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Abstract: Controllability is a fundamental issue in the field of fractional complex network control,
yet it has not received adequate attention in the past. This paper is dedicated to exploring the
controllability of complex networks involving the Caputo fractional derivative. By utilizing the
Cayley–Hamilton theorem and Laplace transformation, a concise proof is given to determine the
controllability of linear fractional complex networks. Subsequently, leveraging the Schauder Fixed-
Point theorem, controllability Gramian matrix, and fractional calculus theory, we derive controllability
conditions for nonlinear fractional complex networks with a weighted adjacency matrix and Laplacian
matrix, respectively. Finally, a numerical method for the controllability of fractional complex networks
is obtained using Matlab (2021a)/Simulink (2021a). Three examples are provided to illustrate the
theoretical results.
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1. Introduction

In recent decades, due to the widespread existence of complex networks in nature and
society, complex networks have been undergoing a period of rapid development in various
interdisciplinary research fields, particularly in engineering [1], mathematics [2], physics [3],
biology [4] and other related areas. The ultimate goal of researching complex networks
is to control them to facilitate our lives. Despite significant efforts being dedicated to
comprehending the interactions between complex networks and their dynamic behaviors,
controlling these networks remains a prominent challenge [5].

In order to establish a framework for controlling complex networks, a fundamental
and essential step is to study their controllability. Controllability ensures that by manipu-
lating a subset of nodes with appropriate control inputs, every node within the network
can be steered to the desired state [6,7]. Many scholars from the fields of control, physics,
and mathematics [8–11] have been inspired by the pioneering paper on the controllability
of complex networks [12]. Liu et al. [8] analyzed the controllability of discrete-time dy-
namic networks with both switching and fixed interaction topologies. Cai [9] utilized the
condition number of a matrix as a metric to quantitatively assess controllability. Chen [10]
incorporated pinning control strategies into the study of controllability in directed net-
works. Meanwhile, Whalen et al. [11] developed a group representational framework to
tackle the controllability of nonlinear networks that exhibit explicit symmetries.

Due to its memory and hereditary properties, fractional calculus has garnered con-
siderable attention across various scientific fields and is widely adopted in science and
engineering [13–20]. Fractional operators have been integrated into traditional complex
networks, significantly improving model accuracy. It is worth noting that while the control-
lability of integer-order complex networks is relatively mature, the controllability results of
fractional networks are still in their infancy. Some papers have addressed the controllability
of fractional systems [21–25], but only a few papers have delved into the controllability of
fractional complex networks because of their inherent complexity and long memory charac-
teristics. Zhang et al. [26] examined the controllability of linear fractional directed complex
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networks, and subsequently, they [27] extended this work to explore the controllability of
linear fractional dynamical networks with specific topological structures. However, given
the ubiquitous nature of nonlinearity, it is imperative to consider the control of fractional
complex networks with nonlinear dynamics. As far as we know, no research has yet been
explored on the controllability of nonlinear fractional complex networks.

Motivated by the above analysis, this manuscript aims to address the controllability
issues for fractional complex networks through rigorous mathematical theory. The dis-
tinctive contributions are summarized as follows: (i) A concise technique is established to
prove the controllability of fractional complex networks with linear dynamic behavior. This
allows the controllability of similar networks to be easily determined. (ii) For the first time,
nonlinear fractional complex networks with weighted adjacency matrices or Laplacian
matrices are shown to be controllable, effectively making up for the deficiency left by
existing methods. (iii) Matlab/Simulink is used to obtain a numerical implementation
for the controllability of fractional complex networks. Three examples are presented to
validate theoretical results.

The remainder of this paper is outlined as follows: Section 2 recalls necessary defini-
tions and Lemmas, Section 3 provides a more concise proof, Section 4 contains the main
results, Section 5 presents three corresponding examples, and finally, a brief conclusion
is given.

2. Preliminaries

This section presents algebraic graph theory and some necessary theories since we
will use them later.

A graph is defined by G = (V,E), where V = {v1, v2, . . . , vN} and E = {(vj, vi), vj,
vi ∈ V} ⊂ V×V denote node sets and link sets, respectively. Additionally, (vj, vi) ∈ E
represents a link from node vj to node vi. The concepts of a directed graph, undirected
graph, and adjacency matrix can be found in [28–30].

Definition 1 ([31]). The Caputo fractional derivative of order p of a function f is defined by

CD
p
0,t f (t) = 1

Γ(n−p)

∫ t
0 (t − ς)n−p−1 f (n)(ς)dς, (1)

where n − 1 < p ≤ n ∈ N and Γ(·) is the Gamma function.

Definition 2 ([6]). The two-parameter Mittag–Leffler matrix function for a matrix A ∈ RN×N is
defined as

Ep,q(A) =
∞

∑
k=0

Ak

Γ(pk + q)
, p, q > 0.

Note that when q = 1, Ep,1(A) = Ep(A) becomes a one-parameter Mittag–Leffler matrix function.
Additionally, the Laplace transform of tq−1Ep,q(±Atp) is given by

L
{

tq−1Ep,q(±Atp); s
}
= sp−q

sp I∓A .

