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Abstract: A Geiger-mode avalanche photodiode (GM-APD) laser radar range image has much noise
when the signal-to-background ratios (SBRs) are low, making it difficult to recover the real target
scene. In this paper, based on the GM-APD lidar denoising model of fractional-order total variation
(FOTV), the spatial relationship and similarity relationship between pixels are obtained by using a
spatial kernel function and range kernel function to optimize the fractional differential operator, and
a new FOTV GM-APD lidar range-image denoising algorithm is designed. The lost information and
range anomalous noise are suppressed while the target details and contour information are preserved.
The Monte Carlo simulation and experimental results show that, under the same SBRs and statistical
frame number, the proposed algorithm improves the target restoration degree by at least 5.11% and
the peak signal-to-noise ratio (PSNR) by at least 24.6%. The proposed approach can accomplish the
denoising of GM-APD lidar range images when SBRs are low.

Keywords: GM-APD lidar; FOTV; range-image denoising; spatial kernel function; kernel of the range

1. Introduction

Lidar has been widely used in terrain mapping, forestry exploration, autonomous
driving, military defense, and other fields due to its high resolution, strong anti-interference
ability, and fast response speed [1–4]. Geiger-mode avalanche photodiode (GM-APD) laser
radar can detect single-photon echo signals and remote weak signals [5–9]. However, due
to the single-photon detection system of GM-APD, the detection cycle has detection dead
time, and the acquired range image loses information. Moreover, under the condition of low
SBRs (the ratios of the photon of the target signal received to the photon of the background
noise in the gate), the target signal acquired is effortlessly submerged in noise, resulting
in a giant variety of range anomalous noise. Therefore, in order to improve these range
images to be high quality, it is urgent that an effective range-image denoising algorithm be
developed.

The existing GM-APD range-image denoising techniques are mainly divided into local
filter denoising and global filter denoising. Local filter denoising is widely used in the
denoising of GM-APD lidar range images due to its advantages of having a simple principle,
low computation requirements, and low resource consumption. References [10,11] used
the extended median filter to filter the noise in a range image. This simple method can
effortlessly achieve an appropriate suppression impact on the non-linear noise in a range
image; however, it will damage the part of the target and will not maintain the details
of the target. Reference [12] proposed an Improved Donut Filter algorithm (IDF), but
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the algorithm sacrifices a part of its target detail protection ability to improve its noise
suppression ability. Reference [13] proposed a 2D dual-threshold denoising algorithm with
the advantages of neighborhood smoothing and threshold segmentation. Compared with
the global filtering algorithm, this algorithm has a poor smoothing effect on the whole
target. The local filtering method only carries out denoising based on the relationship
between sub-pixels and adjacent pixels and does not consider the similarity of image
texture and details; thus, it often produces a local smoothing effect, resulting in the obvious
deviation of the recovered target range information. Global filtering usually uses the spatial
relationship between pixels within the whole image and the similarity of pixel values to
realize range-image denoising. Compared with local filtering, global filtering can obtain a
smoother target range image. Reference [14] proposed a non-local probabilistic statistical
filtering algorithm (NLPS) that can maintain the true value of the range for the lidar range
image, and a denoising study was carried out. However, the edge-preserving effect of
this algorithm needs to be improved when there is a low SBR. Reference [15] proposed an
image reconstruction algorithm based on total variation and Discrete Cosine Transform
(DCT), and the effective Alternating Direction Method of Multipliers (ADMM) was used to
resolve the issue. This method achieves range-image reconstruction from the perspective
of global smoothing. Reference [16] proposed a range-image restoration algorithm based
on non-local correlation. By constructing an energy equation with a regular term of non-
local spatial correlation between pixels, this algorithm uses the ADMM to find a solution
iteratively that achieves range-image restoration under sparse photons. This algorithm can
suppress noise while preserving the integrity of image edges, but it is easy to over-smooth
the noise and destroy target details. Reference [17] proposed an intensity guidance method
to estimate range images by using the temporal and spatial correlation of reflected signals.
This method utilized the sharp edges and detailed information of intensity images to
achieve background noise suppression with higher complexity, but unfortunately, it also
has a higher calculation cost.

