correlation dimension.

The spectra of the generalized fractal dimension (Dq) are illustrated in Figure 14.
Dq is negatively correlated with q, exhibiting an inverse S shape, which behaves as a
typical multifractal pattern [74]. D1 and D2, reflecting the degree of self-similarity of grain
distribution, were acquired from the Dq spectra [77], and indicate that quartz exhibits better
self-similarity than the other two minerals, according to the descending order of D1 and D2
values for quartz, lepidolite and albite (Table 2).

Figure 15 displays the relationship between f (α) and α(q), which shows a typical
bell shape. The width of the multifractal spectrum (∆α (∆α = αmax − αmin)) indicates
the heterogeneity of the probability distribution in the target fractal structure [78]. In
this regard, lepidolite, with the greatest value of 4.0810, is more heterogeneous in the
probability distribution than quartz (3.7804) and albite (3.4644). ∆f (α), which is calculated
as f (αmin) − f (αmax), reflects the asymmetry of the multifractal singularity spectrum [78]. If
∆f (α) > 0, it implies that the low-probability subset dominates the whole fractal set, and vice
versa. The values of ∆f (α) in this study are all negative, indicating that a high-probability
subset, i.e., fine grains in this study, dominates the fractal set of mineral grains.
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Figure 13. Results of the perimeter–area fractal analyses conducted in the log–log graph of perimeter
(P) versus area (A).
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Figure 14. Generalized fractal dimension spectra of quartz (a), lepidolite (b) and albite grains (c).
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Figure 15. Multifractal spectra of quartz (a), lepidolite (b) and albite grains (c).

All the fractal dimensions mentioned above can be used to depict different aspects of
mineral irregularity. Various combinations of these fractal dimensions were tested to seek
the best indicator for distinguishing the target minerals. The results indicate that Db and DPA
outperform other combinations of fractal indices in revealing the intrinsic morphological
features of quartz, lepidolite and albite. Two linear boundaries well distinguishing the
three target minerals can be drawn in a diagram with the x-axis of DPA versus the y-axis of
Db (Figure 16). Within this scenario, quartz points are plotted near the upper-right corner,
whereas albite points are located in the bottom-left corner. Lepidolite points are sandwiched
between the former two mineral points (Figure 16). Such distinct distribution patterns
suggest that a specific mineral can be distinguished from other minerals with the assistance
of quantitative fractal indices. This implication would benefit mineral identification, which
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plays a fundamental role in mineralogical research. Mineral identification has been boosted
by AI-driven intelligent classification in recent years [79–81]; however, its capability is
subject to the limited selection of features, which are mostly optical characteristics derived
from thin sections. An introduction of the proposed SAM-based framework and its resulting
fractal characterization can enhance the performance of intelligent mineral recognition.
First, image segmentation is a prerequisite step of mineral identification, which can be
significantly improved by employing the SAM, as mentioned above. Second, fractal
dimensions reflect inherent features of mineral morphology, which can be served as strong
input feature layers that enhance the generalization capability of machine learning-based
classification model. At last, the fractal dimensions provide a quantitative measurement
of target minerals, which can be readily integrated into the training dataset without any
data processing, thus avoiding the mixture of noise data that plausibly produced by
data processing.
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 Figure 16. DPA–Db schematic diagram for distinguishing target minerals and textures.

It should be noted that the fractal pattern varies according to the minerals derived
from different ore deposits, which are products of diverse ore-forming mechanisms. For
example, the distributions of quartz aggregates in granites derived from the Seveny pluton,
Central Kazakhstan and Aetyka pluton are characterized by Db values, which vary mostly
from 1.75 to 1.81 for standard granites, from 1.63 to 1.70 for alaskite granites and from
1.48 to 1.62 for amazonite granites [82]. According to quartz samples from five types of
mylonites within the foreland of the Moine Thrust Zone in NW Scotland, the values of
DPA vary from 1.20 to 1.60 with the increase in the degree of deformation [28]. It implies
that the morphological fractal indices attached to a specific formative environment can be
used to trace nonlinear behaviors in the process of mineral formation. In order to further
reveal such pattern-forming processes, the snowball texture, which is well recognized as a
striking symbol of highly evolved granites [42,43], is investigated in detail.