Lemma 1 ([32]). For n − 1 < p ≤ n ∈ N, the Laplace transform of Caputo fractional derivative is
given by

L
{

CD
p
0,t f (t); s

}
= spF(s)−

n−1
∑

k=0
sp−k−1 f (k)(0). (2)

In particular, if 0 < p ≤ 1, then

L
{

CD
p
0,t f (t); s

}
= spF(s)− sp−1 f (0), (3)

where F(s) = L{ f (t); s}.
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Lemma 2 (Schauder Fixed-Point theorem [33]). Let M be a non-empty, closed, bounded, convex
subset of a Banach space X. Suppose G : M → M is a compact operator, then G has a fixed point.

3. Controllability Analysis of Linear Fractional Complex Networks

In this part, a fractional complex network with linear dynamic behavior is described
as follows:

CD
p
0,txi(t) = cixi(t) +

N

∑
j=1

aijxj(t) +
m

∑
k=1

bikuk(t), i = 1, 2, · · · , N, (4)

in which 0 < p ≤ 1, xi(t) ∈ R represents the state of the node i, cixi(t) denotes the intrinsic
dynamics, and aij ≥ 0 denotes the weight of the network. Here, m represents the number
of controllers and uk(t) ∈ R is the outer controller. For example, the uk(t) can stand for
the command from a leader in a social network or the signal from equipment in a sensor
network. bik represents the signal strength of the outer controller.

Let x(t) = [x1(t), x2(t), · · · , xN(t)]
T ∈ RN be the whole state of the network (4), and

u(t) = [u1(t), u2(t), · · · , um(t)]
T ∈ Rm be the total outer controller. The linear network (4)

can be reformulated as

CD
p
0,tx(t) = (A + C)x(t) + Bu(t), (5)

where A represents the weighted (unweighted) adjacency matrix, C = diag{c1, c2, . . . , cN},
and B ∈ RN×m stands for the control matrix.

Definition 3 ([7]). For a finite time t f , any initial state x(0) = x0 ∈ RN and any final state

x(t f ) = xt f ∈ RN , if there exists a controller u(t), t ∈ I =
[
0, t f

]
that satisfies x(t f , x0, u(t)) =

xt f , then the linear fractional complex network (4) is called controllable on I.

Lemma 3 ([34]). The linear fractional complex network (4) is controllable if the controllability
Gramian matrix

WF =
∫ t f

0
Ep,p((A + C)(t f − ς)p)BB∗Ep,p((A + C)∗(t f − ς)p)dς (6)

is invertible.

For the linear fractional complex network (4), a controllability result is proposed in [26],
but we give a more concise proof below.

Theorem 1. The fractional complex network (4) is controllable if N × (Nm) controllability matrix

QF =
[
B, (A + C)B, · · · , (A + C)N−1B

]
(7)

is of full rank, which is rank(QF) = N.

Proof. Using the Cayley–Hamilton theorem [35], one gets

(A + C)s =
N−1
∑

k=0
as

k(A + C)k, s = N, N + 1, . . . , ∞. (8)
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It immediately follows from (8) that

tp−1Ep,p((A + C)tp) =
N−1

∑
k=0

tpk+p−1

Γ(pk + p)
(A + C)k +

∞

∑
k=N

tpk+p−1

Γ(pk + p)
(A + C)k

=
N−1

∑
k=0

φk(t)(A + C)k,

(9)

where φk(t) = tpk+p−1

Γ(pk+p) + ∑∞
s=N

tps+p−1

Γ(ps+p) as
k, k = 0, 1, . . . , N − 1.

By virtue of Laplace transformation and inverse Laplace transformation, the solution
of (5) can be derived as follows:

x(t) = Ep((A + C)tp)x0 +
∫ t

0
(t − ς)p−1Ep,p((A + C)(t − ς)p)Bu(ς)dς. (10)

When t = t f , from (9) and (10), one has

x(t f ) = Ep((A + C)tp
f )x0 +

∫ t f

0
(t f − ς)p−1Ep,p((A + C)(t f − ς)p)Bu(ς)dς

= Ep((A + C)tp
f )x0 +

N−1

∑
k=0

∫ t f

0
φk(t f − ς)(A + C)kBu(ς)dς.

(11)

Let
Ψ = Ep((A + C)tp

f )x0. (12)

Then, applying (11) and (12) leads to

x(t f )− Ψ =
N−1

∑
k=0

(A + C)kB
∫ t f

0
φk(t f − ς)u(ς)dς

=
[

B, (A + C)B, · · · , (A + C)N−1B
]



ξ0
ξ1
...