In recent years, GM-APD lidar range-image denoising algorithms have mostly been
used to construct energy variance with a regular term, the denoising problem has been
transformed into an optimization problem, and the numerical solution method has been
used for finding an iterative solution. The global filtering method has been used to achieve
range-image denoising, but with this method, it is difficult to balance range-image noise
removal while preserving the target details and edges. The fractional differential operator
takes extra neighborhood information into account and can linearly enhance the intermedi-
ate frequency signal in the image, non-linearly retain the low-frequency signal, and at the
same time, can better retain detailed information while suppressing the noise in the range
image. Currently, fractional-order image denoising models can be primarily classified into
two categories: fractional-order denoising models based on partial differential equations
and fractional-order denoising models based on masks. Most researchers predominantly
apply fractional-order denoising models to grayscale image denoising, aiming to enhance
the details and edge information of the images [18]. However, there is limited research on
the application of these models to range images.

Fractional-order denoising models based on masks are predominantly constructed by
deriving eight directionally overlaid mask templates from the G-L definition and combining
them with other theories to create improved fractional-order models. Huang et al. [19]
explored the feasibility of applying a 3 × 3 fractional-order mask template to denoise range
images. The experimental results show that the fractional-order integral denoising operator
can successfully manage noise in range images while maintaining features and edge
information, demonstrating good denoising performance for range images. However, due
to the fact that the photon signals reflected by GM-APD laser radar targets originate from
emitted short-pulse lasers and are constrained by technological barriers in the preparation
of GM-APD array detectors, the imaging resolution of GM-APD is relatively low. As a result,
the obtained signals exhibit strong consistency in both temporal and spatial distributions.
When using the fractional-order denoising model based on masks for denoising range
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images, the lack of additional image neighborhood information leads to limited prior
information during range-image denoising, resulting in insufficient availability of high-
quality range images. The fractional-order denoising algorithm based on partial differential
equations follows a similar process to a physical phenomenon known as heat diffusion.
The 3 × 3 mask proposed by Wang et al. [20], which incorporates eight directions, exhibits
limited capability in utilizing neighborhood pixel information. To address this limitation,
we introduce a 5 × 5 mask extended to include sixteen directions, enabling comprehensive
utilization of effective pixel information within the neighborhood. This extension aims
to mitigate noise interference and enhance the quality of depth images when statistical
frames are scarce. Finally, simulation and imaging experiments are conducted to validate
the effectiveness of our algorithm. Xie et al. [21], based on the idea of fractional-order
partial differential equation image denoising, first utilized the fractional-order whole
version regularization denoising algorithm to denoise range images. However, immediately
making use of the fractional-order whole variation regularization denoising mannequin
to range images with a massive quantity of noise would excessively set up connections
between pixels, thereby increasing the impact of noise on the current pixel. To address this
problem, a preprocessing step was designed to identify the noise points by considering
adjacent pixels, and only the noise points in the range image are denoised in fractional
order. Although this algorithm achieved excellent denoising results for range images, the
introduced preprocessing step increased the overall complexity and computation time of
the algorithm, making it not an end-to-end range-image denoising algorithm. Therefore, a
denoising method suitable for GM-APD lidar range images is proposed in this paper based
totally on the fractional-order whole variant denoising method.

In order to achieve the denoising of GM-APD lidar range images with a low SBR, a
FOTV-based denoising model of GM-APD lidar was constructed by introducing fractional
differential operators. Secondly, the spatial relationship and similarity relationship between
pixels were obtained by using a spatial kernel function and a range kernel function. The
fractional differential operator was optimized, the FOTV model was improved, and the
split Bregman algorithm was used for range-image denoising, which suppressed the noise
of lost information and abnormal range values while preserving the target details and
contour information. Finally, Monte Carlo simulation experiments were carried out on the
algorithms proposed, including a bilateral filtering algorithm (BF), total variation denoising
algorithm (TV), and fractional-order total variation denoising algorithm (FOTV), to verify
their effectiveness under different SBRs and different statistical frames. Additionally, a GM-
APD lidar system was built for outdoor experiments. The experimental outcomes exhibit
that the denoising overall performance of the algorithm proposed is better in contrast with
that of the different algorithms.

