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Abstract: In this work, a dynamic-free adaptive sliding mode control (adaptive-SMC) methodology
for the synchronization of a specific class of chaotic delayed fractional-order neural network systems
in the presence of input saturation is proposed. By incorporating the frequency distributed model
(FDM) and the fractional version of the Lyapunov stability theory, a dynamic-free adaptive SMC
methodology is designed to effectively overcome the inherent chaotic behavior exhibited by the
delayed FONNSs to achieve synchronization. Notably, the decoupling of the control laws from
the nonlinear/linear dynamical components of the system is ensured, taking advantage of the
norm-boundedness property of the states in chaotic systems. The effectiveness of the suggested
adaptive-SMC method for chaos synchronization in delayed fractional-order Hopfield neural network
systems is validated through numerical simulations, demonstrating its robustness and efficiency. The
proposed dynamic-free adaptive-SMC approach, incorporating the FDM and fractional Lyapunov
stability theorem, offers a promising solution for synchronizing chaotic delayed FONNSs with input
saturation, with potential applications in various domains requiring synchronization of such systems.

Keywords: delayed neural networks; adaptive SMC; fractional-order delayed systems; synchronization;
Lyapunov stability theorem

1. Introduction

Fractional calculus is a branch of mathematics that generalizes the concept of differ-
entiation and integration to fractional orders. It involves operations on functions that are
not restricted to integer values of differentiation and integration orders [1,2]. Fractional
calculus has found applications in various scientific, engineering, and practical fields. Some
notable applications of fractional-order (FO) systems include signal processing and image
analysis, control systems, electromagnetism, viscoelasticity and rheology, diffusion pro-
cesses, biology and medicine, finance and economics, material science, electrochemistry,
fluid mechanics, heat transfer and so on [3].

In recent years, neural networks have made significant contributions to various fields
of science and engineering, revolutionizing areas such as medical science [4], security [5],
the manufacturing industry [6], robotics [7], and image encryption [8]. Additionally,
delayed neural networks (DNNs) have gained importance due to their ability to effectively
model and analyze dynamic systems by incorporating time-delayed information. Unlike
traditional neural networks, DNNs capture temporal dependencies and patterns in time-
series and sequential data, making them suitable for tasks such as time series forecasting,
speech recognition, financial market analysis, and control systems [9]. The incorporation of
delays between inputs and outputs allows DNNs to accurately model complex processes
and make predictions based on historical information, enabling researchers to tackle real-
world problems that require a deep understanding of temporal dynamics [10].

The control of delayed fractional-order neural network systems (delayed FONNSs) is
essential due to their wide range of applications and unique characteristics that distinguish
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them from integer-order systems. Delayed FONNSs possess long-term memory effects,
time delays, and non-local interactions, which can lead to unpredictable and unstable
behavior if not properly regulated. Efficient control strategies tailored for delayed FONNSs
enable performance optimization, stability enhancement, and the achievement of desired
system responses, benefiting fields such as biology, chemistry, and finance [11].

The utilization of delayed FONNSs has been extensively reported in various branches of
research and engineering, including financial modeling [12], energy systems [13], optimiza-
tion [14], and medical sciences [15]. Controlling delayed FONNSs, characterized by severe
nonlinearity, high sensitivity, oscillatory features, and fractal motions, has attracted attention
in order to stabilize and regulate their behavior. Different control methods, such as fuzzy
control [16,17], Proportional-Integral-Derivative (PID) controlling [18], adaptive control [19],
back-stepping control [20], sliding mode control [21,22], and optimal control [23], have been
developed to suppress undesirable actions in fractional-order nonlinear structures.

Among these control techniques, sliding mode control (SMC) has gained popularity
due to its precision, simplicity of implementation, robustness to unknown parameters,
and resilience. SMC involves two main phases: constructing a suitable and stable sliding
surface (SS) and generating adaptive control commands that drive the chaotic paths of the
fractional-order systems to converge and remain on the designated sliding surface [24].

Recently, numerous researchers have proposed various kinds of SMC methodolo-
gies for the synchronization of fractional-order (FO) delayed systems. Namely, in [25],
a SMC was designed to synchronize uncertain FO delayed memristive neural networks.
An FO adaptive SMC methodology is introduced in [26] to lag-synchronize FO delayed
chaotic systems. In [27], a finite-time optimal SMC method was developed for fuzzy FO
system time-varying delays based on the dynamics of neural networks. Shi et al. [28], have
designed an SMC scheme for the control and stabilization of FO time-delayed chaotic sys-
tems under external excitation utilizing Lyapunov–Krasovskii stability and LMI theorems.
In [29,30], model-based SMC methods were designed to project the synchronization of
delayed FONNSs and apply these methods for secure communications. The authors in
reference [31] proposed a resilient controller that combines elements of a supervised sliding
mode controller with an optimal robust adaptive fractional PID controller, all governed
by fuzzy rules. In [32], the problem of guaranteed cost control for delayed FONNSs was
studied and a Lyapunov-based feedback control technique was introduced.

In [33], to solve the problem of stabilizing FO uncertain chaotic systems with time
delays, a hyperbolic adaptive neuro-fuzzy SMC approach was developed based on a
backstepping control strategy. In [34], a deep learning-based SMC was designed for a
delayed FO fuzzy multiagent system using LMI theory. Yan et al. formulated an FO
SMC for the stability analysis and load frequency control of a class of FO delayed power
systems in [35]. In [36], to synchronize unknown delayed FO chaotic systems, a robust
NN-based SMC was developed using the Chebyshev neural network. An observer-based
finite-time SMC was proposed to stabilize delayed FO hybrid systems with nonlinear
inputs in [19]. Parvizian et al. [37], developed an observer-based adaptive SMC technique
for FO Markovian jump systems with time delay and input nonlinearity.

