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Abstract: In the paper, a backstepping control strategy based on a fractional-order finite-time com-
mand filter and a fractional-order finite-time disturbance observer is proposed for the trajectory
tracking control of an unmanned surface vehicle. A fractional-order finite-time command filter is
presented to estimate the derivatives of the intermediate control, which cannot be directly calculated,
thereby reducing the chattering generated by the integer-order command filter. The fractional-order
finite-time disturbance observer is presented to approximate and compensate for the model uncer-
tainty and unknown external disturbances in the system. Subsequently, the globally asymptotically
stable nature of the closed-loop system is proved based on the Lyapunov method. The effectiveness
of the method is proven by simulation experiments on unmanned surface vehicles.

Keywords: fractional-order; disturbance observer; unmanned surface vehicles; finite-time command filter

1. Introduction

Recently, with the increase of marine activities, such as resource exploration, mar-
itime rescue, and environmental monitoring, unmanned surface vehicles (USVs) with
low failure rates and high reliability have received more and more attention [1–3]. To
promote a variety of applications of USVs, trajectory tracking is the core problem of USVs
for marine operations. However, due to the complexity of the marine environment and
the uncertainty in the modeling process, the control of USVs faces great challenges. Hence,
it has important, realistic meaning to research the trajectory tracking control of USVs in
complex environments.

At present, there are some control methods used in USVs, such as model predictive
control (MPC) [4], sliding mode control (SMC) [5], backstepping control (BC) [6], and
optimum control [7]. Among them, backstepping control is one of the most effective design
tools for USV nonlinear systems. By continuously constructing Lyapunov functions, the
intermediate control laws of each subsystem can be given, and the control inputs of the
system can be obtained [8]. Nevertheless, the repeated derivation of the intermediate
control law in the backstepping control will cause a complexity explosion. The first-order
filter applied to dynamic surface control technology is the first effective solution to avoid the
complexity explosion problem [9]. Although this method avoids the complexity explosion,
it ignores the influence of compensation error, which also increases the difficulty of proving
the stability of the controller. Nowadays, the command filter is the preferred choice to
avoid the issue that the intermediate control law cannot be derived directly [10]. The
backstepping control technology based on command filtering, which is proposed in [11],
avoids the problem of direct derivation of intermediate control laws and eliminates the
impact of command filtering errors by designing the auxiliary signal. In addition, most
of the backstepping control is based on the infinite-time stability theory, which has the
problem of slow convergence time. The finite-time command filter proposed in [12] adopts
the error compensation mechanism to eliminate the filtering error, which not only ensures
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the finite-time stability of the system, but also avoids the direct derivation problem of the
intermediate control law of the system. However, adding auxiliary signals to the command
filter will lead to more complexity in controller design and a slower convergence time for
the filter. Properly increasing the gain can optimize these problems but also lead to higher
actual control input or aggravate system chattering.

The modeling uncertainties and the external disturbances (winds, waves, and currents,
etc.) caused by the complex environment of the USVs can be estimated and compensated
by constructing a disturbance observer [13–15]. The adaptive sliding mode control system
proposed by [15] uses the radial basis function neural network approximator to approach
the modeling uncertainty and constructs the disturbance observer to estimate the influence
of environmental disturbances while ensuring the stability of the unmanned underwater
vehicle system. In [16], the fuzzy logic system (FLS) is used to approximate the uncertainty
in the nonlinear USV model, and a disturbance observer with a learning factor is proposed
to compensate for external disturbances, effectively improving the accuracy and speed
of trajectory tracking. In [17], an adaptive control law based on a finite-time disturbance
observer and neural network is proposed for USV containment with external environmental
disturbances and obstacles. Consequently, the disturbance observer is used to accurately
observe the unknown disturbances, and the cascade analysis and Lyapunov method are
combined to guarantee the globally asymptotical stability of the unmanned submersible
system. For all that, the above literature ignores the problem that the disturbance observer
faces: excessive control input and the input chattering phenomenon.

Fractional calculus [18–20] is an extension of integer calculus. Then, fractional-order
systems can also be regarded as an extension of integer-order systems. Fractional calculus
has non-locality and a long memory, which makes it especially suitable for describing
the development of system functions with historical dependence. Some scholars have
added fractional calculus to traditional control method, such as fractional-order opti-
mal control [21], fractional-order proportional-integral-derivative (FOPID) control [22,23],
fractional-order sliding mode control (FOSMC) [24], fractional-order adaptive fuzzy con-
trol [25], and so on. The results show that the controller designed by fractional calculus
has a better effect than the integer one on the steady-state and transient responses of the
closed-loop system, as well as its robustness and immunity to uncertainty.