ξN−1


,

(13)

in which ξk =
∫ t f

0 φk(t f − ς)u(ς)dς, k = 0, 1, · · · , N − 1. Note that for any x0 and xt f in RN ,
the adequacy and necessity condition with an external controller vector u(t) satisfying (13)
is that

rank
[
B, (A + C)B, · · · , (A + C)N−1B

]
= N. (14)

The theorem is, thus, proved. □

Remark 1. Noticeably, the linear fractional complex network (4) denoted by a pair of matrices
(A + C, B) is controllable if the rank of QF equals N. In particular, Theorem 1 is also true for
network (5) with matrix C = 0, i.e., when it (5) degenerates into

CD
p
0,tx(t) = Ax(t) + Bu(t), (15)

a pair of (A, B) is controllable as well.

4. Controllability Analysis of Nonlinear Fractional Complex Networks

Complex networks with different topology structures can describe different connection
relationships in complex worlds. This section mainly focuses on nonlinear fractional
complex networks with a weighted adjacency matrix and Laplacian matrix.
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4.1. Nonlinear Networks Represented by a Weighted Adjacency Matrix

Consider a nonlinear fractional complex network with a weighted adjacency matrix
depicted by

CD
p
0,txi(t) = fi(x(t)) +

N

∑
j=1

aijxj(t)+
m

∑
k=1

bikuk(t), i = 1, 2, · · · , N, (16)

where 0 < p ≤ 1, xi(t) ∈ R expresses the state of node i. aij ≥ 0 denotes the weight of
a link (j, i), m represents the number of controllers, uk(t) ∈ R is the outer controller, and
fi(x(t)) : RN → R is the nonlinear continuous function.

The nonlinear fractional complex network (16) can be recast into the following
vector form

CD
p
0,tx(t) = f (x(t)) + Ax(t) + Bu(t). (17)

Here, x(t) = [x1(t), x2(t), · · · , xN(t)]
T ∈ RN expresses the state vector; u(t) = [u1(t), u2(t),

· · · , um(t)]T ∈ Rm represents the total outer controller; A = (aij)N×N stands for the
weighted adjacency matrix; B = (bik)N×m represents the control matrix; f (x(t)) = [ f1(x(t)),
f2(x(t)), . . . , fN(x(t))]T : RN → RN is the nonlinear vector function.

Similar to Definition 3, the definition of controllability for network (16) can also
be given.

Henceforth, let us make the following assumptions:
(A1) There is a positive constant M that satisfies

∥ f (x(t) ∥ ≤ M, for t ∈ I.

(A2) The vector function f (x(t)) that is nonlinear meets the Lipschitz condition in
vector form as follows:

∥ f (x(t))− f (y(t)) ∥ ≤ k ∥ x(t)− y(t) ∥,

where k > 0, t ∈ I, and x(t), y(t) ∈ RN are any vectors.
(A3) Let

a1 = sup
t,ς∈I

{∥Ep,p(A(t − ς)p)∥},

a2 = sup
t,ς∈I

{|(t − ς) p−2|∥Ep,p−1(A(t − ς)p)∥},

a3 = sup
t∈I

{|tp−1|∥ A Ep,p(Atp)x0 ∥},

b1 = ∥ B ∥∥B∗∥∥W−1
F ∥, b2 = max

t∈I
{∥Ep(Atp)x0 ∥},

b3 = ∥ y1 ∥+ b2, c1 = a3
1b1 p−1tp+1

f k,

c2 =
a2

1a2

p(2 − p)
b1t2

f k, r = max{r1, r2, 1},

r1 = b2 + a1 p−1tp
f M + a2

1t f b1(b3 + a1 p−1tp
f M),

r2 =
t1−p

f

Γ(2 − p)
(a3 + a2t f M +

a1a2

2 − p
b1t2−p

f (b3 + a1 p−1tp
f M)).

Theorem 2. Assume that conditions (A1)–(A3) are satisfied and system (15) is controllable, then
the nonlinear fractional complex network (16) with a weighted adjacency matrix is controllable on I.
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Proof. Give a Banach space

X =
{

x(t) : x′(t) ∈ C(I,RN) and CD
p
0,tx(t) ∈ C(I,RN)

}
,

which is endowed with the norm

∥ x(t) ∥X = max{∥ x(t) ∥, ∥CD
p
0,tx(t)∥}.

By utilizing (15), it is possible to construct a controller u(t) that can regulate any x(t). In
this case, the controller u(t) can be constructed as

u(t) = (t f − t)1−pB∗Ep,p(A∗(t f − t)p)W−1
F

[
y1 − Ep(Atp

f )x0

−
∫ t f

0
(t f − ς)p−1Ep,p(A(t f − ς)p) f (x(ς))dς

]
.

(18)

Now, we will prove that the nonlinear operator G : X → X has a fixed point, which is also
a solution of (17). The G is designed as

(Gx)(t) = Ep(Atp)x0 +
∫ t

0
(t − ς)p−1Ep,p(A(t − ς)p) f (x(ς))dς

+
∫ t

0
(t − ς)p−1Ep,p(A(t − ς)p)Bu(ς)dς.