2. Algorithm Principle

A fractional differential operator is a global operator. Using an FOTV model to
denoise range images can balance each frequency component in a range image, improve the
accuracy of range-image reconstruction, and retain the edge details of the image. However,
for the range anomalous noise and lost information generated by GM-APD lidar, it is
impossible to calibrate the noise because of the small diffusion coefficient of the fractional-
order total variation differential equation at the range mutation point. In this paper, the
spatial proximity and pixel value similarity between pixels are introduced to optimize the
fractional-order differential operator, reduce the impact of noise on the target echo data,
and realize the accurate denoising of a range image with a low SBR. The flow diagram of
the algorithm in this paper is shown in Figure 1.
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Figure 1. Algorithm principle diagram. 

2.1. Range-Image Extraction 
In order to extract a GM-APD range image, the maximum likelihood estimation ap-

proach is utilized in this research to estimate the range parameters pixel by pixel. The 
method is divided into three steps. The first step is to build the impulse response function 
of the GM-APD, the second step is to build the logarithmic likelihood function related to 
the arrival time of the signal photons, and the third step is to search and solve for the 
likelihood function within the whole range gate to obtain the target range information. 

According to [22], the output model of a pulsed laser is as follows: 𝑓(𝑡) = exp −(𝑡/𝜏) ,  (1)

where 𝑓(𝑡) represents the laser pulse waveform, and 𝜏 represents the laser pulse width. 
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where 𝑓(𝑡 |𝑡) is the impulse response function of GM-APD, and 𝑡  is the flight time of 
the target photon to be estimated. The relationship between the flight time of the target 
photon and the target range is: 𝑧 = ,  (3)
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Figure 1. Algorithm principle diagram.

2.1. Range-Image Extraction

In order to extract a GM-APD range image, the maximum likelihood estimation
approach is utilized in this research to estimate the range parameters pixel by pixel. The
method is divided into three steps. The first step is to build the impulse response function
of the GM-APD, the second step is to build the logarithmic likelihood function related
to the arrival time of the signal photons, and the third step is to search and solve for the
likelihood function within the whole range gate to obtain the target range information.

According to [22], the output model of a pulsed laser is as follows:

f (t) =
t

τ2 exp(−(t/τ)), (1)

where f (t) represents the laser pulse waveform, and τ represents the laser pulse width.
Without considering the noise photons caused by background light and the detector

dark count rate, the expression of the impulse response function (IRF) of GM-APD is as
follows:

f (t0|t) =
t− t0

τ2 exp(−((t− t0)/τ)), (2)

where f (t0|t) is the impulse response function of GM-APD, and t0 is the flight time of the
target photon to be estimated. The relationship between the flight time of the target photon
and the target range is:

z =
ct0

2
, (3)

where z is the target range, and c is the speed of light.
In a single pixel, the logarithmic likelihood function of a depth zi,j related to the photon

time of flight ti,j is:

LZ

(
zi,j;

{
ti,j
}

ti,j∈Ui,j

)
= ∑ti,j∈Ui,j

log
[

f
(

ti,j −
2zi,j

c

)]
, (4)

where Ui,j is the set of flight times within a single pixel gate.
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In the range parameter z, which ranges from the time interval at the beginning of the
gating to bins− 1 time interval (bins = T

∆ , where T is the gating length, and ∆ is the mini-
mum time resolution of the count), the last time interval is discarded because the number
of untriggered times accumulates at the last time interval. At this time, the corresponding
likelihood function under different parameters can be obtained, and the estimated echo
position zpos can be obtained by determining the parameter value corresponding to the
maximum value of the likelihood function.

zpos = argmaxz(LZ). (5)

The above process is repeated, and maximum likelihood estimation is carried out pixel
by pixel to extract the 3D range image g.

2.2. Definition of Fractional Differential Operator and Its Effect on Image Signals

Let the function f (x) be defined by the interval [a, b], and n− 1 ≤ v < n, where n is a
positive integer, then [23]

GL
v Dv

x f (x) = lim
h→0

∑[ x−v
h ]

k=0 (−1)k
(

v
k

)
f (x− kh), v > 0, (6)

where
(

v
k

)
= Γ(v+1)

Γ(k+1)Γ(v−k+1) , [·] represents the integer operation, and h represents the

differential step size.
In order to define the discrete derivative, according to the G-L definition, on the

interval [a, t], use the same partition h = 1 , so m =
[ t−a

h
]
= [t− a], and the discrete form is

expressed as:

Dv
t (t) = f (t) + (−1)−1·(v)· f (t− 1) + (−1)2·

(
v(v− 1)

2

)
· f (t− 2) + · · ·+ (−1)j· Γ(v + 1)