4.3. Fractal Results of Snowball Texture and Their Implication for Mineral Growth Mechanism

The snowball texture is ubiquitous in YCRMG. Snowball-textured albites have featured
fractal dimensions that differ from those of other albites (Figure 16 and Table 2). Compared
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with regular albites, the albite laths in the snowball texture have greater values of DPA and
lower values of Db (Figure 16). Among the snowball albites, some unmatured banding
textures are discernible, which can be referred to as “semi-snowball” textures (Figure 16).
The analytical results indicate that the Db values of albites in the semi-snowball texture
are much lower than those in the snowball texture. The above results imply that the
morphological fractal indices can be employed not only to distinguish the special mineral
texture from the regular form but also to quantitatively measure the maturity of the special
texture, which implies that the fractal dimensions may be closely related to the growth
processes of minerals.

Many previous studies have demonstrated that the growth of minerals is a fractal
process that results in a characteristic fractal dimension [83–86]. For example, the Diffu-
sion Limited Aggregation (DLA) model, proposed by Witten and Sander [85], has been
employed to simulate the process of mineral crystal growth [84]. The DLA model suggests
that the d-dimensional aggregates grow upon a single-seed particle, showing a fractal rela-
tionship in which the total number of particles (N) scales with the linear dimension (R) as
N ∝ RD(d), where D(d) is the fractal dimension [86]. Theoretically, D(d) is a universal quan-
tity given approximately by D(b) ≈ 5

6 d. As our study implemented in two-dimensional
images, D(d) is approximate to 1.67 [86]. This value may vary within a range of 1.6–1.7 in
practical calculations. It is interesting to note that the Db values of most snowball-textured
albites fall within the range between 1.6 and 1.7, where no lepidolite nor quartz occur
(Figure 16). Such result coincides with the fractal dimension yielded by the DLA model. Al-
though no modeling works have been conducted in the study area to simulate the mineral
growth processes, the clustered pattern together with the coincidence of identical fractal
dimensions imply that the snowball-textured albites grow in a kinetic manner which differs
from that of regular albites and other minerals in YCRMG.

In order to trace the footprints of the pattern-forming process, the banding of snowball
was divided into inner, middle and outer zones, based on which the fractal and multifractal
dimensions were calculated (Figure 17 and Table 3). The results indicate that the values of
all the fractal indices, including Db, D1, D2, ∆α and ∆f (α), strictly increase from core to rim,
forming a “fractal-index banding” in the radar diagram (Figure 17d). This finding implies
that the complexity of banded albite decreases from the outer spaces to the core zones.
In addition, it is commonly observed in YCRMG that the snowball quartz is commonly
enclosed by large albite crystals (Figures 2d and 17c). The fractal indices of these albites
were also calculated and are plotted in Figure 17d. The outer large albites have greater
values of fractal indices than the three zones of the snowball texture, with the exception of
the value of ∆α, which is smaller than that of the outer zones of the snowball texture.

