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Abstract: The temporal evolution of the global mean sea level (GMSL) is investigated in the present
analysis using the monthly mean values obtained from two sources: a reconstructed dataset and a
satellite altimeter dataset. To this end, we use two well-known techniques, detrended fluctuation
analysis (DFA) and multifractal DFA (MF-DFA), to study the scaling properties of the time series
considered. The main result is that power-law long-range correlations and multifractality apply
to both data sets of the global mean sea level. In addition, the analysis revealed nearly identical
scaling features for both the 134-year and the last 28-year GMSL-time series, possibly suggesting that
the long-range correlations stem more from natural causes. This demonstrates that the relationship
between climate change and sea-level anomalies needs more extensive research in the future due to
the importance of their indirect processes for ecology and conservation.
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On the Impacts of the Global Sea Many studies have argued that observational data show that the global climate is
Level Dynamics. Fractal Fract. 2024,8,  warming up and that this phenomenon is accompanied by rising sea levels, which obviously
39. https://doi.org/10.3390/ has a significant impact on island and coastal communities. It is believed that the cause of
fractalfract8010039 sea level rise is mainly thermal expansion, to which the loss of both glaciers and ice sheets

in Greenland and Antarctica contributes significantly. In this regard, Thomas et al. [1]
suggested that the combination of ocean thermal expansion and increased loss of ice mass
from Greenland is causing the acceleration of sea level rise since the 1970s. To date, there
is no model or series of models that perform robust simulations in all modes of climate
variability and its impacts (e.g., [2-7]).

Although a consensus has been achieved between several studies on the likely in-

crease in GMSL at an accelerated rate, the magnitude of this acceleration needs further

investigation because it is strongly dependent on the future of the two large ice sheets. In
particular, one of the current “hot topics” is the projections of the GMSL rise by the year
2100. Hu and Bates [8], studying the global average and the regional sea level, found a
This article is an open access article  Statistically significant reduction in sea level rise between 2061 and 2080.
distributed under the terms and They have also found that there are areas where the reduction is insignificant (such as
conditions of the Creative Commons  the Philippines and west of Australia) owing to ocean dynamics and the intensification of
Attribution (CC BY) license (https://  internal variability due to external forcings.
creativecommons.org/ licenses /by / In connection with this, Vousdoukas et al. [9] predicted a likely increase of the global
40/). average extreme sea level in the period 2000-2100 by 34-76 cm. Nerem et al. [10] estimated
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that the GMSL could rise 65 &= 12 cm by 2100 compared to 2005, which is roughly in line
with the IPCC 5th Assessment Report (AR5) model projections.

It is noted that earlier, Nerem et al. [11] discussed the correlation between the ENSO
(EI Nifio Southern Oscillation) event in the period 1997-1998 and the extreme fluctuation
of GMSL. They also observed similar sudden variations for each major ENSO event since
1981, indicating ENSO's contribution to the GMSL variability.

Church and White [12] studied the linear trends of the GMSL using satellite altimeter
data (from 1993-2009) and coastal and island sea-level measurements (from 1880-2009).
Upward trends were detected in the first and second datasets, with sizes of 3.2 £ 0.4 mm
per year and 2.8 &= 0.8 mm per year, respectively. This survey has also shown a remarkable
variation in the rate of the sea level rise and significant acceleration since 1880.

Gregory et al. [13] explored the important issue of the observed sea-level increase
exceeding the sum of identifiable contributions in size (especially in the twentieth century).
It has been found that the largest contributions come from the thermal expansion of the
ocean and the melting of glaciers and ice caps. They proposed several reasons for this, such
as the failure of climate models to consider the thermal expansion of the oceans caused
by volcanic forcing, the rise of glaciers melting compared to previous estimates, and the
almost equal and opposite contribution of groundwater depletion and impoundment.

Marzeion et al. [14] evaluated the anthropogenic and natural effect on the global
glacier mass loss, suggesting that anthropogenic forcing, in 1851-2010, was responsible for
only 25 £ 35% of the global glacier mass loss, while in 1991-2010 it increased to 69 £ 24%.

Jevrejeva et al. [15] studied the natural and anthropogenic effects on the sea-level
histories (in the last millennium) extracted from a statistical model. As it was derived, the
natural signal was the main cause of sea-level variability observed until 1800. In contrast,
the observed sea-level rise of the twentieth century was outside the boundaries of its natural
variability, and the observed increase in greenhouse gas concentration appears to account
for 75% of reported global sea-level trends.