Γ(j + 1)Γ(v− j + 1)
· f (t− j). (7)

Extend the above concepts to the functions of the two variables

Dv
x(x, y) = lim

N→∞

[
∑N−1

j=0 (−1)i· Γ(v + 1)
Γ(i + 1)Γ(v− i + 1)

· f (x− i, y)
]

, (8)

Dv
y(x, y) = lim

N→∞

[
∑N−1

j=0 (−1)j· Γ(v + 1)
Γ(j + 1)Γ(v− j + 1)

· f (x, y− j)
]

, (9)

N is the number of terms of the polynomial. From Equations (3) and (4), the fractional
differential coefficient wv

m of order v can be written:

wv
m = (−1)m· Γ(v + 1)

Γ(m + 1)Γ(v−m + 1)
. (10)

The edge information and detailed information of the range image are generally
sub-high-frequency or high-frequency information, and the smooth region is generally
low-frequency information. Next, the influence of the frequency response of the fractional
differential operator on the range image is analyzed.

Given that the general real number v ∈ R+ is a derivative of f (t) ∈ L2(R), it can be
expressed as:

Dv f (t) =
dv f (t)

dtv . (11)

According to the Fourier formula, the form of Dv f (t) in the Fourier transform domain
can be obtained via:

Dv f (t) =
∫

R
(i2πwr)

vF(wr)expi2πwrtdwr. (12)
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On the basis of signal processing, the form of the derivative of the signal in the
frequency domain is obtained. The Fourier transformation process is defined as follows:

DvF(wr) = (iwr)
vF(wr), (13)

Dv f (t) FT⇔ D̂v f (wr) = (iwr)
v f̂ (wr) = |wr|vexp[iθv(wr)] f̂ (wr) = |wr|vexp

[
vπi

2
sgn(wr)

]
f̂ (wr), (14)

where Dv represents the differential operator of order v, wr represents the angular frequency,

(iwr)
v = |wr|vexp

[
vπi

2 sgn(wr)
]

is a filter, and sgn(·) is a sign function.
Amplitude–frequency characteristic curves of different orders are drawn [24], as

shown in Figure 2.
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Generally, the region of w > 1 is the edge and detailed part of the image. Figure 2
illustrates how the fractional differential operator contributes to the enhancement of the
signal in the high-frequency region, and with the increase in the fractional order, the
non-linear enhancement ability of the fractional differential operator is stronger; so, the
fractional differential can enhance the edge information of the image. In addition, the
region of 0 < w < 1 is generally the smooth region of the image. The fractional order has
a weaker weakening effect on the image than the integer order, so the amplitude of the
smooth region can be kept unchanged, which indicates that fractional-order differentiation
can protect the information of the smooth region from the influence of the filter while
denoising.

In the GM-APD lidar range image, the edge and noise manifest as locally discontin-
uous points, with adjacent pixels corresponding to noise and edge exhibiting significant
variations in depth values, representing high-frequency components of the image. The
edges possess order and directionality, displaying a strong correlation with neighboring
pixels, whereas the noise signal is characterized by randomness and lacks correlation with
nearby pixels. Generally, low-frequency regions in the image correspond to smooth areas of
the target object. In signal and image processing, leveraging the correlation among adjacent
pixels can help mitigate the impact of noise. By constructing a differential operator based
on this concept, it becomes possible to effectively handle image noise while preserving edge
details. Optimal results can be achieved by adjusting the order of fractional differentiation,
thereby enhancing the performance and quality of GM-APD lidar range images.
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2.3. FOTV Denoising Model

The FOTV denoising model is [25] represented as:

min
u∈BV
‖Dvu‖1 +

λ

2
‖u− g‖2

2, (15)

where u is the range image to be denoised, and g is the input range image containing noise
‖Dvu‖1 = ∑i,j

∣∣∣(Dvu)i,j

∣∣∣,∣∣∣(Dvu)i,j

∣∣∣ = √((Dv
1u
)

i,j

)2
+
((

Dv
2u
)

i,j

)2
,

(16)

where ‖Dvu‖1 is the fractional-order variational regular term (FOTV) and (Dvu)i,j is the
fractional-order differential operator.