(19)

Substituting (18) into (19) yields

(Gx)(t) = Ep(Atp)x0 +
∫ t

0
(t − ς)p−1Ep,p(A(t − ς)p) f (x(ς))dς

+
∫ t

0
(t − ς)p−1Ep,p(A(t − ς)p)BB∗(t f − ς)1−p

×Ep,p(A∗(t f − ς)p)W−1
F

[
y1 − Ep(Atp

f )x0

−
∫ t f

0
(t f − ω)p−1Ep,p(A(t f − ω)p) f (x(ω))dω

]
dς.

(20)

If the nonlinear operator G satisfies (Gx)(t) = x(t), then (Gx)(t f ) = x(t f ) = y1 in
view of Lemma 3; that is, the nonlinear fractional complex network (16) can be steered
from initial state x0 to desired final state y1 by the controller u(t) within a finite time t f . By
assuming (A3) and using Equation (20), it is true that

∥ (Gx)(t) ∥ ≤ r1. (21)

Taking into account derivatives of (Gx)(t), one gets

∥ (Gx)
′
(t) ∥ ≤ r2tp−1

f Γ(2 − p). (22)

From (22), it follows that

∥ CD
p
0,t(Gx)(t) ∥ ≤ 1

Γ(1 − p)

∫ t

0
∥ (t − ς)−p∥∥ (Gx)

′
(ς) ∥ dς

= r2.
(23)

Define the subspace of X as Br = {x(t) ∈ X :∥ x(t) ∥X ≤ r}. It is easy to see that the set Br
is closed, bounded and convex. Let x(t) ∈ Br, from (21) and (23), one has



Fractal Fract. 2024, 8, 43 7 of 16

∥ (Gx)(t) ∥X = max{∥ (Gx)(t) ∥, ∥CD
p
0,t(Gx)(t)∥} ≤ r.

Thus, we obtain that the G maps Br into itself.
In what follows, we will prove that the G is continuous on Br. Let {xn(t)} be a

sequence of functions in Br with

∥ xn (t)− x(t) ∥→ 0 as n → ∞, t ∈ I.

It can be deduced directly that

∥ (Gxn)(t)− (Gx)(t) ∥

≤ ∥
∫ t

0
(t − ς)p−1Ep,p(A(t − ς)p)( f (xn(ς))− f (x(ς)))dς ∥

+ ∥
∫ t

0
(t − ς)p−1Ep,p(A(t − ς)p)BB∗(t f − ς)1−pEp,p(A∗(t f − ς)p)

× W−1
F

[∫ t f

0
(t f − ω)p−1Ep,p(A(t f − ω)p) ( f (xn(ω))− f (x(ω)))dω

]
dς ∥

≤ a1 p−1tp
f k max

t∈I
{∥ xn(t)− x(t) ∥}+ c1 max

t∈I
{∥ xn(t)− x(t)∥}

= (a1 p−1tp
f k + c1)max

t∈I
{∥ xn(t)− x(t)∥}

(24)

and

∥ (Gxn)
′
(t)− (Gx)

′
(t) ∥

≤ ∥
∫ t

0
(t − ς)p−2Ep,p−1(A(t − ς)p)( f (xn(ς))− f (x(ς))dς ∥

+ ∥
∫ t

0
(t − ς)p−2Ep,p−1(A(t − ς)p)BB∗(t f − ς)1−pEp,p(A∗(t f − ς)p)

× W−1
F

[∫ t f

0
(t f − ω)p−1Ep,p(A(t f − ω)p) ( f (xn(ω))− f (x(ω)))dω

]
dς ∥

≤ a2t f k max
t∈I

{∥ xn(t)− x(t) ∥}+ c2 max
t∈I

{∥ xn(t)− x(t)∥}

= (a2t f k + c2)max
t∈I

{∥ xn(t)− x(t)∥}.

(25)

From (25), one obtains

∥ CD
p
0,t(Gxn)(t)− CD

p
0,t(Gx)(t) ∥

= ∥ 1
Γ(1 − p)

∫ t

0
(t − ς)−p((Gxn)

′
(ς)− (Gx)

′
(ς))dς ∥

≤
t1−p

f

Γ(2 − p)
(a2t f k + c2)max

t∈I
{∥ xn(t)− x(t)∥}.

(26)

Combining (24) and (26) yields

∥ (Gxn)(t)− (Gx)(t) ∥X

= max
{
∥ (Gxn)(t)− (Gx)(t) ∥, ∥ CD

p
0,t(Gxn)(t)− CD

p
0,t(Gx)(t) ∥

}
→ 0 as n → ∞.