However, many of these research projects suffer from one or more of the following limitations:

1. The majority of these works focus on synchronizing two identical delayed FONNSs,
which is rarely encountered in real-world scenarios.

2. Control plans heavily rely on utilizing both linear and nonlinear elements within
the systems.

3. The application of SMC methods often leads to undesirable phenomena such as vibration.
4. Most studies overlook the inclusion of error models, external disturbances, and input

saturations when describing the system.

To address these shortcomings, we propose an innovative approach that combines the
FO edition of the Lyapunov Stability Theory (LST) with the theory of frequency distribu-
tion models (FDM). This novel method aims to develop a chattering-free adaptive SMC
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technique that is both dynamic and robust against unpredictability, external disturbances,
and input saturations.

This paper presents a novel approach for synchronizing chaotic delayed FONNSs with
system uncertainties, external disturbances, and input saturation. The proposed technique
is a dynamic-free adaptive SMC method. Initially, a smooth SS is suggested based on the
FDM, offering convenience in design and ease of use. Subsequently, the FO version of
the LST is employed to develop a suitable control method that ensures the desired sliding
motion. Importantly, the design of this method does not rely on the linear or nonlinear
equations of the delayed FONNS dynamics. To validate the effectiveness of the dynamic-
free adaptive SMC approach, two numerical examples are provided, involving two- and
three-dimensional Hopfield delayed FONNSs. These examples serve to demonstrate the
efficiency and efficacy of the proposed technique.

In summary, this study has achieved the following:

1. Development of a dynamic-free adaptive SMC technique that effectively synchronizes
a wide range of complex and chaotic Hopfield delayed FONNSs without the issue
of chattering.

2. The proposed dynamic-free adaptive SMC approach demonstrates robustness in
suppressing system uncertainties, external disturbances, and input-saturation effects.

3. Analytical results regarding the general and asymptotic stability of the synchronized
closed-loop delayed FONNSs have been obtained by employing the FDM, adaptive
controller concepts, and the FO version of the LST. These tools contribute to the
reliability of the achieved results.

4. Simulations have been conducted to validate the theoretical findings and ensure their
applicability in real-world scenarios.

The structure of this paper is outlined as follows: In Section 2, the fundamental
concepts and preliminaries of the FO calculus and FOSs are provided. This is followed
by the presentation of the problem statement and system description. Subsequently, a
novel dynamic-free adaptive SMC technique is proposed for the synchronization of chaotic
delayed FONNSs. Section 4 includes numerical scenarios and showcases the analytical
accomplishments of the paper through two scenarios involving the synchronization of
unknown Hopfield delayed FONNSs. Finally, Section 5 concludes the paper by discussing
the obtained results and drawing conclusions from them.

2. Preliminaries and Problem Description

This section is divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

2.1. Preliminary Subjects

Definition 1 ([38]). Consider that Ψ(t) is a continuous function in R. The Riemann–Liouville
defined FO integral of Ψ(t) for a fractional number κ ∈ R is given as

t0 It Ψ(t) = D−κΨ(t) =
1

Γ(κ)

∫ t

t0

Ψ(v)
(

t− v)κ−1dv, (1)

in which t0 ∈ R and Γ(.) are the initial time and the Gamma function, respectively.

Definition 2 ([38]). Consider that Ψ(t) as a continuous function in R. The Caputo-defined FO
derivative of Ψ(t) for a fractional number κ ∈ R is given as

c
t0

Dκ
t Ψ(t) = DκΨ(t) =

1
Γ(m− κ)

∫ t

t0

Ψ(n)(v)
(t− v)κ−n+1 dv, (2)
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where n − 1 < κ ≤ n ∈ N and Dκ stands for the Caputo derivative operator throughout the
remaining parts of the the paper.

Feature 1 ([39]). For any real constant w ∈ R, we have Dκw = 0.

Feature 2 ([39]). Suppose that 0 < κ < 1 and W(t) ∈ Cm[0, T]; then:

Dκ(IκW(t)) = Dκ
(
D−κW(t)

)
= W(t). (3)

Theorem 1 ([40]). For any 0 < κ < 1, if the FO system Dκq(t) = {(t,q(t)) holds in the
Lipschitz condition, then q = 0 is an equilibrium for it. Also, suppose that there is the Lyapunov
function V(t,q(t)) and class-K functions r1. r2 and r3 with the following relations:

r1(‖q‖) ≤ V(t,q(t)) ≤ r2(‖q‖). (4)

D−κV(t,q(t)) ≤ −r3(‖q‖). (5)

If this is the case, then the system Dκq(t) = {(t,q(t)) is said to be asymptotically stable.

Lemma 1 ([41]). If 0 < κ < 1 the following inequality will be applicable for G(t):

1
2

DκG2(t) ≤ G(t)DκG(t). (6)

Theorem 2 (FDM theory) ([42]). Consider a continuous FO dynamical system as follows:

DκQ(t) = {(t, Q(t)). (7)

Also, let B : (0, ∞)× [0, Q]→ Rn be the following equation:

B(w, t) =
∫ t

0
e−w

2(h−$){(q, $)d$. (8)

Then, the FO system (7) is equal to{
∂B(w,h)

∂t = −w2B(w, t) + f (t.Q(t))
Q(t) =

∫ ∞
0 ϕ(w)B(w, t)dw

(9)

where ϕ(w) = 2sin(ιπ)
π w1−2ι and 0 < ι < 1.