The so-called “snowball quartz” is a common feature of rare-metal granites and is
considered an important indicator of the origin of its host rocks, but the origin of the
typical texture itself remains controversial [44,87–91]. As far as the “snowball quartz” in
YCRMG is concerned, Pollard adopted the currently popular magmatic perspective [43],
i.e., snowball-textured albite laths were simultaneously formed and then were included and
arranged along the growth zones by some more rapidly crystallized quartz phenocrysts,
while Wu et al. attributed it to metasomatic processes but suggested that snowball quartz
replaced the enclosed “tabular albite” [44]. Based on these two models, the albite grains
inside and outside the snowball quartz simultaneously formed, and both should have
identical morphological complexity, which is contrary to the results of this study. In
contrast, a two-phase model was proposed to explain the origin of the snowball texture
from a metasomatic perspective [92]. In the early phase, quartz metacrysts were formed
through self-purification, which squeezed out some alkaline inclusions confined to the
hexagon-zoned crystallographic orientations. In the second phase, the responsible fluids
supposedly flowed into the pre-existing metacrysts from rim to core through microfractures
and gradually reacted with and altered the zoned alkaline composition, leading to the
formation of albites that exhibit a zonal distribution identical to that of the pre-existing
hexagon-shaped oriented inclusions. In this interpretation, the degrees of morphological
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complexity and textural maturities among different zones of the snowball texture are
uneven. The outer zones have experienced more plentiful fluids and longer durations
of alteration and thus have greater fractal indices, which represent higher complexity
of evolved texture, which explains the variation law of fractal dimensions from rim to
core. Therefore, the results of our study support the two-phase metasomatic origin of
the snowball texture. In fact, evidence of hydrothermal fluid activity has been widely
identified in rare-metal granites [91], and the fluid role in rare-metal mineralization has been
highlighted by many scholars [44,91], regardless of their basic magmatic or metasomatic
points of view. This recognition enables our explanation model linking fractal characteristics
with fluid activity to be more compatible with future updated models.

Our findings prove that fractal-index quantification provides valuable references for
tracing and understanding the formation process of the snowball texture. This application
can be extended to broader fields of granite-related mineralogical research. The origin of
granite has been discussed for dozens of years and is considered a puzzling topic in geology,
and the investigation of mineral texture is exactly one of the keys to this significant issue.
In addition to the snowball texture, other mineral textures of granite, such as myrmekitic
texture, perthitic texture and graphic texture, have also attracted great attention due to
their implications for revealing mechanisms of diagenesis and/or metamorphism [93]. The
fractal characterization resulted from the proposed framework contributes to interpreting
evolving behaviors of the complex textures in a quantitative manner, which would enrich
the thoughts of mineralogical study and facilitate the research progress on granite genesis.
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Figure 17. (a) Original photomicrograph of the snowball texture. (b) Annotated image of snowball-
textured albites. (c) Zoning of snowball-textured albites. (d) Radar diagram of resultant fractal
dimensions of different albite zones.
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Table 3. Results of fractal analyses on albites in different zones of snowball texture.

Zoning Sample ID Db ∆α ∆f (α) D1 D2

Inner zone

YC-21 1.3168 2.0766 −0.5948 1.1512 1.0712
YC-22 1.3259 3.2804 −0.4891 1.2138 1.1212
YC-23 1.4291 2.7697 −0.8997 1.3692 1.2596
YC-24 1.3202 1.5866 −0.2938 0.9795 0.8920
YC-25 1.3601 3.3444 −0.2003 1.2696 1.1309
YC-26 1.2109 1.6502 −0.3798 0.7395 0.7140
YC-27 1.2721 3.1262 −0.3271 0.7104 0.6259

Average 1.3193 2.5477 −0.4549 1.0619 0.9736

Middle zone

YC-21 1.4161 3.2073 −0.7647 1.4904 1.3914
YC-22 1.4417 3.3638 −1.0268 1.6271 1.5178
YC-23 1.4138 3.1278 −0.8177 1.6782 1.5823
YC-24 1.4799 2.7211 −0.4022 1.4465 1.3136
YC-25 1.4252 2.9262 −0.4841 1.5103 1.4107
YC-26 1.3576 2.4595 −0.5084 1.0671 1.0271
YC-27 1.2612 3.7482 −0.4169 1.0755 0.9600

