
Citation: Ma, Z.; Sun, K. Nonlinear

Filter-Based Adaptive

Output-Feedback Control for

Uncertain Fractional-Order Nonlinear

Systems with Unknown External

Disturbance. Fractal Fract. 2023, 7, 694.

https://doi.org/10.3390/

fractalfract7090694

Academic Editors: Ricardo Almeida,

Aldo Jonathan Muñoz-Vázquez,

Heng Liu and Yongping Pan

Received: 20 June 2023

Revised: 12 September 2023

Accepted: 13 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Nonlinear Filter-Based Adaptive Output-Feedback Control for
Uncertain Fractional-Order Nonlinear Systems with Unknown
External Disturbance
Zhiyao Ma * and Ke Sun

College of Science, Liaoning University of Technology, Jinzhou 121001, China; 14792992013@163.com
* Correspondence: mazhiyao315@126.com

Abstract: This study is devoted to a nonlinear filter-based adaptive fuzzy output-feedback control
scheme for uncertain fractional-order (FO) nonlinear systems with unknown external disturbance.
Fuzzy logic systems (FLSs) are applied to estimate unknown nonlinear dynamics, and a new FO
fuzzy state observer based on a nonlinear disturbance observer is established for simultaneously
estimating the unmeasurable states and mixed disturbance. Then, with the aid of auxiliary functions,
a novel FO nonlinear filter is given to approximately replace the virtual control functions, together
with the corresponding fractional derivative, which not only erases the inherent complexity explosion
problem under the framework of backstepping, but also completely compensates for the effects of the
boundary errors induced by the constructed filters compared to the previous FO linear filter method.
Under certain assumptions, and in line with the FO stability criterion, the stability of the controlled
system is ensured. An FO Chua–Hartley simulation study is presented to verify the validity of the
proposed method.

Keywords: fractional-order nonlinear systems; adaptive fuzzy control; nonlinear filter; output-feedback
control; disturbance observer

1. Introduction

As the extension and generalization of integral calculus, fractional calculus, on the one
hand, is more applicable for describing systems with memory and history-dependent pro-
cesses, and can more accurately model and characterize objective phenomena that cannot
be described by an integer-order (IO) system [1,2], such as the semi-derivative relationship
between heat flow and temperature, and the “trailing” phenomenon of solute transport
in porous media, etc. Fractional calculus, on the other hand, has higher design degrees of
freedom and can, therefore, exhibit better robustness and transient performance, such as in
FO CRONE controllers [3] and PIλDµ controllers [4]. Consequently, the investigation of
FO system control has profound theoretical value and practical significance.

Unfortunately, fractional calculus has weak singularity and global properties, so it is
much more difficult to focus on uncertain FO systems than IO systems. The first difficulty
is how to define a proper Lyapunov function to prove the stability of feedback control. To
solve this problem, two construction methods were formed based on in-depth study of
scholars. One is the Lyapunov indirect function construction method put forward in [5,6];
that is, a frequency distribution model is utilized to approximate the FO system to the
IO system. This method can truly reflect the internal energy of the FO system. However,
with current research progress, the system model considered is relatively conservative,
and when there are completely unknown nonlinearities in the system, ideal control results
cannot be obtained. Another method is the direct Lyapunov construction method based
on Mittag–Leffler stability theory [7], and driven by the unequal relation C

0 Dα
t V(x(t)) ≤

2x(t)C
0 Dα

t x(t) [8], nonlinear systems with parameter uncertainty investigated in [9].
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System structure uncertainties (such as system modeling errors, unmodeled dynamics,
etc.) inevitably appear in nonlinear systems. Their presence can degrade the efficiency of
the system and even lead to unanticipated outcomes. In order to deal with these problems,
some authors have used intelligent approximation tools, such as FLSs [10,11], neural net-
works [12,13], Takagi–Sugeno fuzzy models [14,15] and machine learning methods [16–18],
to border the unknown nonlinear uncertainties over a given compact set. The above
intelligent control methods have been widely used in practical control systems.

In addition, many physical systems, such as circuit systems, can be expressed as
FO nonlinear systems and are susceptible to electromagnetic perturbations from external
environments. Electromagnetic interference is caused by the conduction and electrical
radiation generated by devices similar to electromagnetic circles in the process of using
current and voltage in the network environment [19–21], which has a destructive effect
on electronic components and leads to abnormalities in the internal pulse clock system
of electronic components. Consequently, it is necessary to address the disturbance sup-
pression control for FO nonlinear systems with disturbances and modeling errors. When
the state is completely known and the uncertain disturbance has an upper bound, some
scholars have effectively compensated the influence of the disturbance by introducing
a sign function into the controller [22,23]. However, the introduction of a sign function
causes the phenomenon of buffeting. Subsequently, some scholars introduced interference
compensation adaptive sliding mode control technology to successfully eliminate such
problems [24]. However, this method is only suitable for the strict assumption condition;
that is, the external disturbance should gradually approach zero increase in time. In order
to avoid such problems, some scholars have constructed a fractional disturbance observer
under the adaptive backstepping framework [25–28]. Although the above approaches
can counteract the effect of disturbance uncertainty on the system, the conclusions should
be based on the complete measurement of system state information. In practical control
systems, due to technical or economic reasons, the energy measurement or the choice not
to measure all state information, means that, in this case, the proposed control scheme
becomes ineffective. Thus, it is of critical theoretical and practical importance to design
output feedback control such that system status information is no longer required to be
directly measurable.