Remark 1. A fractional-order system and a traditional system, characterized by their respective
approaches to modeling dynamic phenomena, exhibit fundamental differences. In a traditional
system, the processes are described using integer-order derivatives and integrals, limited to whole
numbers. This methodology is suitable for instantaneous behavior without consideration of past
states or memory effects. In contrast, a fractional-order system introduces a more flexible framework
by allowing non-integer values for differentiation and integration orders, essentially permitting
fractional orders. This adaptability enables the representation of complex behaviors involving
memory, long-range dependencies, and non-local interactions. Traditional systems are adept at
modeling well-understood systems with integer-order behaviors, but they may struggle to accurately
capture intricate dynamics such as anomalous diffusion, viscoelasticity, and fractal-like properties.
Fractional-order systems excel in such scenarios, as they encompass memory-driven responses
and encompass a wider range of response patterns, including power-law decays and growths.
Consequently, the choice between these systems hinges on the nature of the phenomena being studied,
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with fractional-order systems offering greater precision for systems that display fractional-order
dynamics, while traditional systems continue to be applied effectively in scenarios with integer-
order behaviors.

2.2. Problem Statement

Recently, in [43], the dynamical mechanism of FOHNN is presented as follows:

Dκxi(t) = −aixi(t) +
n

∑
j=1

wij f j
(
xj(t)

)
+ Ii (10)

where 0 < κ < 1, i = 1, 2, . . . , n, xi(t) is the ith state of the neuron of the FOHNN; ai
is the frequency at which the i-th neuron’s potential returns to its quiescent state when
disconnected from the network; wij is an entry of weight matrix W=

(
wij
)

n×n
, which presents connected neurons; f j

(
xj(t)

)
is the activation function of the jth

neuron and is a bounded differentiable function and the activation function for the ith
neuron; and Ii is the i-th element of external distributions.

Now, for i = 1, 2, . . . , n, consider the following class of delayed FONNSs:

Dαxi(t) = −aixi(t) +
n

∑
j=1

Mij{1j
(
xj(t)

)
+

n

∑
j=1

Pij{2j
(
xj(t− τ)

)
+ Ii (11)

where n denotes the number of units of NN, xi(t) is the ith state of the neuron of the
delayed FONNSs, {1j and {2j denote the activation function of the jth neuron, Mij and
Pij denote the components of the connection weight matrices of the jth neuron on the ith
neuron, ai > 0 is an unknown number and shows the rate with which the ith neuron resets
its potential to the resting state when disconnected from the network, Ii shows the ith
element of external distributions, and τ means the delay of transmission.

Here, to address the problem of synchronization and stabilization of the error system
for the delayed FONNSs, if we designate the system (11) as the drive system, then the
following system will act as the response system:

Dκyi(t) = −biyi(t) +
n

∑
j=1

Nij}1j
(
yj(t)

)
+

n

∑
j=1

Qij}2j
(
yj(t− τ)

)
+ Ji + Ψi(ui(t)) (12)

where yi(t) is the ith state of the neuron of the delayed FONNSs, }1j and }2j denote the
activation function of the jth neuron,Nij and Qij denote the components of the connection
weight matrices of the jth neuron on the ith neuron, bi > 0 is same as ai in (11), Ji shows
the ith element of the external distributions, and τ means the delay of transmission.

Furthermore, ui(t) denotes the control input, and Ψi(ui(t)) is the input saturation
function:

Ψi(ui(t)) = ui(t) + ∆(ui(t)), i = 1, . . . , n (13)

in which

∆(ui(t)) =


un1 − ui(t) i f un2 > ui(t)

(θ − 1)ui(t) i f up1 < ui(t) < un1

up1 − ui(t) i f ui(t) ≥ up2

, i = 1, . . . , n, (14)

where up1 , up2 ∈ R+ and un1 , un2 ∈ R− are the bounds of the input saturation procedure
(13), and θ ∈ R refers to the slope of saturation.

Now, by defining the error parameter vector, one gets

E = X−Y = [x1(t), x2(t), . . . , xn(t)]
T − [y1(t), y2(t), . . . , yn(t)]

T

= [e1(t), e2(t), . . . , en(t)]
T .

(15)
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Thus, for i = 1, 2, . . . , n, the dynamics of the synchronization error function can then
be obtained as follows:

Dκei(t) = Dκxi(t)−Dκyi(t) (16)

= −(ai(t)xi(t)− bi(t)yi(t)) +
n
∑

j=1

[
Mij{1j

(
xj(t)

)
− Nij}1j

(
yj(t)

)]
+

n
∑

j=1

[
Pij{2j

(
xj(t− τ)

)
−Qij}2j

(
yj(t− τ)

)]
+ (Ii − Ji)

−Ψi(ui(t)).

(17)

The ultimate objective is to develop an adaptive control mechanism that is appropriate
and usable in such a way that, for i = 1, 2, . . . , n,

lim
t→∞
‖ei(t)‖ = lim

t→∞
‖xi(t)− yi(t)‖ = 0. (18)

The topic of synchronization between the drive mechanism (11) and the response
mechanism (12) will be resolved and realized if Equation (18) is developed.