Similar results were derived from other studies. Slangen et al. [16] investigated the
variability of sea level based on a climate model, suggesting that natural effects combined
with the response to past climatic change are responsible for 67 + 23% of the observed
sea-level increase before 1950 and only 9 & 18% after 1970. In contrast, the anthropogenic
signal was responsible for only 15 £ 55% of the rise in sea level before 1950 but reached
72 £ 39% in 2000.

Along these lines are the results obtained from the analysis carried out by Marcos
et al. [17], where the sea level change (observed in the 20th century) was attributed almost
exclusively to anthropogenic causes.

In addition, a few recent studies have attempted to explore scaling dynamics at sea
level (i.e., the possibility of long-range dependence, self-similarity, and fractal behavior in
the sea-level time series). The term “long-range dependence” describes the property of a
quantity so that there are values that remain residually correlated to each other even after
many years. The terms “self-similarity” and “fractal” have the meaning that a time-series
is exactly or almost like a part of itself. From this point of view, Fraedrich and Blender [18]
studied temporal correlations in the surface air temperature over the oceans (i.e., a basic
thermodynamic parameter considered to be the main cause of dynamic sea-level behavior).
A scaling exponent almost equal to unity was detected, revealing long-term dependence.

Persistent long-range correlations (LRC) were also proposed by Monetti et al. [19], who
investigated the scaling properties of the sea surface temperature time series in the Atlantic
and Pacific Oceans. The suggested persistence displayed two different types: the short-time
type (with a time scale of T < 10 months), which was characterized by non-stationary
behavior for both oceans and the long-term correlation decay. About this, Dangendorf
et al. [20] performed a mono-fractal analysis suggesting that sea levels exhibit LRC over
time scales up to several decades. They also found long-term correlations to the mass loss
from glaciers and ice caps.
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Becker et al. [21] studied sea level change over the last century and found that it
is beyond its natural internal variability, exhibiting power law long-term correlations
on a global and regional scale. Additionally, a power-law scaling behavior was also
detected in the long-term sea level variability by Tomasicchio et al. [22]. In this context,
Gao et al. [23] recently showed that sea level anomalies exhibit multifractal rather than
monofractal behavior.

Multifractal systems are considered a generalization of fractal systems in the sense
that their dynamics cannot be described by a single exponent but by a continuous spectrum
of exponents.

In conclusion, whereas there’s scientific agreement that global and regional mean sea
levels have increased since the late 19th century, the relative contribution of natural and
man-made forcing remains unclear.

With this in mind, we are trying in the present study to investigate the scaling dynam-
ics in the temporal evolution of the GMSL using two well-known techniques, detrended
fluctuation analysis (DFA) and multifractal DFA (MF-DFA), to contribute to the improve-
ment of the future predictions of the sea-level forecasting models, taking into account any
systematic rise [24].

2. Materials and Methods

For the present analysis, we use two sets of GMSL data (in mm). The first con-
tains monthly mean GMSL measurements over the period 1993-2020, obtained from the
TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 satellite altimeter missions http://www.
cmar.csiro.au/sealevel/sl_hist_last_decades.html (accessed on 14 September 2023). The
second, which includes monthly mean GMSL values from 1880 to 2013, was downloaded
from the website http://www.cmar.csiro.au/sealevel /sl_data_cmar.html (accessed on
14 September 2023), which uses a list of stations with coastal and island sea level mea-
surements. Church et al. [25] presented in detail the careful selection and editing criteria
used. In particular, the study of Church and White [12] should be considered along with
the Calafat et al. [26] paper, which investigates how well methods based on empirical
orthogonal functions can reconstruct global mean sea level [27].

For the study of the LRC and multifractal features of both time series (i.e., the satellite
altimeter dataset-SAD and the reconstructed dataset-RD), we employ the DFA and MF-DFA
techniques, respectively [28-36].

To analyze the multifractal properties of the time series data, the method we used is
ME-DFA, whose steps are presented below:

(1) The first step is to integrate the time series y(i) over time by calculating the differences
of the N observations y(i) from their average.