Thus, the nonlinear operator G is continuous on Br.
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Furthermore, we will demonstrate that the set G(Br) is relatively compact. Given that
x(t) ∈ Br, t, τ ∈ I, 0 < t < τ < t f , it is shown that

∥ (Gx)(t)− (Gx)(τ) ∥

≤∥ Ep(Atp)− Ep(Aτp)∥∥x0∥ + ∥
∫ t

τ
(t − ς)p−1Ep,p(A(t − ς)p) f (x(ς))dς ∥

+ ∥
∫ τ

0

[
(t − ς)p−1Ep,p(A(t − ς)p)− (τ − ς)p−1Ep,p(A(τ − ς)p)

]
f (x(ς))dς ∥

+ ∥
∫ t

τ
(t − ς)p−1Ep,p(A(t − ς)p)BB∗(t f − ς)1−pEp,p(A∗(t f − ς)p)

× W−1
F

[
y1 − Ep(Atp

f )x0 −
∫ t f

0
(t f − ω)p−1Ep,p(A(t f − ω)p) f (x(ω))dω

]
dς ∥

+ ∥
∫ τ

0

[
(t − ς)p−1Ep,p(A(t − ς)p)− (τ − ς)p−1Ep,p(A(τ − ς)p)

]
BB∗

× (t f − ς)1−pEp,p(A∗(t f − ς)p)W−1
F

[
y1 − Ep(Atp

f )x0

−
∫ t f

0
(t f − ω)p−1Ep,p(A(t f − ω)p) f (x(ω))dω

]
dς ∥

and

∥ CD
p
0,t(Gx)(t)− CD

p
0,t(Gx)(τ) ∥

≤ 1
Γ(1 − p)

(∥
∫ t

τ
(t − ς)−p(Gx)

′
(ς)dς ∥ + ∥

∫ τ

0

[
(t − ς)−p − (τ − ς)−p](Gx)

′
(ς)dς ∥).

Clearly, one has

∥ (Gx)(t)− (Gx)(τ) ∥X

= max
{
∥ (Gx)(t)− (Gx)(τ) ∥, ∥ CD

p
0,t(Gx)(t)− CD

p
0,t(Gx)(τ) ∥

}
→ 0 as t → τ.

As a result, G(Br) is equicontinuous, and it is not difficult to obtain that G(Br) is
uniformly bounded. By applying the well-known Arzelà–Ascoli theorem [33], the set
G(Br) is relatively compact. Moreover, since the nonlinear operator G is continuous on
the bounded set Br in X and maps it into the relatively compact set G(Br) in X, it can be
conluded that G is compact. According to Lemma 2, the nonlinear operator G exists at a
fixed point, which means the nonlinear fractional complex network (16) is controllable.
This concludes the demonstration of Theorem 2. □

Remark 2. The nonlinear fractional complex network (16) represented by a pair (A, B, f ) is
controllable if the system (A, B) is controllable and conditions (A1)–(A3) hold.

4.2. Nonlinear Networks Represented by a Laplacian Matrix

A nonlinear fractional complex network with a Laplacian matrix can be described
as follows:

CD
p
0,txi(t) = fi(x(t)) +

N

∑
j=1

aij(xj(t)− xi(t))+
m

∑
k=1

bikuk(t), i = 1, 2, · · · , N, (27)

in which all parameters represent the same meaning as (16).
The nonlinear network (27) can be recast as follows:

CD
p
0,tx(t)= f (x(t))− Lx(t) + Bu(t), (28)
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in which L = D − A is the Laplacian matrix of network (27), D = diag{d1, d2, . . . , dN}, and
di = ∑N

j=1,j ̸=i aij is the out-degree of node i.

Theorem 3. If A is replaced by −L, conditions (A1)–(A3) are true and system (15) is controllable,
then network (27) with the Laplacian matrix can be controlled over interval I.

Proof of Theorem 3. Similar to Theorem 2, Theorem 3 can be proved. Therefore, the proof
is omitted here. □

5. Numerical Implementation

In this part, a numerical algorithm is given to demonstrate the controllability of the
networks mentioned above with the help of the FOTF Toolbox [36]. Based on the maximum
matching method [12], the minimum of the driven nodes of fractional complex networks
can be obtained. For convenience, we take fractional order p = 0.5 and the final time t f = 1.

Before the simulation, we will state two facts that are used to build the Matlab/Simulink
simulation model.

Firstly, the control function u in (18) can be written as u(t) = g(t)·h(t), where

g(t) = (t f − t)1−pB∗Ep,p(A∗(t f − t)p)W−1
F

and
h(t) = y1 − Ep(Atp

f )x0 −
∫ t f

0 (t f − ς)p−1Ep,p(A(t f − ς)p) f (x(ς))dς.

The Simulink simulation model corresponding to control u is shown in Figure 1. Here,
the Interpreted Matlab Function 1 and Interpreted Matlab Function 2 blocks are Mat-
lab functions of g(t) and h(t), respectively. The integral in h(t) is computed using the
trapezoidal formula.
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Secondly, the Caputo derivative Simulink block is constructed using the Riemann–
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grator block. As we can see in Figure 2, by connecting a Riemann–Liouville differentiator
of order 0.7 to y′(t), the CD0.3

0,t y(t) signal can be defined.
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Example 1. Consider a linear fractional complex network (4) comprising two nodes. The weighted
adjacency matrix, control matrix, and diagonal matrix are presented as