Based on the above statements, this paper combines fractional calculus with a dis-
turbance observer and a command filter. A backstepping control scheme for unmanned
submersibles based on a fractional-order disturbance observer and command filter is
designed. The major contributions are listed as follows:

(1) The fractional-order finite-time command filter is proposed, which is proved to be
finite-time stable. It can track the derivatives of the intermediate control well without
adding additional compensation signals, and the direct derivation issue is avoided
when designing a controller.

(2) A fractional-order finite-time disturbance observer is designed to compensate for
unknown environmental disturbances and model uncertainty, which can improve the
transient and steady-state performances of the USVs system.

(3) The controller in the paper can ensure the globally asymptotical stability of the closed-
loop system. Thus, good control performance can be achieved. In addition, using
the fractional-order command filter and disturbance observer can reduce chattering
caused by the finite-time differentiator, which facilitates the application in practice.

2. Preliminaries and Problem Formulation
2.1. Fractional Calculus

It is necessary to have an understanding of basic fractional order concepts and prop-
erties, the model of the USVs system, and the control objectives before the main body of
this paper.
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Definition 1 ([26]). The γ− order fractional integral of the given function f (t) : (0, ∞)→ R is
defined as

t0
Iγ
t f (t) =

1
Γ(γ)

∫ t

t0

f (τ)

(t− τ)1−γ
dτ (1)

where Γ(γ) =
∫ ∞

0 tγ−1e−tdt is the Gamma function, and γ > 0.

Definition 2 ([27]). The Caputo-type fractional differential of the function f (t) : (0, ∞)→ R is
defined as

C
t0

Dγ
t f (t) =

1
Γ(m− γ)

∫ t

t0

f m(τ)

(t− τ)−m+γ+1 dτ (2)

where m− 1 < γ < m and m ∈ N, and γ > 0.

Property 1 ([28]). The Caputo-type fractional differentiation satisfies the linearity property:

C
t0

Dγ
t [λ1 f (t) + λ2g(t)] = λ1(

C
t0

Dγ
t f (t)) + λ2

C
t0

Dγ
t g((t)) (3)

where λ1 and λ2 are real numbers.

Property 2 ([28]). For the Caputo-type fractional derivative, if the function f (t) ∈ C[0, t] and
t > 0, the following relation holds:

C
t0

Dγ
t (

C
t0

Dβ
t f (t)) = C

t0
Dγ+β

t f (t) (4)

where γ, β ∈ R+, and γ + β ≤ 1.

According to basic fractional order concepts and properties, the lemmas are obtained
as follows.

Lemma 1 ([29]). The problem of solving the Caputo-type fractional-order equation C
t0

Dγ
t x(t) = f (t, x)

can be converted to solving the homologous integer-order equation. The initial value issue of the
fractional equation is presented as

C
t0

Dγ
t (x(t)− x0) = f (t, x), & x0 = x(0) (5)

where 0 < γ < 1, and f (t, x) ∈ C([0, T]× R, R).

Lemma 2 ([29]). Assume that f (t, x) ∈ C(RI , R), where RI = [(t, x) : 0 ≤ t ≤ c & |x− x0| ≤ d]
and | f (t, x)| ≤ M on RI . There is at least a solution for fractional-order Equation (5) on 0 ≤ t ≤ δ,

where δ= min(c, [ d
M Γ(γ + 1)

]1/γ
) and 0 < γ < 1. Then, a solution of the problem (5) is ob-

tained by x(t) = x∗( tγ

Γ(γ+1) ), and x∗(υ) is the solution of the corresponding integer-order equation
d(x∗(υ))

dυ = g(υ, x∗(υ)) = f (t − (tγ − υΓ(γ + 1))1/γ, x(t − (tγ − υΓ(γ + 1))1/γ)), with the
original condition x0 = x∗(0).

2.2. Problem Formulation

To describe the motion process of the USVs and simplify the design of the controller
as much as possible, the three degrees of freedom model coordinate frames of the USV is
shown in Figure 1.
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The kinematic equation of the USV is described as [30].
.
x = u cos ψ− v sin ψ
.
y = u sin ψ + v cos ψ
.
ψ = r

(6)

where η = [x, y, ψ]T consists of the position coordinates and the yaw angle in the ground
coordinate system. ν = [u, v, r]T is composed of the surge, sway, and yaw velocity of the
USV in the vehicle body coordinate system.

The dynamic equation of the USV with unknown external disturbances and model
uncertainties is described as [31].