According to the G-L definition, the discrete fractional differential operator is defined
as follows:

(Dvu)i,j =
(
(Dv

1u)i,j, (Dv
2u)i,j

)
, i = 1, 2, . . . , N , j = 1, 2, . . . , N, (17)

Here,

Dv
1(x, y) = ∑N−1

j=0 (−1)i· Γ(v + 1)
Γ(i + 1)Γ(v− i + 1)

· f (x− i, y), (18)

Dv
2(x, y) = ∑N−1

j=0 (−1)j· Γ(v + 1)
Γ(j + 1)Γ(v− j + 1)

· f (x, y− j), (19)

where N ≥ 3 is an integer and Γ represents the Gamma function. Operator D can be
realized in the following form:

(Dv
1u)(; , j) = B× u(; , j), 1 ≤ j ≤ N, (20)

Here, the matrix is

B =


wv

0 0 · · · 0
wv

1 wv
0 · · · 0

...
...

. . .
...

wv
m wv

m−1 · · · wv
0

, (21)

where wv
k = (−1)k Γ(v+1)

Γ(k+1)Γ(v−k+1) , and Dv
2 is the same.

When the order v is not an integer, B is a lower triangular matrix. As can be seen
from the above equation, the fractional derivative of the k point is calculated by using all
of the points preceding k. Obviously, the fractional derivative is regarded as a worldwide
operator.

2.4. Solution to the FOTV Denoising Model

The solution to the FOTV denoising model usually optimizes the objective function by
using the iterative algorithm, among which the split Bregman algorithm is an effective way
to solve for the TV regularization model containing an L1 norm. The convex optimization
model with L1 norm regularization makes it difficult to obtain the optimal solution using
traditional algorithms. In the calculation process of the split Bregman algorithm, the
regularization parameter is fixed as a constant so as to reduce the amount of memory, thus
improving the calculation accuracy and convergence speed [26–28].

By introducing the auxiliary variable z, the original denoising problem is transformed
into:

min
u,z

(
‖ z‖ 1 +

λ

2
‖u− g‖ 2

2

)
, s.t. Dvu = z, (22)
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z and λ
2 ‖u− g‖ 2

2 are convex functions and differentiable. As a result, the constraint
problem can be recast as an unconstrained optimization problem.

min
u,z

(
‖ z‖ 1 +

λ

2
‖u− g‖ 2

2 +
γ

2
‖z− Dvu‖ 2

2

)
, (23)

where γ is the penalty function. Since there are two variables, an auxiliary variable b is
introduced to fix the problem.

(
uk+1, zk+1

)
= argmin

u,z

(
‖ z‖ 1 +

λ
2 ‖u− g‖ 2

2 +
γ
2

∥∥∥z−Dvu− bk
∥∥∥ 2

2

)
,

bk+1 = bk + γλ
(

Dvuk+1 − zk+1
)

.
(24)

Since the sub-problem needs to solve for both u and z at the same time, the calculation
is complicated, which can be decomposed into:

uk+1 = argmin
u

(
λ
2 ‖u− g‖ 2

2 +
γ
2

∥∥∥zk−Dvu− bk
∥∥∥ 2

2

)
,

zk+1 = argmin
z

(
‖ z‖ 1 +

γ
2

∥∥∥z−Dvuk+1 − bk
∥∥∥ 2

2

)
,

bk+1 = bk + γλ
(

Dvuk+1 − zk+1
)

.

(25)

If ‖uk+1−uk‖
‖uk‖

≥ ε, the iteration ends, and the range image after denoising is output as
u = uk+1; otherwise, the iteration continues until convergence.

The pseudo-code of the range-image denoising algorithm based on FOTV is shown in
Algorithm 1.

Algorithm 1 Range-Image Denoising Algorithm Based on G-L Fractional-Order Total Variation

1. Initialize the system: k = 0, u0 = g, z0 = 0, b0 = 0
2. The value of the given parameter: γ, λ

3. Calculation Dv

4. For k = 0, 1, 2, . . . :

uk+1 Þargmin
u

(
λ
2 ‖u− g‖ 2

2 +
γ
2

∥∥∥zk−Dvu− bk
∥∥∥ 2

2

)
zk+1 Þargmin

z

(
‖ z‖ 1 +

γ
2

∥∥∥z−Dvuk+1 − bk
∥∥∥ 2

2

)
bk+1 = bk + γλ

(
Dvuk+1 − zk+1

)
If ‖uk+1−uk‖

‖uk‖ ≥ ε

u = uk+1
Else

k = k + 1
To step 4

End
End

2.5. Fractional-Order Total Variational Range-Image Denoising Algorithm Based on Spatial Kernel
Function and Range Kernel Function

In this paper, a novel fractional-order range-image denoising algorithm is proposed.
This algorithm introduces range kernel functions and spatial kernel functions to capture
the relationships between pixel values and the spatial distribution of pixels, optimizing the
fractional-order operator and enabling end-to-end range-image denoising.