A =

[
0 1

2
0 0

]
, B =

[
0
2

]
, C =

[
0 0
0 1

2

]
,

respectively. In the light of Theorem 1, the fractional complex network (4) with linear dynamic
behavior can be controlled. Specifically, we used the Matlab/Simulink method. The block diagram of
the simulation is depicted in Figure 3.
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Here, the initial and final values of nodes v1 and v2 are taken as [x1(0), x2(0)]
T = [0,−1]T

and y1 = [x1(1), x2(1)]
T = [2 + 0.3k, 2 + 0.3k]T , k = 1, 2, . . . , 5, respectively. It is known that

the Mittag–Leffler matrix function for matrix A + C can be written as

E0.5,0.5((A + C)t0.5) =

[
M2

1(t) M1(t)M2(t)
M1(t)M2(t) M2

2(t)

]
,

where M1(t) = E0.5,0.5(0.5t0.5)− 1√
π

and M2(t) = E0.5,0.5(0.5t0.5). The Gramian matrix of the
network (4) is

WF =
∫ 1

0
E0.5,0.5((A + C)(1 − ς)0.5)BB∗E0.5,0.5((A + C)∗(1 − ς)0.5)dς

= 4
∫ 1

0

[
M2

1(1 − ς) M1(1 − ς)M2(1 − ς)
M1(1 − ς)M2(1 − ς) M2

2(1 − ς)

]
dς

=

[
1.4507 2.6830
2.6830 5.1886

]
.

Using Matlab/Simulink, the controlled trajectories x1(t), x2(t) and steering control

u(t) = (1 − t)0.5B∗E0.5,0.5(A∗(1 − t)0.5)W−1
F [y1 − E0.5(A)x0]

are computed and are depicted in Figures 4 and 5. Then, we can see that a linear fractional complex
network with two nodes can be steered from the initial value [0,−1]T to the desired value y1.
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Example 2. Consider a nonlinear fractional complex network (16) comprising two nodes, where
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respectively. According to Remark 1, the system (A, B) is controllable, which means that a non-
linear network (16) with a weighted adjacency matrix is controllable. To be specific, we used the
Matlab/Simulink method. The block diagram of the simulation is depicted in Figure 6.
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Example 2. Consider a nonlinear fractional complex network (16) comprising two nodes, where
weighted adjacency matrix, control matrix, and nonlinear function f (x(t)) satisfying conditions
(A1)–(A3) are given as follows:

A =

[
0 1

2
1
2 0

]
, B =

[
0
2

]
, f (x(t)) =

[
0

1
10 cos(x2(t))

]
,

respectively. According to Remark 1, the system (A, B) is controllable, which means that a non-
linear network (16) with a weighted adjacency matrix is controllable. To be specific, we used the
Matlab/Simulink method. The block diagram of the simulation is depicted in Figure 6.
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Here, the initial and final values of nodes v1 and v2 are taken as [x1(0), x2(0)]
T = [1,−1]T

and z1 = [x1(1), x2(1)]
T = [2 + 0.5k, 1 + 0.5k]T , k = 1, 2, . . . , 5, respectively. It is known that

the Mittag–Leffler matrix function for a given matrix A can be written as

E0.5,0.5(At0.5) =

[
M2

2(t) M1(t)M2(t)
M1(t)M2(t) M2

1(t)

]
,

where
M1(t) =

1
2

[
E0.5,0.5(0.5t0.5) + E0.5,0.5(−0.5t0.5)

]

and
M2(t) =

1
2

[
E0.5,0.5(0.5t0.5)− E0.5,0.5(−0.5t0.5)

]
.

The corresponding Gramian matrix of network (16) is

WF =
∫ 1

0
E0.5,0.5(A(1 − ς)0.5)BB∗E0.5,0.5(A∗(1 − ς)0.5)dς

= 4
∫ 1

0

[
M2

2(1 − ς) M1(1 − ς)M2(1 − ς)
M1(1 − ς)M2(1 − ς) M2

1(1 − ς)

]
dς

=

[
0.7026 1.1814
1.1814 2.1232

]
.

Using Matlab/Simulink, the controlled trajectories x1(t), x2(t) and steering control

u(t) = (1 − t)0.5B∗E0.5,0.5(A∗(1 − t)0.5)W−1
F [z1 − E0.5(A)x0

−
∫ 1

0
(1 − ς)−0.5E0.5,0.5(A(1 − ς)0.5) f (x(ς))dς]

are computed and are depicted in Figures 7 and 8. Then, we can see that the nonlinear network with
two nodes can be steered from the initial value [1,−1]T to the desired value z1.

Example 3. Consider a nonlinear fractional directed network (27) with a Laplacian matrix. The
Laplacian matrix, control matrix, and nonlinear function f (x(t)) satisfying conditions (A1)–(A3)
are given as

L =

[
0.5 0
−0.5 0

]
, B =

[
1
0

]
, f (x(t)) =

[ 1
100 cos(x2(t))

0

]
,

respectively. On the basis of Remark 1, the system (−L, B) is controllable, which indicates that a
nonlinear directed network (27) with a Laplacian matrix is controllable. Concretely, we used the
Matlab/Simulink method. The block diagram of the simulation is depicted in Figure 9.