Toward this end, many effective output-feedback control schemes were developed for
nonlinear systems (see [29–31] and the references therein). By constructing a linear observer,
the authors in [29,30] developed observer-based adaptive fuzzy/neural network output-
feedback control schemes for nonlinear systems to erase the restriction condition of the
unmeasurable states in the known nonlinear functions case. In order to model the nonlinear
system with unmeasurable states more accurately, the authors in [31] first proposed an
adaptive fuzzy output-feedback control scheme for a nonlinear system by constructing
a fuzzy nonlinear state observer. Further, the output feedback control method is widely
used in practical engineering systems, like active suspension systems [32], unmanned
aerial vehicles [33], spacecraft attitude systems [34], etc. It is worth noting that the above-
mentioned output-feedback results are only applicable to integer-order nonlinear systems.
Since the fractional-order system is fundamentally changed based on the integer-order
system, and compared with a traditional integer-order controller, the parameters in the
fractional-order case not only have more degrees of freedom, but also lead to the Newton–
Leibniz formula, and the derivative rule of a compound function in an integer-order
operation cannot be used directly. Consequently, it is extremely difficult to extend the
integer-order method to a fractional-order method directly. Therefore, the question arises:
Is it feasible to present an output feedback control strategy based on a disturbance observer
for FO nonlinear systems with unknown disturbance and modeling error uncertainty? This
question prompted our research.

On the other hand, on account of the repetitive derivative of the virtual controller,
the computing burden of the traditional backstepping recursive method will inevitably
increase, which is the so-called issue of “complexity explosion”. To reduce the effects of this
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issue, a filter-based adaptive backstepping algorithm was proposed in [35] for IO nonlinear
systems by replacing the virtual controller with an introduced filter signal. In terms of
this technique, great progress has been made for IO nonlinear systems, and numerous
filter-based adaptive backstepping strategies have been developed for heterogeneous IO
nonlinear systems [36–39]. However, the introduced strategies described in [35–39] can
only be employed to IO nonlinear systems. Further, in [40–42], the above results were
extended to FO ones, with positive progress achieved, in which the results were utilized
on the basis of linear filter design methods, where the effects caused by boundary error
were not effectively suppressed, which inevitably increased the bounds of the error signals.
Although work has been presented in [43] to concurrently erase the issues of “complexity
explosion” and the effects of boundary layer errors by constructing nonlinear filter-based
backstepping control schemes, the commonality of these works is that the states of the
systems are assumed to be known or the system is considered to be in an ideal state without
external disturbances. To the best of our knowledge, there is still no mature adaptive
backstepping procedure for FO nonlinear systems with unknown external disturbances
and unmeasurable states, which further motivates our investigation.

Stimulated by the aforesaid motivations, this work focuses on an adaptive backstep-
ping output-feedback control problem based on nonlinear filters and a disturbance observer
for FO nonlinear systems subject to unknown external disturbances and unmeasurable
states. The innovative aspects of this paper are mainly reflected in two aspects:

(1) An adaptive fuzzy output-feedback control-strategy-based disturbance-observer for
strict-feedback FO nonlinear systems with unknown external disturbances is achieved
for the first time. It should be noted that the authors in [25–28] have considered a
related topic. However, the references [25–28] are based on the complete measurement
of system state information.

(2) A novel FO nonlinear filter based on an auxiliary function is constructed to approxi-
mately replace the virtual control functions together with the corresponding fractional
derivative, which not only erases the issue of complexity explosion, but also com-
pletely compensates for the effects of the boundary errors induced by the constructed
filters. Although the authors of [40–42] considered adaptive control based on a filter
signal for FO nonlinear systems, these results were obtained on the basis of a linear
filter, and cannot directly compensate for the aforementioned effects.

Notations: In this paper, some specific notations are employed. Ri means i-dimensional
Euclidean space; ‖·‖ represents the Euclidean norm of a vector or matrix; N+ is a posi-
tive integer.

2. Preliminaries and Problem Formulations
2.1. Preliminaries

Some standard definitions and Lemmas are presented.

Definition 1 ([44]). Let F : [t0,+∞) → R be a continuously differentiable function, then the
Caputo FO derivative of F with order α satisfies:

C
0 Dα

t F(t) =
1

Γ(w− α)

∫ t

0

F(w)(τ)

(t− τ)α+1−w dτ, (1)

with C
0 Dα

t being the fractional-integral of order α, α ∈ [w− 1, w) with w ∈ N+, when α = w, C
0 Dα

t
converts to the traditional IO differential operator. Γ(?) =

∫ +∞
0 τ?−1e−τdτ represents Euler’s

Gamma function complying with Γ(1) = 1.

Remark 1. In the course of the development of fractional calculus theory, many definitions, proper-
ties and theorems have been established on the basis of the Riemann–Liouville (R-L) definition. It is
worth noting that the R–L definition must specify the fractional derivative value of the unknown
solution at the initial time to ensure the uniqueness of the solution. Although the R–L definition



Fractal Fract. 2023, 7, 694 4 of 17

is mathematically rigorous, the fractional derivative does not have a good physical or geometric
explanation. On the contrary, the Caputo derivative enables utilization of the initial values of the IO
derivatives with physical meaning. If the R–L operator is applied in the system’s model, when the
initial condition is zero, the R–L operator and the Caputo operator are equivalent. Regarding the
non-zero case, the physical meaning of the fractional derivative in the R–L definition is not very
clear. Therefore, the Caputo FO derivative will be employed.