Due to the fact that the target usually converges at multiple pixels on the detector focal
plane, the accuracy of denoising can be improved by leading a fractional-order operator to
establish a relationship between the pixels. However, when the target range image contains
a large amount of noise, establishing the connection with any other pixel will also quickly
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boost the current pixel’s susceptibility to noise. By using the variational method, the partial
differential Equation (15) is derived as follows:

−Dv·
(

Dvu
|Dvu|

)
+ λ(u− g) = 0, (26)

where Dv is the fractional difference operator, and 1
|Dvu| is the diffusion coefficient. As can

be seen from the above equation, for noise points with lost information and abnormal range
values, the diffusion coefficient is small due to the large value of |Dvu|, and the FOTV
denoising algorithm cannot remove the noise at this time. Therefore, in order to suppress
the anomalous noise in the range image, this paper introduces a spatial kernel function
to obtain the spatial relationship between pixels, introduces a range kernel function to
obtain the pixel value similarity relationship between pixels, and reconstructs the fractional
differential operator [29].

The inclusion of fractional differential operators expands the penalty term to infinite
dimensions. Therefore, it is necessary for the spatial kernel function and range kernel
function introduced in this paper to correspond with the dimension of fractional differential
operators Dv

1 and Dv
2 .

The spatial kernel function describes the spatial range between the neighborhood pixel
and the current pixel, which is usually an attenuation function for the spatial range. In this
paper, a Gaussian function is selected as its attenuation function. The weights of the spatial
kernel function at (x, y) are extended to an infinite number of dimensions in both the x and
y directions, respectively.

The weight of the spatial kernel function ws1(x, y) at (x, y) in the x direction is defined
as follows:

ws1(x, y) = exp

(
−|i− x|2

2σ2
s

)
, i = 1, 2, · · · , N, (27)

The weight of the spatial kernel function ws2(x, y) at (x, y) in the y direction is defined
as follows:

ws2(x, y) = exp

(
−|j− y|2

2σ2
s

)
, j = 1, 2, · · · , N, (28)

where σs is the variance in the spatial kernel function. N is the total number of pixels in the
x or y direction of the range image.

The range kernel function describes the degree of correlation between pixel values
of other pixels in the image and the current pixel. In this paper, a Gaussian function is
selected to represent the similarity relationship between pixel values. The weights of the
range kernel function at (x, y) are extended to an infinite number of dimensions in both the
x and y directions, respectively.

The weight of the range kernel function wr1(x, y) at (x, y) in the x direction is defined
as follows.

wr1(x, y) = exp

(
− (g(i, y)− g(x, y))2

2σ2
r

)
, i = 1, 2, · · · , N, (29)

The weight of range kernel function wr2(x, y) at (x, y) in the y direction is defined as
follows.

wr2(x, y) = exp

(
− (g(x, j)− g(x, y))2

2σ2
r

)
, j = 1, 2, · · · , N, (30)

where σr is the variance in the spatial kernel function. N is the total number of pixels in the
x or y direction of the range image.

Due to the limited detection field of GM-APD LiDAR systems compared to target
size, resulting images exhibit high spatial sampling of targets and contain rich spatial
distribution information, enabling the depiction of edge and detail features. This paper
introduces a value kernel function to accurately capture correlations between all image
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pixels for improved target spatial distribution analysis. In addition, as the global total
variation filtering method may excessively smooth the range image and overlook its details,
a spatial kernel function is introduced to utilize the spatial relationship between pixels and
preserve these details. Moreover, for signal points triggered by noise in the range image,
the spatial kernel function can restrict the use of surrounding pixels that affect such points
to prevent excessive noise signals from affecting them.