Assumption 1. The state trajectories of error for chaotic systems are generally limited in phase-
space [44,45], which may be deduced from the fact that chaotic systems produce irregular attractors
as a consequence of their behavior. As a result, there exist the positive numbers v1i, v2i, δ1i and δ2i,
which meet the conditions outlined in the following relations:∣∣∣∣∣−(ai(t)xi(t)− bi(t)yi(t)) +

n

∑
j=1

[
Mij{1j

(
xj(t)

)
− Nij}1j

(
yj(t)

)]∣∣∣∣∣ ≤ v1i + v2i‖E(t)‖ (19)

and ∣∣∣∣∣ n

∑
j=1

[
Pij{2j

(
xj(t− τ)

)
−Qij}2j

(
yj(t− τ)

)]∣∣∣∣∣ ≤ δ1i + δ2i‖E(t− τ)‖. (20)

Additionally, there is an expectation that the uncertainty terms Ii and Ji will be
bounded. Therefore, there are positive constants d1i and d2i in such a way that

|(Ii − Ji)| ≤ d1i + d2i‖E‖, i = 1, 2, . . . , n. (21)

As a result of (19), (20), and (21),

∣∣∣∣∣−(ai(t)xi(t)− bi(t)yi(t)) +
n
∑

j=1

[
Mij{1j

(
xj(t)

)
− Nij}1j

(
yj(t)

)]∣∣∣∣∣+
∣∣∣∣∣ n

∑
j=1

[
Pij{2j

(
xj(t− τ)

)
−Qij}2j

(
yj(t− τ)

)]∣∣∣∣∣
+|(Ii − Ji)| ≤ γi + ζi‖E‖+ δi‖E(t− τ)‖.

(22)

Assumption 2. The boundedness feature of the controller is one of the most critical conditions that
must be met in order for a control law to be relevant. As a consequence, it is preferable that the
∆(ui(t)) is bounded. As a result, one has

|∆(ui(t))| ≤ ϕi ≤ ∞. (23)

3. Adaptive SMC Methodology Design

First, the sliding surface will be introduced, and after the relevant analyses, an adaptive
control law will be designed to overcome the synchronization problem.
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Therefore, for i = 1, . . . , n, the proposed FO sliding-surface equation is suggested as

si(t) = ei(t) + D−κ
[
µiei(t) + |ei(t)|qsor(ei(t))

]
, (24)

where µi and 0 < κ, q < 1 are positive constants, and

sor(m) =

{
tanh(m), f or |m| > 1

m, f or |m| ≤ 1.
(25)

When the sliding motion takes place, it is common knowledge that the requirement
si(t) = 0 is satisfied; hence, using Feature 2,

si(t) = 0⇒ Dκsi(t) = 0 (26)

⇒ Dκsi(t) = Dκei(t) + µiei(t) + |ei(t)|qsor(ei(t)) = 0 (27)

⇒ Dκei(t) = −
(
µiei(t) + |ei(t)|qsor(ei(t))

)
. (28)

Theorem 3. The sliding dynamic Equation (28) will be stable, and the states of the FO error neural
network (17) have an asymptotic convergence to the origin.

Proof. Based on Theorem 2, for i = 1, . . . , n, Equation (28) can be represented as{
∂Bi(w.t)

∂t = −w2Bi(w, t)−
(
µiei(t) + |ei(t)|qsor(ei(t))

)
.

ei(t) =
∫ ∞

0 ϕi(w)Bi(w, t)dw
(29)

Now, by choosing the following form of Lyapunov function:

V1i(t) =
∫ ∞

0
ϕi(w)Bi

2(w, t)dw (30)

one has
dV1i(t)

dt
=
∫ ∞

0
ϕi(w)Bi(w, t)

∂Bi(w, t)
∂t

dw (31)

Utilizing Equation (29)

dV1i(t)
dt

=
∫ ∞

0
ϕi(w)Bi(w, t)

[
−w2Bi(w, h)−

(
µiei(t) + |ei(t)|qsor(ei(t))

)]
dw (32)

= −
∫ ∞

0
ϕi(w)w2Bi

2(w, t)dw−
[(

µiei(t) + |ei(t)|qsor(ei(t))
)] ∫ ∞

0
ϕi(w)Bi(w, t) dw︸ ︷︷ ︸

ei(t)

(33)

= −
∫ ∞

0
ϕi(w)w2Bi

2(w, t)dw− µiei
2(t)− ei(t)|ei(t)|qsor(ei(t)) (34)

Here, concerning Equations (34), and (25), two items need to be investigated:

• item 1: if |ei| ≤ 1, then ei(t)sor(ei(t)) = ei(t)
2; thus, in (34), one gets

dV1i(t)
dt

= −
∫ ∞

0
ϕi(w)w2Bi

2(w, t)dw− ei
2(t)

(
µi + |ei(t)|q

)
< 0 (35)

• item 2: if |ei| > 1, then ei(t)sor(ei(t)) = ei(t)tanhei(t) < |ei(t)|; hence, in (30), one obtains

dV1i(t)
dt

= −
∫ ∞

0
ϕi(w)w2Bi

2(w, t)dw− µiei
2(t)− |ei(t)|1+q < 0 (36)
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Therefore, inequalities (35) and (36) shows that dV1i(t)
dt < 0; this means that the sliding

mode dynamic (28) has asymptotic stability, and this completes the proof. �

Now, for i = 1, . . . , n, a dynamic-free adaptive SMC is designed as

ui(t) =
[

µiei(t) + |ei(t)|qsor(ei(t)) +√isi +

(
ˆ
γi +

ˆ
ζ i‖E‖+

ˆ
δi‖E(t− τ)‖+ ˆ

ϕi + ψi

)
sor(si(t))

]
(37)

Dκ ˆ
γi(t) = ν|si|,

ˆ
γi(0) =

ˆ
γi0, i = 1, . . . , n. (38)

Dκ
ˆ
ζ i(t) = r|si|‖E‖,

ˆ
ζ i(0) =

ˆ
ζ i0, i = 1, . . . , n. (39)

Dκ
ˆ
δi(t) = l|si|‖E(t− τ)‖,

ˆ
δi(0) =

ˆ
δi0, i = 1, . . . , n. (40)

Dκ ˆ
ϕi(t) = z|si|,

ˆ
ϕi(0) =

ˆ
ϕi0, i = 1, . . . , n. (41)

Theorem 4. Suppose we have the FO error dynamical mechanism (17). Then, by operating the
SMC methodology (37) and related adaption terms (38)–(41), the process of the trajectories of the
FO dynamical mechanism (17) will exhibit asymptotic stability.