Average 1.3994 3.0791 −0.6316 1.4136 1.3147

Outer zone

YC-21 1.5966 4.0408 −0.9953 1.8990 1.7912
YC-22 1.5581 2.9119 −0.6970 1.9871 1.8856
YC-23 1.5521 3.9871 −0.9293 1.9166 1.8190
YC-24 1.5405 4.8781 −0.4483 1.6594 1.4951
YC-25 1.5045 4.1987 −1.1991 1.7692 1.6764
YC-26 1.3969 4.3164 −0.9015 1.3166 1.2190
YC-27 1.3304 3.3981 0.0256 1.3237 1.0867

Average 1.4970 3.9616 −0.7350 1.6959 1.5676

Outer albite
crystal

YC-21 1.7305 3.1526 −1.3348 1.8325 1.7693
YC-25 1.7186 2.7577 −1.4705 1.8181 1.7745
YC-27 1.7772 3.9384 −1.3343 1.9612 1.8913

Average 1.7421 3.2829 −1.3799 1.8706 1.8117
* Db: box-counting dimension; ∆α: spectral width of the multifractal spectrum; ∆f (α): difference between f (αmin)
and f (αmax); D1: information dimension; D2: correlation dimension.

5. Conclusions

Fractal-based recognition and quantification of mineral grains are significant for
characterizing morphological properties and distribution patterns. However, this task
is challenging due to the time-consuming manual annotation of minerals, which is a
prerequisite for fractal calculation. In this study, a large model is introduced to build
a framework for the automatic annotation of mineral grains. The results demonstrate
its feasibility in photomicrograph processing due to (1) the subtle Db error of only 0.6%
compared with manual annotation and (2) scaling invariance at the micro-scale ranging
from 1.04 to 52,300 µm, which allows for good representativeness of Db calculated from
automatic annotation.

A series of fractal and multifractal analyses were conducted based on the proposed
automatic framework. The resulting indices depict different perspectives of fractal irregu-
larities of target mineral grains. Db and DPA, which serve as indicators of the inhomogeneity
of mineral grain distribution and the irregularity degree of grain boundaries, exhibit the
descending order of quartz > lepidolite > albite. D1 and D2 also yield identical patterns, re-
flecting that quartz has better self-similarity of grain distribution than lepidolite and albite.
The multifractal spectrum indicates that lepidolite is more heterogeneous in the probability
distribution than quartz and albite. In addition, fine grains dominate the fractal set of
mineral grains according to the negative values of ∆f (α). The three studied minerals can be
well distinguished by their intrinsic morphological characteristics in a DPA–Db diagram, in
which lepidolites are sandwiched between upper-right quartz and bottom-left albites.

The snowball texture, which is recognized as a striking symbol of highly evolved
granites, was investigated in detail to reveal pattern-forming processes. Snowball-textured
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albites exhibit characteristic Db values ranging from 1.6 to 1.7, which differ from regular
albites and coincide with fractal indices derived from the fractal growth model. The
fractal indices, including Db, D1, D2, ∆α and ∆f (α), strictly decrease from rim to core,
suggesting that the outer zones have higher complexity and maturity of the evolving system.
This finding may be attributed to a gradual evolving process related to the responsible
fluids flowing from rim to core, resulting in the formation of zonal albites with different
morphological irregularities, which supports a metasomatic origin of snowball texture.

The findings of this study demonstrate the effectiveness and efficiency of the proposed
framework in characterizing mineral morphology and distribution patterns. Future at-
tempts can be made to broaden its applications in image-related mineralogical research
ranging from regional-scale mineral mapping to micron-scale mineral annotation. The
resulting fractal indices reflect the inherent morphological features of mineral grains and
thus can be readily integrated into intelligent systems for mineral identification, enhancing
the generalization capability of AI-driven classification models. Future efforts can also be
made to deepen the findings of this study by transferring the framework to other com-
plex mineral textures in the granites, so as to facilitate the understanding of rock-forming
and ore-forming processes. Furthermore, we provide the open-access code designed to
implement the proposed framework on an online repository, encouraging further and
broader applications of SAM-based segmentation and fractal-index quantification in the
geological domain.
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