Fractal Fract. 2024, 8, 43 13 of 16

Fractal Fract. 2024, 1, 0 12 of 16

Here, the initial and final values of nodes v1 and v2 are taken as [x1(0), x2(0)]T = [1,−1]T

and z1 = [x1(1), x2(1)]T = [2 + 0.5k, 1 + 0.5k]T , k = 1, 2, . . . , 5, respectively. It is known that
the Mittag–Leffler matrix function for a given matrix A can be written as

E0.5,0.5(At0.5) =

[
M2

2(t) M1(t)M2(t)
M1(t)M2(t) M2

1(t)

]
,

where
M1(t) =

1
2
[E0.5,0.5(0.5t0.5) + E0.5,0.5(−0.5t0.5)]

and
M2(t) =

1
2
[E0.5,0.5(0.5t0.5)− E0.5,0.5(−0.5t0.5)].

The corresponding Gramian matrix of network (16) is

WF =
∫ 1

0
E0.5,0.5(A(1 − ς)0.5)BB∗E0.5,0.5(A∗(1 − ς)0.5)dς

=4
∫ 1

0

[
M2

2(1 − ς) M1(1 − ς)M2(1 − ς)
M1(1 − ς)M2(1 − ς) M2

1(1 − ς)

]
dς

=

[
0.7026 1.1814
1.1814 2.1232

]
.

Using Matlab/Simulink, the controlled trajectories x1(t), x2(t) and steering control

u(t) =(1 − t)0.5B∗E0.5,0.5(A∗(1 − t)0.5)W−1
F [z1 − E0.5(A)x0

−
∫ 1

0
(1 − ς)−0.5E0.5,0.5(A(1 − ς)0.5) f (x(ς))dς

]

are computed and are depicted in Figures 7 and 8. Then, we can see that the nonlinear network with
two nodes can be steered from the initial value [1,−1]T to the desired value z1.

0 1 2 3 4 5

0

2

4

6

8

10

12

(1,-1)  (2.5,1.5)

(1,-1)  (3,2)

(1,-1)  (3.5,,2.5)

(1,-1)  (4,3)

(1,-1)  (4.5,3.5)

0 0.2 0.4 0.6 0.8 1

Time t

0

1

2

3

4

5

1  2.5

1  3

1  3.5

1  4

1  4.5

0 0.2 0.4 0.6 0.8 1

Time t

0

2

4

6

8

10

12

-1  1.5

-1  2

-1  2.5

-1  3

-1  3.5

Figure 7. The state trajectories of a nonlinear fractional complex network with a weighted adjacency
matrix in Example 2.

Figure 7. The state trajectories of a nonlinear fractional complex network with a weighted adjacency
matrix in Example 2.

Fractal Fract. 2024, 1, 0 13 of 16

Figure 8. The trajectories of outer controller u(t) imposed on node v2 in Example 2.

Example 3. Consider a nonlinear fractional directed network (27) with a Laplacian matrix. The
Laplacian matrix, control matrix, and nonlinear function f (x(t)) satisfying conditions (A1)− (A3)
are given as

L =

[
0.5 0
−0.5 0

]
, B =

[
1
0

]
, f (x(t)) =

[ 1
100 cos(x2(t))

0

]
,

respectively. On the basis of Remark 1, the system (−L, B) is controllable, which indicates that a
nonlinear directed network (27) with a Laplacian matrix is controllable. Concretely, we used the
Matlab/Simulink method. The block diagram of the simulation is depicted in Figure 9.
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E0.5,0.5(−Lt0.5) =
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,

where M1(t) = E0.5,0.5(−0.5t0.5) and M2(t) = E0.5,0.5(−0.5t0.5) + 1√
π

. The corresponding
Gramian matrix of the network (27) is
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Figure 8. The trajectories of outer controller u(t) imposed on node v2 in Example 2.
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0.0727 0.0571

]
.

Figure 9. Matlab/Simulink block diagram for the network (27) in Example 3.
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Here, the initial and final values of nodes v1 and v2 are taken as [x1(0), x2(0)]
T = [−1, 0]T

and w1 = [x1(1), x2(1)]
T = [1 + 0.5k, 3 + 0.5k]T , k = 1, 2, . . . , 5, respectively. It is known that

the Mittag–Leffler matrix function for a given matrix −L can be written as

E0.5,0.5(−Lt0.5) =

[
M2

1(t) M1(t)M2(t)
M1(t)M2(t) M2

2(t)

]
,

where M1(t) = E0.5,0.5(−0.5t0.5) and M2(t) = E0.5,0.5(−0.5t0.5) + 1√
π

. The corresponding
Gramian matrix of the network (27) is

WF =
∫ 1

0
E0.5,0.5(−L(1 − ς)0.5)BB∗E0.5,0.5(−L∗(1 − ς)0.5)dς

=
∫ 1

0

[
M2

1(1 − ς) M1(1 − ς)M2(1 − ς)
M1(1 − ς)M2(1 − ς) M2

2(1 − ς)

]
dς

=

[
0.1157 0.0727
0.0727 0.0571

]
.