The inclusion of fractional differential operators expands the penalty term to infinite
dimensions. By combining Equations (18) and (19), the values of Equations (27)–(30) range
from 0 to 1, exhibiting a consistent order of magnitude and allowing for multiplication; the
new fractional differential operator is:

Dv
1′u(x, y) = ∑N−1

i=0 (−1)iCv
i ux−i,yws1(x−i,y)wr1(x−i,y)

∑x=M
x=1 ∑N−1

i=0 (−1)iCv
i ux−i,yws1(x−i,y)wr1(x−i,y)

,

Dv
2′u(x, y) = ∑N−1

i=0 (−1)iCv
i ux,y−iws2(x,y−i)wr2(x,y−i)

∑
y=M
y=1 ∑N−1

i=0 (−1)iCv
i ux,y−iws2(x,y−i)wr2(x,y−i)

,
(31)

where M is the number of rows (columns) of the GM-APD focal plane array.
If w′vi = (−1)iCv

i ws(x− 1, y)wr(x− k, y), Equation (31) can be written as follows:

(∆v
1u)′ ≈ u·B′, ∆v

2u ≈ B′T ·u, (32)

The form of matrix B′ is as follows:

B′ =


w′v0 0 · · · 0
w′v1 w′v0 · · · 0

...
...

. . .
...

w′vm w′vm−1 · · · w′v0

. (33)

Multiplying the spatial kernel function with the range kernel function is a compromise
that combines the spatial proximity and pixel value similarity of an image. It simulta-
neously considers spatial information and pixel value similarity, achieving the goal of
edge-preserving denoising. The optimization method proposed in this paper takes into
account the spatial distribution relationship, which allows for better noise filtering in
the image.

In the first step, the median filtering algorithm is used for preprocessing; in the second
step, the fractional difference operator combined with the spatial kernel function and range
kernel function is constructed; in the third step, the fractional-order total variation model is
based on the spatial kernel function and range kernel function; and in the fourth step, the
split Bregman algorithm is used to solve the problem. The pseudo-code of the range-image
denoising algorithm is shown in Algorithm 2.
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Algorithm 2 FOTV Based on Spatial Kernel Function and Range Kernel Function

1. Median filtering: g′ = med f ilt(g, [3, 3])
2. Initialization: k = 0, u0 = g, z0 = 0, b0 = 0
3. The value of the given parameter: γ, µ, σs, σr
4. Calculation ws, wr, B′
5. For k = 0, 1, 2, . . . :

uk+1 Þargmin
u

(
λ
2 ‖u− g‖ 2

2 +
γ
2

∥∥∥zk−∇B′u− bk
∥∥∥ 2

2

)
zk+1 Þargmin

z

(
‖ z‖ 1 +

γ
2

∥∥∥z−∇B′uk+1 − bk
∥∥∥ 2

2

)
bk+1 = bk + γλ

(
∇B′uk+1 − zk+1

)
If ‖uk+1−uk‖

‖uk‖ ≥ ε

u = uk+1
Else

k = k + 1
To step 5

End
End

3. Evaluation Index and Simulation Verification
3.1. Evaluation Index

K, the target recovering degree, was adopted in this study [30] as an objective evalua-
tion indicator. The PSNR was used to evaluate the denoising performance of the algorithm
cited in this paper and the range image of the algorithm proposed. K is shown as follows:

f (x) =
{

1, |d− ds| < db,
0, |d− ds| ≥ db,

(34)

K =
m
n

, (35)

where d is the target reconstruction range value, ds is the target standard range value, db is
the target allowable error range value, n is the total pixel number of the target, and m is the
pixel number of the target acceptable error range value. The K value represents the degree
of target restoration.

The peak signal-to-noise ratio is as follows:

PSNR = 10log10

 2552 ×M× N

∑i,j

(
(u)i,j − ( f )i,j

)2

, (36)

where f is the observation range image, u is the range image after noise removal, and M
and N are the number of rows and columns in the image, respectively.

3.2. Simulation Analysis

The Monte Carlo method was adopted to simulate and verify the GM-APD lidar
range-image denoising performance of the algorithm proposed. The range image of the
simulated target is shown in Figure 3. The laser single-pulse energy was set as 1.25× 10−9 J,
the laser wavelength as 1064 nm, the laser pulse width as 5 ns, the detector array as 64× 64,
the detector time resolution as 1 ns, the round-trip atmospheric attenuation coefficient as
0.8× 0.8, the target diffuse reflection coefficient as 0.3, the receiving transmittance as 90%,
and the transmitting transmittance as 80%. The range gate was set as 200 m, and the target
was 60 m inside the range gate. The TV, FOTV, and BF algorithms, as well as the method
proposed in this research, were utilized to process the simulation range image utilizing
various SBRs and various frames. The simulation experiment was performed 1000 times in
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each example, and the mean value was computed to assess the outcomes using the target
reduction degree and peak signal-to-noise ratio [31].
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3.2.1. Fractional-Order Selection