Proof of Theorem 4. Consider the following equality as a Lyapunov function

V2i(t) =
1
2

(
s2

i +
1
ν

(
ˆ
γi − γi

)2
+

1
r

(
ˆ
ζ i − ζi

)2

+
1
l

(
ˆ
δi − δi

)2

+
1
z

(
ˆ
ϕi − ϕi

)2
)

. (42)

Then, using Lemma 1, one obtains

DκV2i(t) ≤ siDκsi +
1
ν (γ̂i − γi)Dκ

(
ˆ
γi − γi

)
+ 1

r

(
ˆ
ζ i − ζi

)
Dκ

(
ˆ
ζ i − ζi

)
+ 1

l

(
ˆ
δi − δi

)
Dκ

(
ˆ
δi − δi

)
+ 1

z

(
ˆ
ϕi − ϕi

)
Dκ

(
ˆ
ϕi − ϕi

)
.

(43)

Based on Feature 1 in Caputo FO derivative, one obtains

DκV2i(t) ≤ siDκsi +
1
ν

(
ˆ
γi − γi

)
Dκ ˆ

γi +
1
r

(
ˆ
ζ i − ζi

)
Dκ

ˆ
ζ +

1
l

(
ˆ
δi − δi

)
Dκ

ˆ
δi

1
z

(
ˆ
ϕi − ϕi

)
Dκ ˆ

ϕi. (44)

Inserting Dκsi from (27) and relations (38)–(41) in (43), one gets

DκV2i(t) ≤ si
[
Dκei(t) + µiei(t) + |ei(t)|qsor(ei(t))

]
+

(
ˆ
γi − γi

)
|si|+

(
ˆ
ζ i − ζi

)
|si|‖E‖

+

(
ˆ
δi − δi

)
|si|‖E(t− τ)‖+

(
ˆ
ϕi − ϕi

)
|si|.

(45)

Now, by replacing Dκei(t) from (17), and utilizing (13),

DκV2i(t) ≤ si

[[
−(ai(t)xi(t)− bi(t)yi(t)) +

n
∑

j=1

[
Mij{1j

(
xj(t)

)
− Nij}1j

(
yj(t)

)]
+

n
∑

j=1

[
Pij{2j

(
xj(t− τ)

)
−Qij}2j

(
yj(t− τ)

)]
+ (Ii − Ji)− ui(t) + ∆(ui(t))

]
+ µiei(t)

+|ei(t)|qsor(ei(t))
]
+

(
ˆ
γi − γi

)
|si|+

(
ˆ
ζ i − ζi

)
|si|‖E‖+

(
ˆ
δi − δi

)
|si|‖E(t− τ)‖+

(
ˆ
ϕi − ϕi

)
|si|.

(46)
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≤ |si|
[∣∣∣∣∣−(ai(t)xi(t)− bi(t)yi(t)) +

n
∑

j=1

[
Mij{1j

(
xj(t)

)
− Nij}1j

(
yj(t)

)]∣∣∣∣∣
+

∣∣∣∣∣ n
∑

j=1

[
Pij{2j

(
xj(t− τ)

)
−Qij}2j

(
yj(t− τ)

)]∣∣∣∣∣+ |(Ii − Ji)|+ |∆(ui(t))|
]

+si
[
µiei(t) + |ei(t)|qsor(ei(t))− ui(t)

]
+

(
ˆ
γi − γi

)
|si|+

(
ˆ
ζ i − ζi

)
|si|‖E‖

+

(
ˆ
δi − δi

)
|si|‖E(t− τ)‖+

(
ˆ
ϕi − ϕi

)
|si|.

(47)

Using (22) and (23) and replacing ui(t) from (37) in relation (47), one concludes

DκV2i(t) ≤ |si|[γi + ζi‖E‖+ δi‖E(t− τ)‖+ ϕi]
+si
[
µiei(t) + |ei(t)|qsor(ei(t))

−
[[

µiei(t) + |ei(t)|qsor(ei(t)) +√isi +

(
ˆ
γi +

ˆ
ζ i‖E‖+

ˆ
δi‖E(t− τ)‖+ ˆ

ϕi + ψi

)
sor(si(t))

]]]
+

(
ˆ
γi − γi

)
|si|+

(
ˆ
ζ i − ζi

)
|si|‖E‖+

(
ˆ
δi − δi

)
|si|‖E(t− τ)‖+

(
ˆ
ϕi − ϕi

)
|si|

(48)

≤ |si|[γi + ζi‖E‖+ δi‖E(t− τ)‖+ ϕi]− si

[
√isi +

(
ˆ
γi +

ˆ
ζ i‖E‖+

ˆ
δi‖E(t− τ)‖+ ˆ

ϕi + ψi

)
sor(si(t))

]
+

(
ˆ
γi − γi

)
|si|+

(
ˆ
ζ i − ζi

)
|si|‖E‖+

(
ˆ
δi − δi

)
|si|‖E(t− τ)‖+

(
ˆ
ϕi − ϕi

)
|si|.