.
u = τu

mu
+ mvvr−Xuu− fu(ν)

mu
+ ωu(t)

mu
.
v = −muur−Yvv− fv(ν)

mv
+ ωv(t)

mv
.
r = τr

mr
+ (mu−mv)uv−Nrr− fr(ν)

mr
+ ωr(t)

mr

(7)

where mu, mv denote the additional mass and mr represents the moment of inertia. τu,
τr denote the surge force and the yaw moment of the actual control inputs, respectively.
ωu(t), ωv(t) and ωr(t) represent the environmental disturbances by the winds, waves, and
currents. fu(ν), fv(ν), and fr(ν) are uncertain hydrodynamic damping effects; this part
will be explained in the simulation.

Remark 1: The unmanned surface vehicles have only two control inputs, but have three control
outputs, which is a typical underactuated system. At the same time, the USV model contains
unknown uncertainty terms fi(ν)(i = u, v, r) and unmeasurable external disturbances. These
factors bring difficulties to the design of the actual controller.
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2.3. Control Objective

Let ηd = [xd, yd, ψd]
T be the desired trajectory without a dynamic loop (7), which can

be generated by 
.
xd = ud cos ψd.
yd = ud sin ψd.
ψd = rd

(8)

where νd = [ud, 0, rd]
T represents the reference speed velocity. The control target is to

construct a controller such that the system output η is capable of tracking the reference
trajectory ηd while ensuring all closed loop signals are global asymptotically stable. As-
sumptions are presented as follows.

Assumption 1. The expected position coordinates xd, yd and the reference yaw angle ψd are
bounded, differentiable and available.

Assumption 2. The marine disturbances ωi(t), i = u, v, r are bounded and differentiable. More-
over,

.
ωi(t), i = u, v, r is bounded, and there exists ιi > 0 satisfying

∣∣ .
ωi(t)

∣∣ ≤ ιi, i = u, v, r.

3. Results Analysis

The controller will be designed for the USVs in this section. The errors of the system
are provided as 

xe = (x− xd) cos ψ + (y− yd) sin ψ
ye = −(x− xd) sin ψ + (y− yd) cos ψ
ψe = ψ− ψd

(9)

The time differentiation of (9) is obtained as
.
xe = u− ud cos ψe + yer
.
ye = v + ud sin ψe − xer
.
ψe = r− rd

(10)

where ηe = [xe, ye, ψe]
T is the deviation between the actual trajectory and the expected trajectory.

3.1. Fractional-Order Finite-Time Command Filter

The integer-order command filter is defined as [32]

.
zi,1 = zi,2,

zi,2 = −ζi1|zi,1 − αi(t)|1/2sgn(zi,1 − αi(t)) + zi,2,
.
zi,2 = −ζi2sgn(zi,2 − zi,2).

(11)

where zi,1, zi,2, and zi,2 represent the state variables of the system. The measurable locally
bound function αi(t), t ∈ [0,+∞) is the intermediate control signal. There is a differential
with Lipschitz’s constant ζ > 0. ζi1, ζi2 > ζ are the adjustable positive real number. The

sign function is defined as sgn(θ) =
{
−1 θ < 0
1 θ ≥ 0

.

Lemma 4 [33]: It can be obtained that there is ζi2 > ζ > 0, 0 < 2(ζi2+ζ)

ζ2
i1(ζi2−ζ)

< 1 and a sufficiently

large ζi1 > 0, such that zi,2,
.
zi,1 converge to

.
αi and zi,1 converges to αi in the finite time.

According to Lemma 4, it is known that the second-order command filter (11) is finite-
time stable without additional compensation signals. However, using the integer-order
command filter for nonlinear systems (9) and (10) will lead to the chattering phenomenon,
which will affect the practical application effect.
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The n-order integer-order nonlinear system corresponding to the fractional-order
command filter is presented as [34]

.
zj,1 = zj,2,

zj,2 = −ζ j1
∣∣zj,1 − αj

∣∣n/n+1sgn(zj,1 − αj) + zj,2,
.
zj,2 = −ζ j2

∣∣zj,2 −
.
zj,1
∣∣n−1/nsgn(zj,2 −

.
zj,1) + zj,3,

.
zj,3 = −ζ j3

∣∣∣zj,3 −
.
zj,2

∣∣∣n−2/n−1
sgn(zj,3 −

.
zj,2) + zj,4,

...
.
zj,n+1 = −ζ j,n+1sgn(zj,n+1 −

.
zj,n), j = 1, 2, . . . , n (n ∈ Z+).