Lemma 1 ([23,45]). If the α-order derivative of a continuous function V(t) : [0, ∞) −→ R satisfies

C
0 Dα

t V(t) ≤ −κV(t) + µ, (2)

with α ∈ (0, 1], κ, µ > 0, then one obtains

V(t) ≤ V(0)Eα(−κtα) + µ$̄
κ , t > 0, (3)

with $̄ = max {1, λ}.

Lemma 2 ([44]). Fractional differential operators of Caputo type satisfy the linear relation, i.e.,

C
0 Dα

t (ah1(t) + bh2(t)) = aC
0 Dα

t h1(t) + bC
0 Dα

t h2(t) (4)

where a > 0, b > 0, 0 < α < 1 and h1(t), h2(t) are continuously differentiable functions.

Lemma 3 ([46]). For any x, y ∈ Rn, ε > 0, p > 1, q < 1, and 1
p + 1

q = 1, one has

xy ≤ εp

p
| x |p +

1
qεq | y |q (5)

Lemma 4 ([8]). For all t ≥ t0, a smooth function ι(t) ∈ R satisfies:

1
2

C
0 Dα

t (ι
T(t)ι(t)) ≤ ιT(t)C

0 Dα
t (ι(t)). (6)

Lemma 5 ([47,48]). Consider v > 0 and κ ∈ R, it holds:

0 ≤ |κ| − κ2
√

κ2 + v2
< v. (7)

2.2. System Descriptions and Control Objective

Consider a class of FO nonlinear systems expressed as
C
0 Dα

t xi = xi+1 + fi(x̄i) + di(t), i = 1, . . . , n− 1
C
0 Dα

t xn = u + fn(x̄n) + dn(t)

y = x1

(8)

where x̄n = [x1, x2, . . . , xn]T ∈ Rn represents the system state, y ∈ R represents the output
of the system which is measured, u ∈ R represents the control input. fi(·) ∈ R, i = 1, . . . , n
are unknown nonlinear dynamics, di(t) ∈ R, i = 1, . . . , n represent unknown bounded
external disturbances, and x2, x3, . . . , xn are assumed to be unmeasured.

Control Objective: Design an adaptive fuzzy output-feedback controller, such that all
the closed-loop signals are bounded and the system output y can track the reference signal
yd well.

Some assumptions are given below.

Assumption 1 ([40,49]). The given reference signals yd, C
0 Dα

t yd and C
0 D2α

t yd are smooth, bounded
and usable.
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Assumption 2 ([50,51]). A constant q > 0 exists, which guarantees V(0) ≤ q is always satisfied.

Remark 2. Assumption 1 and Assumption 2 are standard assumptions to ensure the tracking
requirement and avoid the issue of complexity explosion, respectively.

3. Nonlinear Filter-Based Adaptive Fuzzy Output-Feedback Control Design

An FO fuzzy state observer will be introduced to learn the unmeasurable states.
Furthermore, to counteract the influence of unknown external disturbances, a disturbance
observer is proposed, and an adaptive output feedback controller is presented with an FO
nonlinear filter. Finally, a strict stability analysis is provided in view of the FO Lyapunov
stability criterion.

3.1. Fractional-Order Fuzzy Observer Design

Since the system states x2, x3, . . . , xn in (8) are unmeasured, an FO fuzzy state
observer will be introduced. In addition, according to the system (8), FLSs ξ̄T

i ψ̄i(x̄i) are
presented to learn the unknown nonlinear dynamics ai fi(x̄i) ∈ R, i = 1, . . . , n, ai > 0, i.e.,

ai fi(x̄i) = ξ̄∗Ti ψ̄i(x̄i) + ε̄i (9)

where ψ̄i(x̄i) is the fuzzy basis functions, ε̄i is the fuzzy minimum approximation error, and
ξ̄∗i denotes the optimal weight. A more specific introduction to FLSs is provided in [52–54].

According to (9), (8) is rewritten as :
C
0 Dα

t xi = xi+1 +
1
ai

ξ̄∗Ti ψ̄i(x̄i) + Di, i = 1, . . . , n− 1
C
0 Dα

t xn = u + 1
an

ξ̄∗Tn ψ̄n(x̄n) + Dn

y = x1

(10)

where Dk = ε̄k + dk, k = 1, . . . , n.
To move forward a single step, an FO fuzzy nonlinear state observer can be constructed

C
0 Dα

t x̂i = x̂i+1 +
1
ai

ξ̄T
i ψ̄i( ˆ̄xi) + D̂i + ri(y− ŷ), i = 1, . . . , n− 1

C
0 Dα

t x̂n = u + 1
an

ξ̄T
n ψ̄n( ˆ̄xn) + D̂n + rn(y− ŷ)

y = x1

(11)

where ri, i = 1, . . . , n denote the observer gains, and ξ̄i denotes the estimate of ξ̄∗i . Let D̂i
be the disturbance observer for the hybrid disturbances Di, which is defined later in the
backstepping control design.