(49)

Using the fact that si(t)sor(si(t)) < |si| for any si ∈ R, we obtain

DκV2i(t) ≤ −√isi
2 − |si|

(
ˆ
γi +

ˆ
ζ i‖E‖+

ˆ
δi‖E(t− τ)‖+ ˆ

ϕi + ψi

)
+

ˆ
γi|si|+

ˆ
ζ i|si|‖E‖+

(
ˆ
δi

)
|si|‖E(t− τ)‖

+
ˆ
ϕi|si|

(50)

≤ −√isi
2 − ψi|si| < 0. (51)

As a result, the criteria for stability in Theorem 1 have been fulfilled, and the proof has
reached its conclusion. �

Remark 2. The “Dynamic-Free Adaptive-SMC” technique is a cutting-edge control approach
that combines principles of adaptive control and sliding mode control to achieve robust and precise
control performance without requiring a precise dynamic model of the system. This technique is
particularly advantageous in scenarios where system dynamics are uncertain, variable, or difficult
to model accurately. By leveraging adaptive mechanisms, the control algorithm can continuously
update its parameters based on real-time feedback, adapting to changes in the system’s behavior. The
incorporation of sliding mode control ensures that the system’s trajectory converges to a desired
state along a predefined sliding surface, even in the presence of disturbances, uncertainties, and
variations in the system’s dynamics. This innovative approach offers improved tracking accuracy,
disturbance rejection, and robustness compared to traditional control methods, making it a valuable
tool in various applications ranging from robotics and aerospace systems to industrial processes and
beyond [46].

4. Numerical Simulations

Here, two numerical scenarios of delayed FO-HNNs are investigated to illustrate the
applicability of the designed adaptive SMC method in practice. The numerical algorithm
proposed in [2,47] has been used for numerical simulations, considering h=0.01 for time-
step in the R2023a version of MATLAB software.
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4.1. Synchronization of 2D Unknown Hopfield Delayed FONNSs

In this example, the following 2-dimensional unknown Hopfield delayed FONNSs are
considered for illustration. Therefore, the drive system is as follows:{

Dκx1(t) = −x1(t)− 2 tanh(x1(t)) + 2.3 tanh(x2(t))− 1.3 tanh(x1(t− τ))− 1.2 tanh(x2(t− τ)) + 0.2
Dκx2(t) = −x2(t)− 3.3 tanh(x1(t))− 1.5 tanh(x2(t))− 3.5 tanh(x1(t− τ))− 2 tanh(x2(t− τ)) + 0.3,

(52)

with κ = 0.92 and τ = 1.2. Also, x1(0) = −5 and x2(0) = 5 are selected as initial values.
And, the response system is as follows:

{
Dκy1(t) = −y1(t) + 0.5 sin(y1(t)) + sin(y2(t)) + 0.5 tanh(y1(t− τ)) + tanh(y2(t− τ)) + 0.1 + Ψ1(u1(t))

Dκy2(t) = −0.5 y2(t) + sin(y1(t))− 0.5 sin(y2(t))− 0.5 tanh(y1(t− τ))− tanh(y2(t− τ)) + 0.15 + Ψ2(u2(t)),
(53)

Also, y1(0) = 5 and y2(0) = −4 are the initial values.
The parameters of the control technique (37) are fixed as √1 = √2 = 3, ν = 2.5,

r = 2, l = 1.2, and z = 1.8. Moreover, the constants of the sliding surface (24) are selected
by µ1 = µ2 = 2, q = 0.9. Furthermore, the nonlinear function Ψi(ui(t)) is defined as

Ψi(ui(t)) =


3 i f ui(t) > 3

0.98ui(t) i f − 3 ≤ ui(t) ≤ 3
−3 i f ui(t) < −3

i = 1, 2. (54)

Figures 1 and 2 depict, respectively, the synchronization of the states of FO drive-
response mechanisms (52) and (53) and the controlled error of the Hopfield delayed
FONNSs ((52) and (53)). Evidently, the unusual attractors of the chaotic FO error system
are rapidly stabilized. In addition, Figure 3 depicts the time history of the adaptive
controller (37). It is observed that the control input (37) approaches equilibrium without
any traces of the chattering phenomena. This indicates that the devised adaptive controller
can effectively synchronize the 2-dimensional Hopfield delayed FONNSs ((52) and (53)).
Moreover, as shown in Figure 3, as the signals of the control laws method and the saturation
boundaries, they are suppressed by the saturation condition, and the leaping phenomena
occur. Therefore, jumping states and switching states may be simply applied, particularly
when relays and indicated saturation conditions are used.
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Also, Figures 4 and 5 show the time response of the sliding surface (24) in both function
plot and surface plot, respectively. Clearly, from Figure 4, each parameter of the sliding
surface (24) approaches the origin, and there are no traces of the chattering phenomena in
the sliding surfaces. In addition, Figure 5 indicates that the result of applying this method
is a stable surface.
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4.2. Synchronization of 3D Unknown Hopfield Delayed FONNSs

Here, to illustrate the effectiveness of the proposed adaptive SMC, 3-dimensional
unknown Hopfield delayed FONNSs are investigated. Thus, the drive system is

Dκx1(t) = −x1(t) + 2 tanh(x1)− 1.2 tanh(x2) + 1.3 tanh(x3(t− τ)) + 0.2,
Dκx2(t) = −x2(t) + 1.8 tanh(x1) + 1.71 tanh(x2) + 1.15 tanh(x3)− 1.3 tanh(x3(t− τ))− 0.3,
Dκx3(t) = −x3(t)− 4.75 tanh(x1)− 1.1tanh(x3) + 0.56 tanh(x3(t− τ)),

(55)

where κ = 0.96 and τ = 0.8. Also, x1(0) = 2, x2(0) = −2 and x3(0) = 3 are selected as
initial values.