(12)

where zj,1, zj,2, . . . zj,n+1, j = 1, 2, . . . , n represent the USV state variables, ζ j1, ζ j2, . . . ζ j,n+1,
j = 1, 2, . . . , n denote the positive real number.

Lemma 5 [34]: If the appropriate parameters are selected, the following equation is correct in the
case of a finite-time transient process without input noises.

zj,1 = αj,0(t),

zj,k = α
(k)
j,0 (t), j = 1, 2, . . . , n&k = 2, 3, . . . , n (n ∈ Z+).

(13)

Therefore, the solutions of the system are finite-time stable.

Based on the integer-order system (12), the fractional-order finite-time command filter
can be obtained as

C
t0

D1/n
t zj,1 = zj,2,

zj,2 = −ζ j1
∣∣zj,1 − αj

∣∣n/n+1sgn(zj,1 − αj) + zj,2,
C
t0

D1/n
t zj,2 = zj,3,

zj,3 = −ζ j2
∣∣zj,2 − zj,2

∣∣n−1/nsgn(zj,2 − zj,2) + zj,3,
C
t0

D1/n
t zj,3 = zj,4,

zj,4 = −ζ j3
∣∣zj,3 − zj,3

∣∣n−2/n−1sgn(zj,3 − zj,3) + zj,4,
...
C
t0

D1/n
t zj,n+1 = −ζ j,n+1sgn(zj,n+1 − zj,n), j = 1, 2, . . . , n (n ∈ Z+).

(14)

Theorem 1: There is finite time ts for any initial condition zj,1(0), zj,2(0), · · · , zj,n+1(0); there
are parameters ζ j1, ζ j2, . . . , ζ j,n+1, such that zj,1, zj,2, . . . , zj,n+1 are able to converge to zero in
the finite time ts.
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Proof. Motivated by Lemma 2, the integer-order system corresponding to Equation (14) is
expressed as

.
z∗j,1(υ) = z∗j,2(υ),

z∗j,2(υ) = −ζ j1

∣∣∣z∗j,1(υ)− αj

∣∣∣n/n+1
sgn(z∗j,1(υ)− αj) + z∗j,2(υ),

.
z
∗
j,2(υ) = −ζ j2

∣∣∣z∗j,2(υ)− .
z∗j,1(υ)

∣∣∣n−1/n
sgn(z∗j,2(υ)−

.
z∗j,1(υ)) + z∗j,3(υ),

.
z
∗
j,3(υ) = −ζ j3

∣∣∣z∗j,3(υ)− .
z
∗
j,2(υ)

∣∣∣n−2/n−1
sgn(z∗j,3(υ)−

.
z
∗
j,2(υ)) + z∗j,4(υ),

...
.
z
∗
j,n+1(υ) = −ζ j,n+1sgn(z∗j,n+1(υ)−

.
z
∗
j,n(υ)), j = 1, 2, . . . , n (n ∈ Z+).

(15)

where υ denotes the time scale, and z∗j,1(0) = zj,1(0), z∗j,2(0) = zj,2(0), . . . , z∗j,n+1(0) =

zj,n+1(0) are the initial conditions. Motivated by Lemma 5, the stability of Equation (15)
can be proved by the solutions of the integer-order Equation (12). �

Motivated by Lemma 2, the solutions of Equation (15) can be given as

zj,1(t) = z∗j,1(t)(
tγ

Γ(γ+1) ),

zj,k(t) = z∗j,k(t)(
tγ

Γ(γ+1) ), j = 1, 2, . . . , n & k = 2, 3, . . . , n (n ∈ Z+).
(16)

For α = t− (tγ − υΓ(γ + 1))1/γ of Lemma 2, ts = ts − (tγ
s − υsΓ(γ + 1))1/γ with the

time scale υs being able to be maintained in a steady state. Thus, there is a corresponding
relationship between the convergence time ts of zj,1(t), zj,2(t), . . . , zj,n(t), j = 1, 2, . . . , n
and the integer-order command-filter convergence time υs.�

Remark 2: The fractional-order command filter (14) avoids the problem that the derivative of the
intermediate control law cannot be calculated directly in the process of designing a controller. It can
track the derivative of the intermediate control without adding an additional compensation signal
because it is finite-time stable. In addition, the fractional-order command filter can suppress the
chattering phenomenon well.