(2) The next step is to divide the integrated time series, x(i), into completely separate
boxes of equal length, T, and repeat the same algorithm starting this time from the end
of the profile, thus obtaining 2N boxes (where N is the integer part of the number
N/71).

(3) The third step is to calculate the polynomial least-square fit (of order /) in each box and
the corresponding variance obtained from the below formulas (see a more detailed
description in [30]):

a. foreachboxj=1,..., N¢:

F(j,0) = LY (G~ D) — £ )
i=1
b. foreachboxj=N:+1,...,2N:
F2(j,) = LY Ix(N —j— Ne)r+1) — 10 @

i=1
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where £(i) is a locally best polynomial fitted trend (of second degree) to the T data.
(4) In the following, the g-th order fluctuation function is estimated by averaging the
variances over all boxes:

1 2Nz

1/q
MﬂzLNQF%ﬂﬂﬂ ®)
Tj=

where g is the variable moment.

In case of 4—0, the Equation (3) becomes as follows:
2Ny
F(t) = exp[ 2 ln[F2 iT ” 4)

(5) The last step is to depict F4(7) vs. T (in log-log plot) for different values of 4 and in the
case of multi-scaling behavior, a power-law behavior for F4(7) is observed:

Fy(t) ~ '@ 5)

where h(g) stands for the generalized Hurst exponent (the slope of the regression line).

Another way to characterize a multifractal series is the singularity spectrum f(r)
calculated from h(g) using the modified Legendre transform, where 7 is the singularity
strength or Holder exponent (see [37]).

It should be remembered that the MF-DFA technique originates from the DFA tool,
which evaluates the features of the mono-fractal scaling of a time series [28].

In the case of the original DFA tool, the fluctuation function F;(t) is calculated us-
ing Equation (3) for g = 2 and first-degree fitted trend (without repeating the algorithm
beginning at the end of the profile), i.e.,

N: 1/2
mw[i2Wuﬂ ©

A power-law behavior of Fy(7) (i-e., F3(7)~71") is expected for a fractal series, where
a is the monofractal exponent. In the case that the a-exponent belongs to the interval
(0, 0.5), power-law anticorrelations (antipersistence) are detected, while an a-exponent
value between 0.5 and 1.5 denotes long-range power-law correlations (persistence). For
a = 0.5, the series is white noise, while for a = 1, the series is the 1/f noise (1/f noise or
pink noise is a process with a frequency spectrum such that the power spectral density is
inversely proportional to the frequency of the signal).

It is known that many noisy signals in real systems display trends that deform the
scaling results obtained from the DFA method. In this regard, Hu et al. [38] have system-
atically studied the effects of trends on the DFA results. To avoid such trend interference
with our analysis, both GMSL time series (derived from the satellite altimeter dataset and
the reconstructed dataset) were initially detrended by applying a polynomial best fit (of
sixth-order) and then they were deseasonalized by applying the Wiener filter that produces
an estimate of a random process by linear time-invariant filtering [39]. It is worth noting
that the sixth-order polynomial fitting gave the most significant results (at a 95% confidence
level) without, however, removing the relevant long-term oscillations from the studied
time series.
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3. Results
3.1. GMSL Derived from Satellite Altimeter Data
Figure 1 illustrates the temporal evolution of the monthly mean GMSL values obtained

from SAD during the period 1993-2020. According to Figure 1, a clear upward trend is
revealed, with a magnitude of 3.54 & 0.03 mm per year.
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Figure 1. Monthly mean values of GMSL from 1993 to 2020 as estimated from SAD.

To investigate in-depth, the temporal course of GMSL as derived from SAD, it is
important to examine its possible intrinsic scaling features by detecting whether the sea
level at different times is correlated. For this reason, we applied the DFA method to the
GMSL (from SAD) time series, and the results obtained are presented in detail in the
next section.

3.1.1. Application of the DFA Method to the GMSL Derived from SAD

Figure 2a shows the detrended and deseasonalized (D&D) time series of the monthly
mean GMSL values as deduced from SAD. The scaling exponent derived from DFA was a
=0.77 £ 0.02, thus indicating the persistent LRC (see Figure 2b).