Let e = [e1, e2, . . . , en]T with ek = xk − x̂k(k = 1, , . . . , n) be the observer error. In light
of (10) and (11), one has

C
0 Dα

t ei = ei+1 − rie1 + D̃i +
1
ai
(ξ̄∗Ti ψ̄i(x̄i)− ξ̄T

i ψ̄i( ˆ̄xi))

i = 1, . . . , n− 1
C
0 Dα

t en = −rne1 + D̃n +
1
an
(ξ̄∗Tn ψ̄n(x̄n)− ξ̄T

n ψ̄n( ˆ̄xn))

(12)

with D̃i = Di − D̂i. Define

Bj = [0 . . . 1︸ ︷︷ ︸
j

. . . 0]Tn×1, A =

 −r1
... In−1
−rn 0


n×n

,

then (13) is rearranged as:

C
0 Dα

t e = Ae +
n

∑
j=1

Bj(
1
aj
(ξ̄∗Tj ψ̄j(x̄j)− ξ̄T

j ψ̄j( ˆ̄xj)) + D̃j) (13)
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Choose ri to ensure the matrix A is Hurwitz. Hence, if any matrix Q = QT > 0 is
proposed, there is a matrix P = PT > 0, which holds

AT P + PA = −Q (14)

For verifying the validity of (11), define the Lyapunov function

V0 = eT Pe (15)

The time differentiation of (15) is

C
0 Dα

t V0 ≤ −eTQe + 2eT P
n

∑
j=1

Bj(ξ̄
∗T
j ψ̄j(x̄j)− ξ̄T

j ψ̄j( ˆ̄xj) + D̃j) (16)

Along with Lemma 3, Lemma 4 and the fact that 0 < ψ̄T
j (·)ψ̄j(·) ≤ 1, one can obtain

2eT P
n
∑

j=1
BjD̃j ≤ n‖P‖2

b02
‖e‖2 + b02 ∑n

j=1 D̃2
j (17)

2eT P
n
∑

j=1
Bj(ξ̄

∗T
j ψ̄j(x̄j)− ξ̄T

j ψ̄j( ˆ̄xj))

= 2eT P
n
∑

j=1
Bj(ξ̄

∗T
j ψ̄j(x̄j)− ξ̄∗Tj ψ̄j( ˆ̄xj) + ξ̄∗Tj ψ̄j( ˆ̄xj) + ξ̄T

j ψ̄j( ˆ̄xj))

≤ 2n
b01
‖e‖2 + b01‖P‖2 ∑n

j=1(‖ξ̄∗j ‖2 + ˜̄ξT
j

˜̄ξ j)

(18)

where b01 > 0 and b02 > 0.
Substituting (18) and (19) into (17) gives

C
0 Dα

t V0 ≤ −H0‖e‖2 + b01‖P‖2
n

∑
j=1

˜̄ξT
j

˜̄ξ j + b02

n

∑
j=1

D̃2
j + µ̄0 (19)

where H0 = λmin(Q)− 2n
b01
− n‖P‖2

b02
, and µ̄0 = b01‖P‖2 ∑n

j=1 ‖ξ̄∗j ‖2.

3.2. Fractional-Order Nonlinear Filter Design

For handling the issue of the inherent complexity explosion under the framework of
backstepping, an FO nonlinear filter is presented by the following form:

ς̄i
C
0 Dα

t θ̄i = −
ς̄i

ˆ̄M2
i ϑ̄i√

ˆ̄M2
i + v̄2

− ϑ̄i − ς̄iS̄i, θ̄i(0) = τ̄i(0), i = 1, 2, . . . , n− 1, (20)

where ς̄i > 0, θ̄i denotes the filter signal that can approximately replace the virtual control
signal τ̄i, while ϑ̄i = θ̄i − τ̄i denotes the i-th boundary layer error. M̂i are the estimates of
Mi, while Mi are the unknown upper bounds of C

0 Dα
t τ̄i.

The FO adaptive law for ˆ̄Mi is given by

C
0 Dα

t
ˆ̄Mi = ζi1|ϑi| − ζ̄i1

ˆ̄Mi (21)

where ζi1 > 0 and ζ̄i1 > 0.
The effectiveness and performance analysis of the constructed novel nonlinear filter

will be addressed in Section 3.4.

Remark 3. In comparison to the traditional linear filter design scheme widely reported in [35–39],

the benefit of the proposed nonlinear filter constructed in this paper is manifested in − ς̄i
ˆ̄M2

i ϑ̄i√
ˆ̄M2

i +v̄2
,
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which is utilized to compensate for the upper bound of the derivative of the virtual controller.
Further, by combining the adaptation law for ˆ̄Mj, the effects of the boundary layer errors ϑ̄i can be
completely compensated.

3.3. Disturbance Observer-Based Controller Design

In view of the observer design and the nonlinear filter design given above, this section
will present the overall backstepping control design by constructing a disturbance observer.

In order to achieve the subsequent design, the following assumptions need to be satisfied:

Assumption 3 ([25]). There are unknown constants d̄i and ε∗i satisfying |C0 Dα
t di(t)| ≤ d∗i and∣∣C

0 Dα
t εi
∣∣ ≤ ε̄i.

Remark 4. The assumption for an unknown external disturbance is widely referred to in the
literature. While the FO derivative of the fuzzy approximation error εi is a continuous function
relying on the variables x1, x2, . . . , xi, Assumption 3 is rational.