3.2. Fractional-Order Finite-Time Disturbance Observer

According to Theorem 1, the n-order fractional-order disturbance observer can be
given as follows:

C
t0

D1/n
t ϑj,1 = −ς j1

∣∣ϑj,1 − νj(t)
∣∣n+1/n+2sgn(ϑj,1 − νj(t)) + ϑi,2,

C
t0

D1/n
t ϑj,2 = −ς j2

∣∣∣ϑj,2 − C
t0

D1/n
t ϑj,1

∣∣∣n/n+1
sgn(ϑj,2 − C

t0
D1/n

t ϑj,1) + ϑj,3,
...
C
t0

D1/n
t ϑj,n = −ς j,n

∣∣∣ϑj,n − C
t0

D1/n
t ϑj,n−1

∣∣∣2/3
sgn(ϑj,n − C

t0
D1/n

t ϑj,n−1) + ϑj,n+1 + gj(ν) + τj,
...
C
t0

D1/n
t ϑj,n+2 = −ς j,n+2sgn(ϑj,n+2 − C

t0
D1/n

t ϑj,n+1),

ω̂j = −ς j,n

∣∣∣ϑj,n − C
t0

D1/n
t ϑj,n−1

∣∣∣2/3
sgn(ϑj,n − C

t0
D1/n

t ϑj,n−1) + ϑj,n+1, j = 1, 2, · · · , n (n ∈ Z+).

(17)

where ϑj,1, ϑj,2, . . . , ϑj,n+2, j = 1, 2, . . . , n represent the variables of the disturbance ob-
server, and ς j1, ς j2, . . . , ς j,n+2, j = 1, 2, . . . , n represent the adjustable positive real number.
τj and gj(ν) represent the actual control input and known modeling error, respectively.
νj(t) denotes the speed velocity of the dynamic model. ω̂j is the output of disturbance
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observer and represents the estimated value of the system disturbances and unknown
model uncertainties.

Theorem 2: There is a time tr for any original conditions ϑj,1(0), ϑj,2(0), . . . , ϑj,n+2(0); there
are parameters ς j1, ς j2, . . . , ς j,n+2, such that ϑj,1, ϑj,2, · · · , ϑj,n+2 are able to converge to zero in
finite time tr.

Proof. According to the similar proof method of Theorem 1, it can be concluded that
Theorem 2 holds. �

3.3. Controller Design

On the basis of the above section, the fractional-order backstepping controller block
diagram is shown in Figure 2.
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t
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D
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(17)

where ,1 ,2 , 2,  ,  ,  ,  1, 2, ,j j j n j nϑ ϑ ϑ + =    represent the variables of the disturbance ob-

server, and 1 2 , 2,  ,  ,  ,  1,2, ,j j j n j nς ς ς + =   represent the adjustable positive real number. 

jτ  and ( )jg ν  represent the actual control input and known modeling error, respectively. 

( )j tν  denotes the speed velocity of the dynamic model. ˆ jω  is the output of disturbance 
observer and represents the estimated value of the system disturbances and unknown 
model uncertainties. 

Theorem 2: There is a time rt  for any original conditions ,1 ,2 , 2(0),  (0),  ,  (0)j j j nϑ ϑ ϑ + ; there 

are parameters 1 2 , 2,  ,  ,  j j j nς ς ς + , such that ,1 ,2 , 2,  ,  ,  j j j nϑ ϑ ϑ +  are able to converge to zero in 

finite time rt . 

Proof. According to the similar proof method of Theorem 1, it can be concluded that The-
orem 2 holds. □ 

3.3. Controller Design 
On the basis of the above section, the fractional-order backstepping controller block 

diagram is shown in Figure 2.  

Reference 
Trajectory

Intermediate 
Control Law

USV Controller

α
Fractional Order 
Command Filter

Actual 
Control Law

Fractional Order  
Disturbance 

Observer

Dynamical 
Model

Kinematic 
Model

Disturbance 

+
−

+
eη,d dη ν

ω̂ ω
τ ν η

, ,u v r

, ,x y ψ
 

Figure 2. Overall control system block diagram.

The conversion of coordinates is defined as follows:

ue = u− αu, ψe = ψe − αψ, re = r− αr. (18)

The system intermediate control signals αu, αψ, αr are defined as

αu = −cxxe + ud cos ψe − yer,
αψ = 1

ud
(−cyye − v + xer),

αr = −cψψe + rd + zψ,n+1 − yeud.
(19)

where cx, cy, cψ are positive real numbers.
The actual control inputs τu, τr are designed as

τu = mu(−cuue − xe + zu,n+1 − mvvr−Xuu
mu

− ω̂u
mu

),

τr = mr(−crre − ψe + zr,n+1 − (mu−mv)uv−Xrr
mr

− ω̂r
mr
).

(20)

where cu, cr ∈ R+.