It should be noted that 0.02 is the standard error of a which is calculated by the

L llog Fy () —vil” -
equation: s, = =1 — and log 7 is the mean value of logt;, i=1, ..., n. It
(n-2) ): [log 7;—log 7]
turns out that the ¢- statlstlc t = I obeys the Student distribution with (7 — 2) degrees of
freedom. Thus, the 95% conﬁdence interval of a is (a — saty—2,0.025 , @+ Satn—2,0025) (see
Section 7.12.1 of [40]).

To reject the hypothesis that the above-mentioned scaling dynamics could come from
random noise, we used DFA in a 900-time series of random (white) noise (i.e., Monte Carlo
simulations) of the same size as the SAD one. By this, we will set the 95% confidence
interval of 7 (i.e., the average value of a). The confidence interval for the white noise had to
be constructed to test (with statistical accuracy) the hypothesis Hy: @ = 0.77 vs. a # 0.77.
According to the non-parametric Kolmogorov-Smirnov test, the extracted a-exponents were
found to obey a Gaussian distribution at a 95% confidence level with an average @ = 0.53
and a standard deviation o, = 0.09 [41,42]. Therefore, the 95% confidence interval of 7 is:

1.96 1.96
G- — g, A+ — 0, ) = (052, 0.54 7
< V900 * /900 “) ( ) @
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Figure 2. (a) GMSL time series (derived from SAD) that have been detrended and deseasonalized
over the period 1993-2020. (b) Root-mean-square fluctuation function F;(7) (derived from the DFA
technique) vs. time scale T (in months), in a log-log plot, for the time series described in (a) (with the
best-fit equation: y = 0.77x — 0.42 and R? =0.99). (c) Local slopes a(7) vs. logt estimated within a
window of 10 and 8 points (circles and crosses). The 20 ;) intervals around the mean value @ = 0.77
of the local slopes are shown with the grey line. (d) The fit of the power spectral density vs. frequency
f (dotted line) with the power-law line (black) and exponential line (grey).

Since the DFA exponent of the GMSL time series (from SAD) (i.e., 0.77) was found to
be higher than the upper limit of the interval shown in (7), persistent characteristics were
disclosed (see Figure 2b). It is worth mentioning that the interval given in Equation (7)
does not contain 0.5, indicating that the DFA exponent for the random noise time series is
approximately (but not exactly) equal to the value 0.5. Persistent LRC means that sea-level
fluctuations, from short to longer intervals (up to 6.3 years or log T = 1.88), are positively
correlated throughout the entire time series. It is noteworthy that the upper limit of
6.3 years (which resulted from the DFA formula and is attributed to the total length of the
time series) is very close to the upper limit of irregular intervals (3-7 years) in which the
natural tropical phenomenon ENSO occurs. It is an oceanic response to purely stochastic
atmospheric forcing having climatological impacts in regions far away from the tropical
Pacific (i.e., teleconnections) and may be linked to extreme weather conditions (e.g., floods
and droughts), changes in the incidence of epidemic diseases (e.g., malaria), severe coral
bleaching, civil conflicts, etc. [31,43,44].

However, to establish the aforementioned LRC in the GMSL time series, we should
examine the hypothesis that the power-law decay (i.e., y = 13.53x %80 with a coefficient of
determination R? = 0.52) could describe the power spectral density profile more accurately
than the exponential decay (i.e., y = 23.1e 43 with R? = 0.40) (Maraun et al. [45]). The
power-law decay means that a relative change in frequency results in a relative change in
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spectral density proportional to the negative power of the change, regardless of the initial
magnitude of these quantities. Indeed, the F-test showed that the hypothesis Hy: R2power law
> Rzexponential vs. Hy: Rzpower law < Rzexponential could not be rejected at the 95% confidence
level. Additionally, another criterion should be used to establish the scaling dynamics in
the GMSL time series. This is the stability of “local slopes” in a specified range. For this
reason, we applied the DFA method to 1000 series of fractional Gaussian noise with a = 0.8
(i-e., Monte Carlo simulations) to compute local slopes-a(t) vs. logt for each of them in
two separate window sizes (of 8 and 10 points) that were sequentially shifted to all com-

puted scales T. Thus, we have determined an interval R = (E —1.960,(;), a+ 1.96UH(T))

where 7 is the mean value and ;) is the standard deviation of the 1000 estimated local
slopes-a(7). Figure 2c shows that in the case of the GMSL time series, the local slopes of
logF;(7) vs. logT revealed stability, and indeed, the local slopes after logT = 1 appeared to
belong to the R range derived from Monte Carlo simulations.