From Lemma 2 and Assumption 3, it yields |C0 Dα
t Di(t)| = |C0 Dα

t di(t) +C
0 Dα

t εi| ≤
d∗i + ε̄i, and the unknown upper bound of C

0 Dα
t Di(t) is D̄i.

Firstly, construct the changes in the coordinates as:

S̄1 = x1 − yd, S̄i = x̂i − θ̄i−1, ϑ̄i−1 = θ̄i−1 − τ̄i−1, i = 2, . . . , n (22)

where S̄i denotes an error surface.
From Equations (10), (11) and (22), the C

0 Dα
t S̄1 satisfies:

C
0 Dα

t S̄1 = C
0 Dα

t x1 − C
0 Dα

t yd

= x̂2 + e2 +
1
a1

ξ̄∗T1 (ψ̄1(x1)− ψ̄1(x̂1))

+ 1
a1

˜̄ξT
1 ψ̄1(x̂1) +

1
a1

ξ̄T
1 ψ̄1(x̂1) + D1 −C

0 Dα
t yd

C
0 Dα

t S̄i = x̂i+1 +
1
ai

ξ̄T
i ψ̄i( ˆ̄xi) + D̂i + ri(y− ŷ)− C

0 Dα
t θ̄i−1

C
0 Dα

t ϑ̄i−1 = C
0 Dα

t θ̄i−1 − C
0 Dα

t τ̄i−1, i = 2, . . . , n

(23)

Design the virtual control laws τ̄i, i = 1, 2, . . . , n− 1 and the actual control input u

τ̄1 = −c1S̄1 − 1
a1

ξ̄T
1 ψ̄1(x̂1)− D̂1 +

C
0 Dα

t yd − ( 1
2b11

+ b14+b15+b16(1+a1)
2 )S̄1

τ̄i = −ciS̄i − ri(y− ŷ)− S̄i−1 − 1
ai

ξ̄T
i ψ̄i( ˆ̄xi)− D̂i − bi4

2a2
i
S̄i +

C
0 Dα

t θ̄i−1

u = −cnS̄n − S̄n−1 − rn(y− ŷ)− 1
an

ξ̄T
n ψ̄n( ˆ̄xn)− D̂n − bn4

2a2
n

S̄n + C
0 Dα

t θ̄n−1

(24)

where ci > 0, b1k > 0 and bj4 > 0, k = 4, 5, 6, j = 2, 3, . . . , n.
In view of (20) and (24), one has

C
0 Dα

t ϑ̄i =
C
0 Dα

t θ̄i −C
0 Dα

t τ̄i = −S̄i − ϑ̄i
ς̄i
−

ˆ̄M2
i ϑ̄i√

ˆ̄M2
i +v̄2

+ N̄i(·) (25)

where N̄i(·) denotes a smooth function of S̄1, . . . , S̄i, D̂1, . . . , D̂i, ˆ̄M1, . . . , ˆ̄Mi−1, ξ̄1, . . . , ξ̄i,
ϑ̄1, . . . , ϑ̄i, yd, C

0 Dα
t yd, C

0 Dα
t (

C
0 Dα

t yd). It is reasonable that an unknown constant M̄i > 0, in a
proposed compact set, is such that |N̄i(·)| ≤ M̄i.

Design the FO adaptive law for ξi as

C
0 Dα

t ξi =
ηi
ai

S̄iψ̄i( ˆ̄xi)− η̄i ξ̄i (26)

where ηi > 0 and η̄i > 0.
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For the purpose of designing a disturbance observer D̂i, i = 1, 2, . . . , n to estimate the
hybrid disturbance Di, by introducing auxiliary variables ϕi = Di − aixi, the α− th order
derivative of ϕi becomes

C
0 Dα

t ϕi =
C
0 Dα

t Di − ai
C
0 Dα

t xi
= C

0 Dα
t Di − ai(xi+1 +

1
ai

ξ̄∗Ti ψ̄i( ˆ̄xi) + ϕi + aixi)
(27)

Further, design the disturbance observer as:

D̂i = ϕ̂i + ai x̂i,
C
0 Dα

t ϕ̂i = −ai(x̂i+1 +
1
ai

ξ̄T
i ψ̄i( ˆ̄xi) + ϕ̂i + ai x̂i)

(28)

where xn+1 = x̂n+1 = u.
Let ϕ̃i = ϕi − ϕ̂i be the disturbance observer error, i.e.,

ϕ̃i = D̃i − aiei (29)

Invoking (28)–(30) yields

C
0 Dα

t ϕ̃i =
C
0 Dα

t Di

−ai[ei+1 +
1
ai

ξ̄∗Ti (ψ̄i(x̄i)− ψ̄i( ˆ̄xi)) +
1
ai

˜̄ξT
i ψ̄i( ˆ̄xi) + ϕ̃i + aiei]

(30)

3.4. Stability Analysis

Consequently, the control design has been achieved, and the specific results will be
summarized as:

Theorem 1. Consider FO nonlinear systems (8) subject to unknown external disturbances and
unmeasurable states. If the Assumptions 1–3 are satisfied, and a constant q > 0 exists , which
guarantees V(0) ≤ q, then, by constructing a fractional fuzzy state observer (11), control functions
(24), FO nonlinear filter (20), parameter updating laws (21) and (26), and a disturbance observer
(28), all the closed-loop signals are bounded, and the system output y can track the given reference
signal yd well.