3.4. Stability Analysis

Consider the Lyapunov function as

V = Vx + Vy + Vψ + Vu + Vr (21)

and
Vx = 1

2 x2
e , Vy = 1

2 y2
e , Vψ = 1

2 ψ2
e ,

Vu = 1
2 u2

e , Vr =
1
2 r2

e .
(22)
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The differential of (21) can be written as

.
V =

.
Vx +

.
Vy +

.
Vψ +

.
Vu +

.
Vr (23)

Combining (10) and (22), the differential of the Lyapunov function Vx is expressed as

.
Vx = xe

.
xe = xe(u− ud cos ψe + yer) (24)

According to Lemma 5, Theorem 1, (18), and (19), adding (14) to the Lyapunov function,
where zu,1 = αu, (24) can then be simplified as

.
Vx = xe(ue + αu − ud cos ψe + yer) = −cxx2

e + xeue (25)

Based on (11) and (22), the differential of the Lyapunov candidate Vy is given as

.
Vy = ye

.
ye = ye(v + ud sin ψe − xer) (26)

According to Lemma 5, Theorem 1, (14), (18), and (19), there is zψ,1 = αψ; then, (26)
can be simplified as

.
Vy = ye(v + ud(ψe + αψ)− xer) = −cyy2

e + udyeψe (27)

From Formulas (10) and (22), the differentiation of the Lyapunov candidate Vψ is
rewritten as .

Vψ = ψe

.
ψe = ψe(

.
ψe −

.
αψ) = ψe(r− rd −

.
αψ) (28)

Combining (14), (18), (19), Lemma 5, and Theorem 1, we can obtain zr,1 = αr and
C
t0

D1/n
t zψ,n = zψ,n+1 =

.
αψ. Thus, (28) can be simplified as

.
Vψ = ψe((re + αr)− rd −

.
αψ) = −cψψ

2
e + ψere (29)

According to Lemma 5, Theorem 1, and Formula (14), there are C
t0

D1/n
t zu,n = zu,n+1 =

.
αu

and C
t0

D1/n
t zr,n = zr,n+1 =

.
αr. Based on Theorem 2, there is a finite time tr such that t > tr

has ω̂u(t) = ωu(t)− fu(ν) and ω̂r(t) = ωr(t)− fr(ν). Therefore, the time derivatives of
the Lyapunov candidates Vu and Vr are expressed as

.
Vu = ue

.
ue = ue(

.
u− .

αu)

= ue(
τu
mu

+ mvvr−Xuu− fu(ν)
mu

+ ωu(t)
mu
− .

αu)

= −cuu2
e − uexe

(30)

and .
Vr = re

.
re = re(

.
r− .

αr)

= re(
τr
mr

+ (mu−mv)uv−Nrr− fr(ν)
mr

+ ωr(t)
mr
− .

αr)

= −crr2
e − ψere

(31)

Substituting (25), (27), and (29)–(31) into (23), we obtain

.
V = −cxx2

e − cyy2
e − cψψ

2
e − cuu2

e − crr2
e (32)

The Lyapunov function V = Vx + Vy + Vψ + Vu + Vr satisfies the relation

.
V = −cxx2

e − cyy2
e − cψψ

2
e − cuu2

e − crr2
e

< −CV
(33)

where C = min(2 ∗ (cx, cy, cψ, cu, cr)).
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Theorem 3: For the USVs (6) and (7) with Assumptions 1 and 2, the reference signals are given as
(8), the fractional-order finite-time command filter is denoted by (14), the fractional-order finite-time
disturbance observer is provided as (17), the intermediate control signals are represented by (19),
and the actual control inputs are designed as (20). By choosing appropriate positive parameters
cx, cy, cψ, cu, cr, ς j1, ς j2, . . . , ς j,n+2, and ζ j1, ζ j2, . . . , ζ j,n+1, the solutions of the closed-loop
nonlinear system are globally asymptotically stable in nature, and satisfy η = ηd when t→ ∞ .

Proof. According to formula (33), when V = Vx + Vy + Vψ + Vu + Vr > 0, there is
.

V < −CV, then the closed-loop systems (6) and (7) are global asymptotically stable. Since
the USV system satisfies the globally asymptotic stability, if the appropriate system param-
eters cx, cy, cψ, cu, cr, ς j1, ς j2, . . . , ς j,n+2, and ζ j1, ζ j2, . . . , ζ j,n+1 are selected, it is obvious
that lim

t→∞
|η − ηd| → 0 . �

4. Simulation Results

To prove the effectiveness and superiority of the fractional-order backstepping con-
troller, simulation experiments based on the USV model are proposed in this section. The
same reference trajectory and system model are used for comparison experiments. The
initial value of USV is defined as η0 = [0 m, 0 m, 0 rad]T , ν0 = [1 m/s, 0 m/s, 0 rad/s]T .
The hydrodynamic coefficients effects are assumed as fu(ν) = X|u|u|u|u, fv(ν) = Y|v|v|v|v,
and fr(ν) = N|r|r|r|r. The system parameters are denoted as mu = 25.8 kg, mv = 33.8 kg,
mr = 2.76 kg ·m2, Xu = 12 N, Xv = 17 N, Xr = 0.5 N ·m, X|u|u = 2.5, Y|v|v = 4.5, and
N|r|r = 0.1.