To have more information about the plausible existence of LRC in the GMSL time
series, the next step in our analysis was to investigate the features of the spectrum of
singularities for the D&D GMSL time series using the MF-DFA technique.

3.1.2. Application of the MF-DFA Method on the GMSL Derived from SAD

The MF-DFA technique provides an estimate of the fluctuation function F,(7) of the
g-th order for various moments q. The application of this technique to the D&D GMSL time
series (derived from SAD) revealed the expected power-law scaling behavior (i.e., F;(7)~7"),
which corresponds to straight lines in the log-log plot, on large scales T > 8 months
(T > 12 months) for all the selected positive (negative) moments g (see Figure 3a) [30,44].

Then, the generalized Hurst exponent h(q) was depicted as a function of g-values to
confirm the multifractality of the time series examined (see Figure 3b). The fact that the
exponent h(g) varies with g and the h(g) values were higher than 0.5 reveals multifractal
behavior and persistent LRC for the GMSL time series. It was also noticed that positive
g-values (i.e., large fluctuations) corresponded to lower h(g)-values, which is in line with
the usual features of multifractal time series.

The feature of multifractality detected in GMSL might substantially contribute to
current scientific knowledge. To provide more information on this feature, we also plotted
the singularity spectrum f (1) versus the singularity strength n [30]. The maximum f(n) value
corresponds to g = 0 and the (1) values on both sides of the maximum value correspond to
positive or negative moments (see Figure 3c).
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Figure 3. (a) The MF-DFA fluctuation factor F4(7) as a function of the time scale 7 for various moments
q for the D&D GMSL time series (SAD) during 1993-2020. The straight lines in the log-log plot, at
large scales T > 8 months (7 > 12 months) for all selected positive (negative) moments g, revealed
the expected power-law scaling behavior (i.e., F;(1)~7"). (b) The dependence of the generalized
Hurst exponent h(g) on g-values for the data shown in (a) (for scales 6 months < T < 6.3 years).
The equation of the best fit is 1(g) = 7 x 1073 + 0.001¢%> - 0.037 + 0.83, with R* = 1.00. (c) The
dependence of the singularity spectrum f(1) on the singularity strength 1. The equation of the best fit is
f(n) = —1.54n3 — 4.27n2 + 10.55n — 3.94, with R? = 0.99.
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It should be clarified and highlighted that the combination of the MF-DFA tool along
with the two Maraun criteria [45] is the suitable mathematical methodology to unravel the
fractal nature of the evolution of geophysical parameters such as GMSL.

3.2. GMSL Derived from Reconstructed Data

To verify the above results, we repeated the same analysis for the mean monthly GMSL
values obtained from RD during a longer period (1880-2013). By studying the temporal
evolution of this dataset, an apparent upward trend was detected, with a magnitude of
1.6 & 0.008 mm per year (see Figure 4a). Figure 4b depicts the mean monthly GMSL values
derived from the SAD over the period 1993-2013 compared to the corresponding part of
Figure 4a for the same period.

85 4

35 4

-65 A

-115 4

Global mean sea level (mm)

-165

Figure 4. (a) GMSL mean monthly values from 1880 to 2013 as derived from RD, (b) the 1993-2013
part of (a) (red line), and the GMSL mean monthly values derived from SAD for the same period
(black line).

We then attempted to investigate the intrinsic properties of the GMSL (from RD) time
series, applying the DFA technique.

3.2.1. Application of the DFA Method on the GMSL Data Derived from RD

The time series of monthly GMSL mean values (from RD) was initially D&D by
applying the techniques described in Section 2 (see Figure 5a).

The results of applying the DFA technique to the D&D GMSL time series are shown
on a log-log graph in Figure 5b with the corresponding best-fit equation: y = 0.76x + 0.002
and R? = 0.97. This gives a scaling exponent of a = 0.76 + 0.02. Moreover, the existence
of a power-law scaling and LRC in the GMSL (from RD) time series was established by
detecting the type of power spectral density and the stability of the local slopes on long-term
scales [45].