Proof. Construct the Lyapunov function candidate:

V1 = V0 +
1
2 S̄2

1 +
1
2 ϕ̃2

1 +
1

2η1
˜̄ξT
1

˜̄ξ1,

Vi = Vi−1 +
1
2 S̄2

i +
1
2 ϕ̃2

i +
1

2ηi
˜̄ξT
i

˜̄ξi +
1
2 ϑ̄2

i−1 +
1

2ζi−1,1
˜̄M2

i−1, i = 2, 3, . . . , n
(31)

By utilizing Lemma 4, (10), (11), (23), (30) and (31), one can get

C
0 Dα

t V1 ≤ C
0 Dα

t V0 + S̄1
C
0 Dα

t S̄1 + ϕ̃1
C
0 Dα

t ϕ̃1 − 1
η1

˜̄ξT
1

C
0 Dα

t ξ̄1

≤ C
0 Dα

t V0 + S̄1(S̄2 + ϑ̄1) +
1
a1

S̄1ξ̄∗T1 (ψ̄1(x1)− ψ̄1(x̂1))

+S̄1(e2 + ϕ̃1 + a1e1)− c1S̄2
1 − ( b14+b15+b16(1+a1)

2 )S̄2
1

+ η̄1
η1

˜̄ξT
1 ξ̄1 − a1 ϕ2

1 + ϕ̃1{C
0 Dα

t D1 − a1[e2

+ 1
a1

ξ̄∗T1 (ψ̄1(x1)− ψ̄1(x̂1)) +
1
a1

˜̄ξT
1 ψ̄1(x̂1) + a1e1]}

(32)
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C
0 Dα

t Vi ≤ C
0 Dα

t Vi−1 + S̄i(S̄i+1 + ϑ̄i)− 1
ai

S̄i
˜̄ξT
i ψ̄i( ˆ̄xi)− bi4

2a2
i
S̄2

i

+ η̄i
ηi

˜̄ξT
i ξ̄i +

ζ̄i−1
ζi−1

˜̄Mi−1
ˆ̄Mi−1 − ciS̄2

i − ˜̄Mi−1|ϑi−1| − ai ϕ̃
2
i

+ϑ̄i−1[N̄i−1(·)−
ϑ̄i−1
ς̄i−1
−

ˆ̄M2
i−1ϑ̄i−1√
ˆ̄M2

i−1+
¯̄v2
− S̄i−1] + ϕ̃i{C

0 Dα
t Di

−ai[ei+1 +
1
ai

ξ̄∗Ti (ψ̄i(x̄i)− ψ̄i( ˆ̄xi)) +
1
ai

˜̄ξT
i ψ̄i( ˆ̄xi) + aiei]}

(33)

where S̄n+1 + ϑ̄n = 0.

On account of Lemma 3, Lemma 5 and the property 0 < ψ̄T
i ( ˆ̄xi)ψ̄i( ˆ̄xi) ≤ 1, some terms

in Formulas (32) and (33) satisfy the following inequalities

S̄1(e2 + ϕ̃1 + a1e1)

≤ b15+b16(1+a1)
2 S̄2

1 +
1

2b15
ϕ̃2

1 +
1+a1
2b16
‖e‖2

(34)

1
a1

S̄1ξ̄∗T1 (ψ̄1(x1)− ψ̄1(x̂1)) ≤ b14
2 S̄2

1 +
1

2b14
‖ξ̄∗1‖2 (35)

− 1
aj

S̄j
˜̄ξT
j ψ̄j( ˆ̄xj) ≤

bj4

2a2
j
S2

j +
1

2bj4
˜̄ξT
j

˜̄ξ j (36)

ϕ̃i{C
0 Dα

t Di − ak[ek+1 +
1
ak

ξ̄∗Tk (ψ̄k(x̄k)− ψ̄k( ˆ̄xk)) +
1
ak

˜̄ξT
k ψ̄k( ˆ̄xk) + akek]}

≤ ( 1
2bk1

+ bk2 + bk3)ϕ2
k +

bk1
2 D̄2

k +
a2

k+a4
k

2bk2
‖e‖2 + 1

2bk3
‖ξ̄∗k‖

2 + 1
2bk3

˜̄ξT
k

˜̄ξk

(37)

ϕ̃n{C
0 Dα

t Dn − an[
1
an

ξ̄∗Tn (ψ̄n(x̄n)− ψ̄n( ˆ̄xn)) +
1
an

˜̄ξT
n ψ̄n( ˆ̄xn) + anen]}

≤ ( 1
2bn1

+ bn2
2 + bn3)ϕ2

n +
bn1
2 D̄2

n +
a4

n
2bn2
‖e‖2 + 1

2bn3
‖ξ̄∗n‖2 + 1

2bn3
˜̄ξT
n

˜̄ξn
(38)

ϑ̄i−1N̄i−1 ≤ |ϑ̄i−1|M̄i−1

≤
ˆ̄M2

i−1ϑ̄2
i−1√̂̄

M2
i−1ϑ̄2

i−1+v̄2
+ v̄ + |ϑ̄i−1| ˜̄Mi−1, i = 2, 3, . . . , n

(39)

with bi2, bi3, i = 1, 2, . . . , n being design parameters, k = 1, 2, . . . , n− 1, j = 2, 3, . . . , n.
Subsequently, one can induce