And, the response system is as follows:


Dκy1(t) = −6 y1(t) + 3 sin(y1(t))− 2.5 sin(y3(t)) + sin(y2(t− τ)) + 3 tanh(y3(t− τ)) + 0.5 + Ψ1(u1(t)),
Dκy2(t) = −7 y2(t)− sin(y1(t)) + 1.5sin(y2(t)) + 2sin(y3(t))tanh(y1(t− τ)) + 1.6 sin(y3(t− τ))

+2 tanh(y3(t− τ)) + 0.1 + Ψ2(u2(t)),
Dκy3(t) = −5.5 y(t)3 − 2.5 sin(y1(t)) + 2 sin(y2(t))− sin(y3(t))− sin(y2(t− τ))

+3 tanh(y1(t− τ)) + 0.3 + Ψ3(u3(t)),

(56)

Also, y1(0) = −3, y2(0) = 4 and y2(0) = −3 are the initial values.
The constants of the control method (37) are fixed as √1 = √2 = 2.5 and √3 = 4,

ν = 3, r = 1.8, l = 2.3, and z = 2.6. Plus, the parameters of the SS (24) are µ1 = 4, µi = 2,
q = 0.94 and ρ = 5. Furthermore, the nonlinear mechanism Ψi(ui(t)) is as follows:

Ψi(ui(t)) =


5 i f ui(t) > 5

ui(t) i f − 5 ≤ ui(t) ≤ 5
−5 i f ui(t) < −5

i = 1, 2, 3. (57)

The synchronized states of the drive-response Hopfield delayed FONNSs ((55) and
(56)), as well as the state trajectories of the controlled error of the Hopfield delayed FONNSs,
are shown in Figures 6 and 7, respectively. It is clear that the chaotic FO error system’s
peculiar attractions are fast stabilizing. In addition, the time history of the adaptive
controller (37) is shown in Figure 8. It can be seen that the control input (37) is moving
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closer and closer to equilibrium without exhibiting any signs of the chattering phenomenon.
This indicates that the adaptive controller that was developed is capable of synchronizing
the 3-dimensional unknown Hopfield delayed FONNSs ((55) and (56)) in an efficient
manner. In addition, as can be seen in Figure 3 that, when the signals of the control law
go close to the borders of the saturation state, the saturation condition causes them to
be suppressed, which in turn causes the jumping phenomenon to take place. As a direct
consequence of this, jumping states and switching states may be implemented with relative
ease, in particular in situations where relays and indicated saturation conditions are used.
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Furthermore, the temporal response of the SS (24), applied to synchronize the drive-
response Hopfield delayed FONNSs ((55) and (56)), is shown in both the function plot and
the surface plot, shown in Figures 9 and 10, respectively. Figure 9 makes it abundantly clear
that each parameter of the sliding surface (24) is getting closer and closer to the origin, and
there are no indications that the chattering phenomenon is present in the sliding surfaces.
In addition, the use of this approach results in a surface that is stable, as seen in Figure 10.
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Now, to draw a comparison to the adaptive SMC method, we also employ another
adaptive sliding mode controller, as outlined in Reference [48], for the synchronization of
the FO Hopfield neural network described by Equations (55) and (56) with κ = 0.99. It is
worth noting that Reference [48] deals with adaptive synchronization for a specific category
of uncertain delayed fractional-order Hopfield neural networks in the presence of external
disturbances. Here, we adopt the control methodology from [48] in the following manner:

si(t) =
∫

(Dκei(t) + piei(t) + qi sign(ei(t)))dt, (58)

where pi and qi are positive numbers. Also, for i = 1, 2, 3 :

ui(t) = −
(
− ˆ

ai(t) + pi

)
ei(t)−

ˆ
di(t)− |si(t)|

(
3
∑

j=1

∣∣Mij
∣∣L f

j

∣∣ej(t)
∣∣+ 3

∑
j=1

∣∣Pij
∣∣Lg

j

∣∣ej(t− τ)
∣∣)− qi sign(ei(t))

−ςa
i si(t)− ςb

i sign(si(t)),
(59)

.
ˆ
ai = −ηa

i si(t)ei(t) (60)

.
ˆ
di = ηd

i si(t), (61)

where L f
j , Lg

j , ςa
i , ςb

i , ηa
i and ηb

i are positive constants as control parameters.

The controller parameters are chosen as L f
1 = L f

2 = 2.2, L f
3 = 2,Lg

1 = Lg
2 = Lg

3 = 2.3,
ςa

1 = ςa
2 = ςa

3 = 1.9, ςb
1 = 2.5, ςb

2 = ςb
3 = 3, ηa

1 = ηa
2 = ηa

3 = 1.8, and ηb
1 = 2, ηb

2 = ηb
3 = 2.5.

Moreover, for i = 1, 2, 3, pi = 0.9 and qi = 1.1.
Figure 11 illustrates the trajectories of controlled error states for the Hopfield delayed

FONNSs described by equations (55) and (56). These systems are controlled using the
proposed adaptive SMC method (37) and the SMC method (59) presented in [48]. While
both methods manage to guide the error states to the origin, it is evident that the suggested
adaptive SMC exhibits superior convergence compared to the SMC method (59). A detailed
analysis of this comparison is consolidated in Table 1.
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Table 1. A Comparative Analysis of the Outcomes Achieved with AMF (21) and SMC (37).