Figure 5c¢ depicts the local slopes of logF;(T) vs. logt, separately for two separate
window sizes of 10 and 12 points, which were shifted successively to all computed scales 7.
It is worth noting that these two window sizes were chosen to give the most significant
results for the estimated scaling exponents (at the 95% confidence level). As can be seen, the
entire local slopes (after logT = 1.00) are within the boundary of the R range (determined
by the 1000 Monte Carlo simulations), indicating sufficient stability. Figure 5d shows the
profile of the power spectral density for the D&D GMSL (from RD) time series, suggesting
the rejection of exponential decay (y = 165.1e =118 with R? = 0.57) compared to the power
law (y = 29.35.x 1% with R? = 0.65), as the hypothesis Hy: Rzpower law > Rzexponenﬁal vs. Hq:

RZPOWer law < Rzexponenﬁal could not be rejected (using F-test at 95% confidence level).
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Figure 5. As in Figure 2, but for the case of the detrended and deseasonalized GMSL time series
(derived from RD) during 1880-2013 (a). Panels (c,d) are the same as in Figure 2, i.e., the local slopes
a(7) vs. logt estimated within a window of 10 and 8 points (circles and crosses) with the grey line
depicting the 20,(;) intervals around the mean value = 0.76 and the fit of the power spectral density
vs. frequency f (dotted line) with the power-law line (black) and exponential line (grey), respectively.
The best-fit equation in (b) is: y = 0.76x + 0.002 and R? =0.97. The local slopes of logF;(7) vs. logt
shown in (c) are calculated in the windows of 12 and 10 points (circles and crosses).

Therefore, the GMSL (from RD) time series meets both criteria proposed by Maraun
et al. [45]. However, to study the multifractality and the power-law long-term persistence
of the time series considered, we also applied the MF-DFA technique. The results obtained
are given in the following section.

3.2.2. Application of the MF-DFA Method on the GMSL Data Derived from RD

The MF-DFA technique was applied to the D&D GMSL time series (derived from RD)
and indicated the expected power-law scaling behavior (i.e., F;(7)~7") which corresponds
to straight lines in the log-log plot, on large scales T > 17 months for all the selected positive
and negative moments g (see Figure 6a).

Additionally, the plot of the generalized Hurst exponent /(g) as a function of g (Fig-
ure 6b) showed h(g) values clearly higher than 0.5 and dependence of h(q) on g, thus
verifying multifractality and the persistent LRC of the time series examined. Also, it is note-
worthy that the lower values of h(g) for the positive moments (compared to the negative
ones) were consistent with the usual features of the multifractal time series (see Figure 6b).

Finally, we plotted the singularity spectrum f(n) versus the singularity strength n for
the specific time series. According to Figure 6¢, the maximum f(r) value is around g = 0
and the f(n) values on both sides of the maximum value correspond to positive or negative
moments (see Figure 6¢).
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Figure 6. As in Figure 3, but for the case of the detrended and deseasonalized GMSL time series
(derived from RD) during 18802013 (for scales 17 months < T < 33 years) (a). The equation of the
best-fitted line in (b) is hi(q) = —2 x 107443 + 5 x 107#4? — 0.049 + 0.94, with R? = 1.00, while in (c) is:
f(n) = 2.581% — 14.43n> + 20.06n — 7.18, with R? = 0.96.

3.2.3. Application of the MultiFractal Centered Moving Average (MFCMA) Method

As an additional check on the findings presented above, we employ an additional mod-
ern multifractal methodology termed MultiFractal Centered Moving Average (MFCMA).
MFCMA was introduced by Schumann and Kantelhardt [46], and the details of its imple-
mentation are elaborated in their Section 2.1.

MFCMA, which is less computationally demanding than MFDFA, is based on the
Centered Moving Average (CMA) method [47,48]. CMA is slightly better than DFA in
the limits of small (7 < 10) and large scales (T > N/4) which, according to Schumann and
Kantelhardt [46], makes MFCMA suitable for short time series, which is our present case.
Of course, MFCMA performs better for time series in the absence of trends, and for this
reason, it was applied to the cases of the detrended and deseasonalized time series shown
in Figures 2a and 5a for SAD and RD, respectively.