C
0 Dα

t Vn ≤ −H1‖e‖2 + b02 ∑n
i=1 D̃2

i + µ̄1 −∑n
i=1 cjS̄2

j −∑n−1
k=1

1
ς̄k

ϑ̄2
k

−∑n−1
k=2 [ak − ( 1

2bk1
+ bk2 + bk3)]ϕ̃

2
k − [a1 − ( 1

2b11

+b12 + b13) +
1

2b15
]ϕ̃2

1 − [an − ( 1
2bn1

+ a2
nbn2
2 + bn3)]ϕ̃

2
n

+∑n
i=1(b01‖P‖2 + 1

2bi3
+ 1

2bi4
) ˜̄ξT

i
˜̄ξi +

η̄i
ηi

˜̄ξT
i ξ̄i +

ζ̄i−1
ζi−1

˜̄Mi−1
ˆ̄Mi−1

(40)

where H1 = H0 − (1 + a1)/(2b16)−∑n−1
j=1 (a2

j + a4
j )/(2bj2)− a4

n/2bn2 and µ̄1 = bj1D̄2
j /2+

µ̄0 + ∑n
j=1(‖ξ̄∗j ‖2/(2bn3) + ‖ξ̄∗1‖2/(2b14).

By invoking Young’s inequality, some terms in Formula (40) satisfy

b02 ∑n
i=1 D̃2

i = b02 ∑n
i=1(ϕ̃i + aiei)

2

≤ 2b02 ∑n
i=1 ϕ̃2

i + 2b02 ∑n
i=1 a2

i ‖e‖2
(41)

η̄i
ηi

˜̄ξT
i ξ̄i ≤ −

η̄i
2ηi

˜̄ξT
i

˜̄ξi +
η̄i

2ηi
‖ξ̄∗i ‖2 (42)

ζ̄i−1
ζi−1

˜̄Mi−1
ˆ̄Mi−1 ≤

ζ̄i−1
2ζi−1

˜̄M2
i−1 +

ζ̄i−1
2ζi−1

M̄2
i−1 (43)
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Selecting the appropriate parameters to make ā1 = a1− ( 1
2b11

+ b12 + b13 +
1

2b15
)− 2b02 >

0, āk = ak − ( 1
2bk1

+ bk2 + bk3)− 2b02 > 0, k = 2, 3, . . . , n− 1, ān = an − ( 1
2bn1

+ bn2
2 + bn3)−

2b02 > 0, H = H1 − 2b02 ∑n
i=1 a2

i > 0, bbi =
η̄i

2ηi
− (b01‖P‖2 + 1

2bi3
+ 1

2bi4
) > 0, i = 1, 2, . . . , n.

Denote aai = min {ā1, ā2, . . . , ān}, c̄ = min {Hλmin(P), 2ci, 2ηibbi, 2aai, ζ̄i−1}, µ̄ =

µ̄1 + ∑n
i=1(

η̄i
2ηi
‖ξ̄∗i ‖2 +

ζ̄i−1
2ζi−1

M̄2
i−1), (41) can be rewritten as

C
0 Dα

t Vn ≤ −c̄Vn + µ̄ (44)

In terms of Lemma 1, it yields

Vn(t) ≤ Eα,1(−c̄tα)Vn(0) +
µ̄$̄
c̄ ≤

Vn(0)λ
1+c̄tα + µ̄$̄

c̄ (45)

According to (45) and the definition of Vn(t), the output tracking error and view-

ing measure error satisfy |S1| ≤
√

2Vn(0)λ
1+c̄tα + 2µ̄$̄

c̄ , ‖e‖ ≤
√

Vn(0)λ
(1+c̄tα)λmin(P) +

µ̄$̄
c̄λmin(P) . Then,

limt→∞ |S1| =
√

2µ̄$̄
c̄ , limt→∞ ‖e‖ =

√
µ̄$̄

c̄λmin(P) , the tracking error and observation error
approach a small neighborhood of the origin by selecting the appropriate parameter. The
rest can be performed in the same manner; consequently, one can deduce that all the
closed-loop signals are bounded. Thus, Theorem 1 is proved.

To better show the way of tuning the observer gains and the controller parameters,
the guideline is summarized as follows:

(1) Construct the IF-THEN rules, select fuzzy membership functions, and generate the
FLS (9).

(2) Choose the observer gains r1, r2, . . . , rn such that A is Hurwitz.
(3) Select the matrix Q > 0, and, by solving (14), the symmetric matrix P > 0 is acquired.
(4) Choose appropriate parameters to ensure ā1 > 0, āk > 0, k = 2, 3, . . . , n− 1, ān > 0,

H > 0, bbi > 0, i = 1, 2, . . . , n, and construct the FO state observer (11), the vir-
tual controller and the actual controller (24), the parameter adaptation law (26), the
disturbance observer (28), and the FO nonlinear filter (20), respectively.

Remark 5. It is clear that, if the parameters η̄i and ζ̄i−1 are fixed, for i = 1, 2, . . . , n, by increasing
ci, H and aai, might result in small µ̄ and large c̄. Thus, this will lead to a smaller neighborhood. In
fact, the size of aai depends on the selection of parameters āi. Take ā1 as an example. A different
value of āi may have a direct impact on aai, and then affect the neighborhood of the tracking error
and observer error. The smaller āi is, the greater the tracking error, not vice versa. The same is
true for the other parameters. In addition, note that if the modification parameters are too small,
parameter drifting may occur to a large extent, while a smaller tracking error will lead to a larger
control gain. Hence, the design parameters should be suitably chosen to trade-off the transient
performance and the control action in real-life applications.