Aspects of Comparison The Outcomes of This Research The Outcomes of Ref. [48]

Control Approach Dynamic-free adaptive SMC Adaptive SMC

Controller Configuration Parameters In total, the selection of 2n + 5 parameters
is necessary.

In total, the selection of 8n parameters
is necessary

System Details.
The dynamic-free adaptive SMC method

does not require dynamic terms of the
systems; only the states are sufficient.

The Adaptive SMC requires complete
access to dynamic terms from both the

drive and response systems.

Amplitude of Oscillations Standard Range (determined by the
behavior of the error system)

Beyond Range (determined by the
behavior of the error system)

Conclusions

The benefits of the suggested
dynamic-free adaptive SMC are
as follows:
(1) Enhanced robustness;
(2) Simplified controller design for
practical feasibility;
(3) Absence of chattering;
(4) Heightened convergence precision.

The advantages of the adaptive SMC
method include:
(1) A potential challenge with numerous
parameters that can be complex
to manage;
(2) Effective operation when the system
states are known;
(3) Absence of chattering;

Remark 3. In Figures 4 and 8, we delve into the concept of sliding surfaces, illustrating the
convergence of sliding surface states to the origin. This illustrative model is widely employed across
the relevant literature. However, it is important to note that obtaining an exact depiction of the stable
surfaces proves challenging due to the nature of Figures 4 and 8, which present line views of sliding
surfaces (24) in Scenarios 1 and 2. To address this limitation, we have included Figures 5 and 10,
which offer a surface plotting perspective to visually demonstrate the stability of sliding surface (24)
in Scenarios 1 and 2. These supplementary figures provide a more comprehensive understanding of
the stability concept.

Remark 4. The dynamic-free adaptive sliding mode control method, rooted in the principles of the
frequency distributed model (FDM) theorem, the Lyapunov stability theorem, and norm-bounded
control, presents a compelling approach for addressing the synchronization of non-identical systems,
all while remaining free from explicit system dynamics. In contrast to traditional methods that often
rely on explicit knowledge of system dynamics, the dynamic-free nature of this approach stands
out. By capitalizing on the FDM theorem, the method estimates and counteracts disturbances
without necessitating in-depth knowledge of the complex underlying dynamics of the systems. This
is especially advantageous when dealing with non-identical systems, as such complexities can vary
significantly. Furthermore, the inclusion of the Lyapunov stability theorem guarantees the method’s
convergence and stability, even in the context of non-identical systems. The controller’s adaptability
is further augmented by its adaptive nature, enabling it to automatically adjust control actions
based on observed differences between the systems. This adaptability addresses the challenge of
synchronizing non-identical systems by ensuring that the control strategy accommodates variations.
The norm-bounded control aspect maintains control signals within predefined bounds, resulting in a
smoother and more predictable response, which is particularly crucial when dealing with diverse
system dynamics. In conclusion, this dynamic-free adaptive sliding mode control method offers a
novel and potent solution for synchronizing non-identical systems. By focusing on disturbance
estimation, adaptability, and stability analysis, the method overcomes the limitations of explicit
system dynamics. This distinctive feature, coupled with its adaptability, positions the method as a
strong contender for real-world scenarios involving non-identical systems.

Remark 5. In practical applications, particularly when dealing with complex fractional-order (FO)
systems that defy accurate modeling and are plagued by inherent uncertainties, this model-free
controller holds substantial promise. Furthermore, its implementation can be seamlessly achieved
using readily available digital devices such as the FPGA (Field-Programmable Gate Array) or DSP
(Digital Signal Processing), requiring only knowledge of the system’s current state.
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Remark 6. Research into the proposed dynamic-free adaptive SMC approach for synchronizing
delayed fractional-order nonlinear chaotic systems (FONNS) is an evolving area with notable
achievements. However, it is essential to acknowledge the existing limitations, with the anticipation
of future improvements. These limitations encompass (1) constraints on the differentiation order,
typically limited to the range of 0 to 1; (2) the intricate nature of analyzing and computing models
for delayed systems and control methodologies, which can be challenging; (3) the reliance on
trial-and-error methods for selecting optimal controller settings.

Addressing these restrictions is pivotal for advancing the efficacy and versatility of
the dynamic-free adaptive SMC approach in synchronizing chaotic systems.

5. Discussion and Conclusions

This work presents a novel dynamic-free adaptive sliding mode control (adaptive
SMC) methodology for achieving synchronization in a specific class of chaotic delayed
fractional-order neural network systems with input saturation. By incorporating the FDM
and the FO version of the Lyapunov stability theory, the proposed adaptive SMC method
effectively overcomes the inherent chaotic behavior exhibited by the delayed FONNSs
and ensures synchronization. One key advantage of the approach is the decoupling of
control inputs from the nonlinear–linear dynamical terms of the system, leveraging the
norm-boundedness property of states in chaotic systems. Through numerical simulations,
the effectiveness of the adaptive SMC method has been demonstrated to achieve chaos
synchronization in delayed fractional-order Hopfield neural network systems, showcasing
its robustness and efficiency. The integration of the FDM and FO Lyapunov stability
theorem offers a promising solution for synchronizing chaotic unknown Hopfield delayed
FONNSs with input saturation. This innovative approach holds potential applications in
diverse domains that require the synchronization of such systems. Therefore, the proposed
dynamic-free adaptive SMC method represents a significant contribution to the field of
chaotic systems control, providing a reliable and efficient means to achieve synchronization
in complex neural network systems with time delays and fractional-order dynamics, even
in the presence of input saturation. The findings open up new possibilities for research
and applications in various areas where the stable synchronization of chaotic systems is of
paramount importance.
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