Using Matlab/Simulink, the controlled trajectories x1(t), x2(t) and steering control

u(t) = (1 − t)0.5B∗E0.5,0.5(−L∗(1 − t)0.5)W−1
F

[
w1 − E0.5(−L)x0

−
∫ 1

0
(1 − ς)−0.5E0.5,0.5(−L(1 − ς)0.5) f (x(ς))dς

]

are computed and are depicted in Figures 10 and 11. Then, we can see that a nonlinear fractional
complex network with two nodes can be steered from the initial value [−1, 0]T to the desired
value w1.

Fractal Fract. 2024, 1, 0 14 of 16

=

[
0.1157 0.0727
0.0727 0.0571

]
.

Using Matlab/Simulink, the controlled trajectories x1(t), x2(t) and steering control

u(t) =(1 − t)0.5B∗E0.5,0.5(−L∗(1 − t)0.5)W−1
F [w1 − E0.5(−L)x0

−
∫ 1

0
(1 − ς)−0.5E0.5,0.5(−L(1 − ς)0.5) f (x(ς))dς

]

are computed and are depicted in Figures 10 and 11. Then, we can see that a nonlinear fractional
complex network with two nodes can be steered from the initial value [−1, 0]T to the desired value
w1.

0 5 10 15

0

1

2

3

4

5

6

7

(1,-1)  (2.5,1.5)

(1,-1)  (3,2)

(1,-1)  (3.5,,2.5)

(1,-1)  (4,3)

(1,-1)  (4.5,3.5)

0 0.2 0.4 0.6 0.8

Time t

0

2

4

6

8

10

12

14

16

18

-1  1.5

-1  2

-1  2.5

-1  3

-1  3.5

0 0.2 0.4 0.6 0.8 1

Time t

-1

0

1

2

3

4

5

6

7

8

0  3.5

0  4

0  4.5

0  5

0  5.5

Figure 10. The state trajectories of a nonlinear fractional complex network with Laplacian matrix in
Example 3.

Figure 11. The trajectories of outer controller u(t) imposed on node v1 in Example 3.

Figure 10. The state trajectories of a nonlinear fractional complex network with Laplacian matrix in
Example 3.



Fractal Fract. 2024, 8, 43 15 of 16

Fractal Fract. 2024, 1, 0 14 of 16

=

[
0.1157 0.0727
0.0727 0.0571

]
.

Using Matlab/Simulink, the controlled trajectories x1(t), x2(t) and steering control

u(t) =(1 − t)0.5B∗E0.5,0.5(−L∗(1 − t)0.5)W−1
F [w1 − E0.5(−L)x0

−
∫ 1

0
(1 − ς)−0.5E0.5,0.5(−L(1 − ς)0.5) f (x(ς))dς

]

are computed and are depicted in Figures 10 and 11. Then, we can see that a nonlinear fractional
complex network with two nodes can be steered from the initial value [−1, 0]T to the desired value
w1.

0 5 10 15

0

1

2

3

4

5

6

7

(1,-1)  (2.5,1.5)

(1,-1)  (3,2)

(1,-1)  (3.5,,2.5)

(1,-1)  (4,3)

(1,-1)  (4.5,3.5)

0 0.2 0.4 0.6 0.8

Time t

0

2

4

6

8

10

12

14

16

18

-1  1.5

-1  2

-1  2.5

-1  3

-1  3.5

0 0.2 0.4 0.6 0.8 1

Time t

-1

0

1

2

3

4

5

6

7

8

0  3.5

0  4

0  4.5

0  5

0  5.5

Figure 10. The state trajectories of a nonlinear fractional complex network with Laplacian matrix in
Example 3.

Figure 11. The trajectories of outer controller u(t) imposed on node v1 in Example 3.Figure 11. The trajectories of outer controller u(t) imposed on node v1 in Example 3.

6. Conclusions

Considering the fact that controllability is one of the most basic problems in the field
of fractional complex network control and complex networks are typically nonlinear in
real-world applications, this paper investigates the controllability problems of nonlinear
fractional complex networks with a weighted adjacency matrix or Laplacian matrix. What
is worth mentioning is that all controllability results obtained are proved by means of
rigorous mathematical theory. Our findings indicate that the fractional complex networks
with linear dynamic behavior can be controlled if the controllability matrix is of full rank.
More importantly, the controllability criteria of nonlinear fractional complex networks are
deduced, which provides a theoretical framework for the controllability analysis. Finally,
three corresponding examples clearly show that it is convenient and efficient to obtain the
controllability of given networks by using a newly developed technique. It is believed that
this manuscript will play a crucial role in the controllability analysis and controller design
of nonlinear fractional complex networks. In the future, we will continue to focus on the
following interesting topics:

• Solve the other control problems like optimal control, approximate controllability, etc.;
• Develop the controllability and observability on complex fractional time-varying systems;
• Implement controllability for complex time-varying systems numerically using the

Matlab/Simulink method.
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