Remark 6. It should be noted that the authors in [21] considered the disturbance rejection issue for
fractional-order nonlinear systems. However, unlike this paper, reference [21] is based on complete
measurement of the system state information. In fact, due to technical or economic reasons, the
energy measurement or the choice not to measure all state information are relevant. In addition,
the disturbance signal considered in [21] needs to satisfy the so-called matching condition, i.e., the
disturbance signal appears only in the last equation of the system, rather than the non-matching
case considered in this paper. Therefore, the approach taken in this paper is difficult and challenging.
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4. Simulation Study

In this part, an FO Chua–Hartley system [55] is introduced to verify the validity of the
given control strategy: 

C
0 Dα

t x1 = x2 +
10
7 (x1 − x3

1) + d1(t)
C
0 Dα

t x2 = x3 + 10x1 − x2 + d2(t)
C
0 Dα

t x3 = − 100
7 x2 + u + d3(t)

y = x1,

(46)

where α = 0.98, when u = d1(t) = d2(t) = d3(t) = 0, and the system status information is
fully available, the system dynamic is depicted in Figure 1.

2 4
1

30

2

20

0

x1

10

x
3

-1

0

0

x2

-10

-2

-20

-30 -2

-4

Figure 1. Dynamical behavior of the FO Chua’s system.

Denote d1(t) = sin (t), d2(t) = sin(0.5t), d3(t) = sin(2t). The reference signal is
chosen as yd = cos(2t).

Remark 7. Since yd = cos(2t), according to fractional order calculation rules, the α-th order
and 2α-th order derivative of the reference signal yd are both bounded. The details are as follows:
C
0 Dα

t yd = 2αcos(2t + απ
2 ) and C

0 D2α
t yd = 22αcos(2t + απ). It is obvious that yd and its α-th

order and 2α-th order derivative are both bounded and smooth, which also reflects the plausibility of
Assumption 1.

The parameters of the state observer, disturbance observer, nonlinear filters, adaptive
laws and control laws are selected as ci = 2, i = 1, 2, 3, a1 = 1,a2 = a3 = 2, r1 = 5, r2 = 30,
r3 = 60, ς̄1 = ς̄2 = 1/15, ζ11 = ζ̄11 = ζ21 = ζ̄21 = 1, ηi = 0.001, η̄i = 1, b01 = 20, b02 = 1/4,
bi1 = 20, bi2 = 1/6, bi3 = 1/20, b14 = 10, b15 = 3, b16 = 2, b24 = 1, b34 = 1.

The fuzzy membership functions are: µFl
h
(xh) = exp(− xh+3−l

4 ), l = 1, 2, . . . , 5. The

initial conditions are selected as x1(0) = 0.8, x2(0) = −2, x3(0) = 1; the others are chosen
as zeros.

The simulation results are shown in Figures 2–6. Figure 2 shows the system states
xi and their estimates x̂i, i = 1, 2, 3. The parameters ξ̄i and ˆ̄Mk for k = 1, 2, i = 1, 2, 3 are
shown in Figures 3 and 4, respectively; The trajectories of the output y and reference signal
yd are plotted in Figure 5; Figure 6 depicts the control input u.
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Figure 2. The system states xi and their estimates x̂i, i = 1, 2, 3.
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Figure 3. The parameters ξi, i = 1, 2, 3.
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Figure 4. The parameters ˆ̄Mk, k = 1, 2.
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Figure 5. The trajectories of the output y and reference signal yd.
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Figure 6. The control input u.
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From Figures 2–6, it is obvious that the developed control algorithm not only achieves
the boundedness of all the closed-loop signals, but also in a way such that the tracking
error and the observer error approach to small neighborhoods of the origin. This further
confirms Theorem 1.

5. Conclusions

In this work, a nonlinear filter-based adaptive fuzzy output-feedback control strategy
was presented for uncertain FO nonlinear systems subject to unknown external distur-
bance. By borrowing the universal approximation principle of FLS, the unknown nonlinear
dynamics existing in the systems have been effectively approximated. Then, a new FO
fuzzy state observer based on a nonlinear disturbance observer was developed to handle
the issues of immeasurable states and unknown compounded disturbance simultaneously.
Further, by introducing auxiliary functions that conform to specific inequality relations,
a novel FO nonlinear filter based on a smooth auxiliary function was defined to not only
erase the issue of complexity explosion, but also to completely compensate for the effects
of the boundary errors induced by the constructed filters compared with the existing FO
linear filter method. What is more, by combining a backsteppng algorithm, an adaptive
fuzzy output-feedback control strategy was presented. On account of the FO stability
criterion, the boundedness of all the closed-loop signals is achieved, and the tracking error
and observer error approach to small neighborhoods of the origin. Simulation results based
on the FO Chua–Hartley system further demonstrate the validity of the presented scheme.
In addition, the FO system is an extension of the IO system in traditional control theory. It
can more accurately describe non-rigid dynamic systems, such as thermodynamic systems,
flexible systems, etc., and is extensively applied to vehicle suspension systems, fractal and
chaos, battery management systems, robots and other fields. Consequently, future research
will consider an FO control strategy for large-scale cases.
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