The results obtained (see, e.g., Figure 7 for RD) lead to singularity spectra comparable
to those obtained by MFDFA, with maxima of the singularity spectra at approximately
n =0.83 £ 0.02 and 0.86 = 0.01, for SAD and RD, respectively. The generalized Hurst
exponents h(2) result in 0.80 = 0.02 and 0.81 =+ 0.04, for SAD and RD, respectively. We
observe that the results found by DFA and MFDFA are validated by CMA and MFCMA.
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Figure 7. As in Figure 3, after applying MFCMA to the detrended and deseasonalized GMSL time
series (derived from RD). The equation of the best-fitted line in (a) is i(q) = 8 X 107543 + 0.0009° —
0.0264 + 0.866 with R? = 1.00, while in (b) is: f(n) = 2.14n3 — 16.63n2 + 24.12n — 8.780 with R? = 0.99.

3.3. GMSL Derived from Reconstructed and Satellite Data, during the Common Period

The final step of this study was to examine whether the historical data set could be
used in any way to validate the SAD values. For this purpose, we focused on the common
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time period of the two datasets (i.e., January 1993-December 2013), and we compared their
trends and their scaling properties.

The GMSL time series from SAD and RD showed statistically significant upward
trends of 3.18 &= 0.04 mm per year and 3.56 &= 0.06 mm per year, respectively (see Figure 4b).

Additionally, the application of the DFA technique (during the aforementioned com-
mon time period) to the D&D GMSL obtained from SAD and RD gave persistent scaling
with exponents a = 0.73 £ 0.03 and a = 0.78 £ 0.03, respectively. These scaling features were
established using the criteria of rejection of the exponential decay of the autocorrelation
function and the stability of local slopes. Furthermore, the two a-values indicate similar
scaling properties, suggesting that fluctuations in sea level, from short time intervals to
longer ones (up to 5 years), are positively correlated.

As mentioned in the introduction, the long-term persistence of GMSL has already been
evaluated using similar approaches [20,21]. However, as noted by Dangendorf et al. [49],
none of the current GMSL reconstructions properly represent the temporal variability on
time scales up to decades.

To elaborate more on the interpretation of the results presented above, it should be
emphasized that MSL variability is closely related to that of sea surface temperature (SST),
which displays persistence [19]. MSL also exhibits long-term correlations [20] with changes
that are beyond its natural internal variability [20,21]. However, the relationship between
SST and MSL is complex because SST is one of many factors that affect MSL, including
winds, currents, river discharges, and gravity fluctuations.

Furthermore, the analysis showed that the long-term correlations are mainly due to
natural causes, due to the almost identical scaling characteristics for both the 134-year time
series and the latest 28-year GMSL time series. This conclusion is only partially consistent
with sea-level change being unnatural in two-thirds of the longest tidal records [21].

It is important to emphasize at this point that although time series with strong per-
sistence may exhibit a large upward trend for natural reasons, we cannot rule out anthro-
pogenic forcing (e.g., in the case of a natural downward trend) [21].

Therefore, as also noted by Baker et al. [21], the investigation of the responsible possible
combination of external factors for the observed sea level changes requires further research
and, indeed, an increase in the available experimental data.

4. Conclusions
The main findings of the analysis presented above are as follows:

1.  Applying the DFA technique to the D&D GMSL time series from the satellite altime-
ter dataset (reconstructed dataset) during the period 1993-2020 (1880-2013) gives a
scaling exponent a = 0.77 £ 0.02 (a = 0.76 £ 0.02), thus revealing that the fluctuations
in mean sea-level values from short to longer time intervals are positively correlated.

2. The application of the MF-DFA technique to both GMSL time series used suggested
the power-law scaling behavior of F;(7) on large scales 7 for all the selected positive
and negative moments. Additionally, the generalized Hurst exponent h(g) appears to
depend on g, and the k() values were higher than 0.5, revealing multifractality and
persistent long-range correlations.

3. A comparison of the trends and scaling properties of both GMSL time series was
carried out for the common period (i.e., January 1993-December 2013). Similar scaling
properties were revealed for the two-time series, thus suggesting that the historic data
set could be used in any way to validate the satellite altimeter dataset.

The above-mentioned multifractality features detected in the GMSL may contribute to
the hot topic of projections of global and regional mean sea-level rise and help to integrate
a holistic insight for devising ad hoc strategies and mitigating inevitable impacts [50,51].
In relation to this, under accelerating sea-level rise, it is currently impossible to determine
the future evolution of climate, marshes and mangroves as, for example, salt marshes are
capable of laterally expanding, contracting, and vertically accumulating in response to
sea-level rise [52-54].
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