Case 1: The unknown external disturbances are defined as
.

ωu = −0.01ωu + 3 rand,
.

ωv = −0.01ωv + 2 rand,
.

ωr = −0.01ωr + 2.5 rand, where rand is a random number with a
mean value of 0, a variance of 0.5, and a sampling time of 1. The USV reference trajectory
are given as ud = 1 m/s, vd = 0 m/s for 0 ≤ t ≤ 100 s. rd = −0.2e−(15−t)rad/s for
0 ≤ t ≤ 15 s, and rd = −0.2 rad/s for 15 < t ≤ 100 s.

(1) For the fractional-order backstepping controller, the fractional-order command
filter is (14), and the fractional-order disturbance observer is (18). When n = 2, the control
parameters are selected as cx = 20, cy = 10, cψ = 1, cu = 1, cr = 30, ζψ1 = ζu1 = ζr1 = 1,
ζψ2 = ζu2 = ζr2 = 0.1, ζψ3 = 0.01, ζr3 = 0.01, ζu3 = 0.001, ςu1 = ςr1 = 5, ςu2 = 0.1, ςr2 = 1,
ςu3 = ςr3 = 0.1, ςu4 = ςr4 = 0.001.

(2) For the integer-order backstepping controller, the command filter is given as (11),
and the integer-order disturbance observer is defined as

.
ϑi,1 = −ςi1|ϑi,1 − νi(t)|1/2sgn(ϑi,1 − νi(t)) + ϑi,2 + gi(ν) + τi,
.
ϑi,2 = −ςi2sgn(ϑi,2 −

.
ϑi,1),

ω̂i = −ςi1|ϑi,1 − νi(t)|1/2sgn(ϑi,1 − νi(t)) + ϑi,2.

(34)

where ϑi,2 and ϑi,1 represent the state variables of the disturbance observer, ςi1, ςi2 are the
adjustable positive constants, νi(t) denotes the output of the dynamic equation, τi and gi(ν)
represent the actual control input and known modeling error, respectively. ω̂i is the output
of the disturbance observer and represents the estimated value of the system disturbances
and uncertainties.

Then, the control parameters are selected as cx = cy = cψ = cu = cr = 4, ζψ1 = ζu1 =
ζr1 = 10, ζψ2 = ζu2 = ζr2 = 0.001, ςu1 = ςr1 = 15, ςu2 = ςr2 = 0.01.

In Case 1, the simulation results of the USV system with model uncertainty and
external environmental disturbance are presented in Figures 3–12. Figures 3–5 present
the trajectory tracking diagram and error diagram of the proposed fractional-order back-
stepping controller, and Figures 8–10 present the trajectory tracking of the integer-order
controller. It can be seen from Figures 3 and 8 that the tracking error of the proposed
controller is basically the same as that of the comparison controller; that is, the trajectory
tracking effect of both is basically the same. Random numbers are used as disturbance
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sources in this paper. Figure 6 shows the disturbance observations of the fractional-order
backstepping controller. It is clear that the original observation value of the observer of
the fractional-order backstepping controller is small, and there is no chattering. Figure 11
presents the disturbance observations of the integer-order backstepping controller. It can
be seen that the observed initial value of the integer-order controller is large, and chattering
is always present during trajectory tracking. Figure 7 represents the actual control inputs of
the fractional-order backstepping controller, and there is no chattering in the control inputs.
Figure 12 denotes the actual control inputs of the integer-order controller, and it can be seen
that the chattering phenomenon of the control inputs is severe. Combined with the local
amplification view, it is clear that the control input chattering of the controller proposed in
this paper is significantly improved compared with the integer-order controller under the
condition that the trajectory tracking effect is basically the same.

Case 2: Comparative experiment of Case 1. Modify the reference trajectory of Case 1
without changing other conditions. The USV reference trajectory are given as ud = 1 m/s,
vd = 0.2 m/s for 0 ≤ t ≤ 100 s. rd = −0.1e−(30−t) rad/s for 0 ≤ t ≤ 30 s, rd = 0.15 +

0.1e−(50−t) rad/s for 30 ≤ t ≤ 50 s, rd = −
(

0.15 + 0.1e−(70−t)
)

rad/s for 50 ≤ t ≤ 70 s,

and rd = −0.1e−(100−t)rad/s for 70 < t ≤ 100 s.
(1) For fractional-order backstepping controller, when n = 2, the control parameters of

USV system are selected as cx = 15, cy = 20, cψ = 1, cu = 1, cr = 15, ζψ1 = ζu1 = ζr1 = 1,
ζψ2 = ζu2 = ζr2 = 0.1, ζψ3 = 0.01, ζr3 = 0.01, ζu3 = 0.001, ςu1 = ςr1 = 5, ςu2 = 0.1, ςr2 = 1,
ςu3 = ςr3 = 0.1, ςu4 = ςr4 = 0.001.

(2) For integer-order backstepping controller, the control parameters of USV are se-
lected as cx = cy = cψ = cu = cr = 2, ζψ1 = ζu1 = ζr1 = 10, ζψ2 = ζu2 = ζr2 = 0.001,
ςu1 = ςr1 = 15, ςu2 = ςr2 = 0.01.
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Figure 12. Control inputs of τu and τr for the integer-order controller in Case 1.

In Case 2, the simulation results of the USV system with model uncertainty and
external environmental disturbance are presented in Figures 13–18. Figures 13 and 16 are
the reference trajectory tracking plans of the fractional-order controller and the integer-
order controller after changing the desired trajectory, respectively. Figures 14 and 17 are
the disturbance observed values of the disturbance for the fractional-order controller and
integer-order controller, respectively. Figures 15 and 18 are the actual control input values
of the fractional-order controller and the integer-order controller after changing the desired
trajectory, respectively. By comparing Figures 13 and 16, it can be seen that the proposed
controller and the integer-order controller have the same trajectory tracking effect. It can
be seen from the comparison between Figures 14 and 15 and Figures 17 and 18 that the
disturbance observation value and control input chattering of the controller proposed in this
paper are significantly improved compared with the integer-order controller. Comparing
the experimental results with Case 1, it shows that the fractional-order controller is not
sensitive to the motion reference trajectory of the USV.

Case 3: Comparative experiment with Case 1. Modify the disturbances in Case 1
without changing other conditions. The unknown external disturbances are defined as
ωu = 5 + 10 sin(0.5t + π/3), ωv = 5 sin(0.5t + 2π/3), ωr = 48 sin(0.5t).

(1) For fractional-order backstepping controller, when n = 2, the control parameters
of USV system are given as cx = 21, cy = 10, cψ = 1, cu = 1, cr = 30, ζψ1 = ζu1 = ζr1 = 1,
ζψ2 = ζu2 = ζr2 = 0.1, ζψ3 = 0.01, ζr3 = 0.01, ζu3 = 0.001, ςu1 = ςr1 = 5, ςu2 = 0.1, ςr2 = 1,
ςu3 = ςr3 = 0.1, ςu4 = ςr4 = 0.001.

(2) For integer-order backstepping controller, the control parameters of system are
given as cx = cy = cψ = cu = cr = 3, ζψ1 = ζu1 = ζr1 = 10, ζψ2 = ζu2 = ζr2 = 0.001,
ςu1 = ςr1 = 15, ςu2 = ςr2 = 0.01.
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In Case 3, the simulation results of the USV system with model uncertainty and
external environmental disturbance are presented in Figures 19–24. Figures 19 and 22 are
the reference trajectory tracking plane diagrams of the fractional-order controller and the
integer-order controller, respectively. The comparison between the two shows that the
proposed controller and the integer-order controller have basically the same trajectory
tracking effect. Figures 20 and 23 are the disturbance observations of the fractional-order
controller and the integer-order controller after changing the disturbance, respectively.
It can be seen that the fractional-order disturbance observer has a greater improvement
in the chattering of the disturbance observation value than the integer-order disturbance
observer. Figures 21 and 24 are the actual control input values of the fractional-order
controller and the integer-order controller, respectively. It is obvious from the diagram that
the controller proposed in this paper eliminates the input chattering of the integer-order
controller. Therefore, when the trajectory tracking effect is basically the same, the fractional-
order controller can improve the chattering phenomenon of the actual control input of the
integer-order controller. Comparing the experimental results with Case 1, it can be seen
that the fractional-order controller can improve the chattering of the control input when
changing the system disturbance, indicating that the controller proposed in this paper is
insensitive to the disturbance type.
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