To investigate how the fractional order affects the denoising effectiveness of low SBR
simulation data, the fractional orders were set to 0.1, 0.3, 0.5, 0.7, 1, 1.2, 1.5, 1.8, and 2, and
20 statistical frames were needed to obtain an SBR equal to 0.3. The Monte Carlo repeated
experiments were conducted 1000 times. The range-image quality was assessed using the
average values of the target reduction degrees and PSNRs. The valuation indices K and
PSNR of different orders are shown in Table 1.

Table 1. Evaluation indices K and PSNR of different orders.

Order 0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2

K 0.6379 0.6592 0.6607 0.6738 0.6666 0.6700 0.6549 0.6527 0.6431 0.6388
PSNR 11.7418 11.9555 11.9501 12.063 11.9396 11.9394 11.4947 11.5250 11.5547 11.5779

The data in Table 1 indicates that when the fractional order is 0.7 with a low SBR, the
values of K and PSNR are the largest, and the denoising effect is the best.

3.2.2. Simulation Analysis of Range Images with Different SBRs under 20 Frames

In order to verify the denoising performance of the algorithm proposed in this paper
with the same frame number as that used in Section 3.2.1 but with different SBRs, the SBRs
were set to 0.3, 0.4, 0.5, 0.6, and 0.7. The K and PSNR were used to assess the denoising
performance. The single Monte Carlo simulation results of 20 frames with different SBRs
are shown in Figure 4.

As can be seen in Figure 4, when the SBR is equal to 0.3, there is a large amount of
noise at the target position in the range image when processed by the TV, FOTV, and BF
algorithms, and the integrity and contour information of the target is poor. The algorithm
proposed in this paper filters out most of the noise at the target position and can roughly
identify the contour information of the target, but the interior of the target is incomplete.
When the SBR is equal to 0.4, the range image processed by the TV, FOTV, and BF algorithms
has a complete target that is roughly recovered, but there is still noise, and the smoothness
of the range image is poor. This algorithm not only recovers the complete target precisely
compared with the others but also shows few differences with the standard image and has
a good denoising effect. When the SBR = 0.8, the range image target processed by the TV,
FOTV, and BF algorithms is complete and smooth, but there is still a small amount of noise.
This algorithm still ensures a good denoising effect.
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In order to verify the stability of the denoising performance of the algorithm proposed
with the same frame number and different SBRs, Monte Carlo experiments were conducted
1000 times on the TV, FOTV, and BF algorithms alongside the algorithm proposed in this
paper. The K, PSNR, and SSIM were used to evaluate the range image processed by each
algorithm. The average values of each index are shown in Table 2.
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Table 2. Denoising results of different signal-to-background ratios at frame 20.

SBRS TV FOTV BF Proposed

SBR = 0.3
K 0.5589 K 0.4757 K 0.6154 K 0.6738

PSNR 11.3933 PSNR 11.3409 PSNR 10.7250 PSNR 12.0630

SBR = 0.4
K 0.8342 K 0.7958 K 0.8405 K 0.9549

PSNR 15.5224 PSNR 15.4328 PSNR 14.5584 PSNR 20.6488

SBR = 0.5
K 0.9350 K 0.9199 K 0.9361 K 0.9865

PSNR 19.6460 PSNR 19.5210 PSNR 18.5497 PSNR 26.0541

SBR = 0.6
K 0.9747 K 0.9651 K 0.9750 K 0.9929

PSNR 23.8157 PSNR 23.6289 PSNR 22.6735 PSNR 29.0068

SBR = 0.7
K 0.9900 K 0.9822 K 0.9902 K 0.9947

PSNR 28.0463 PSNR 27.6851 PSNR 26.8942 PSNR 30.5839

According to the above data, K and PSNR curves under different signal-to-background
ratios under 20 frames are drawn, as shown in Figure 5.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 13 of 20 
 

 

As can be seen in Figure 4, when the SBR is equal to 0.3, there is a large amount of 
noise at the target position in the range image when processed by the TV, FOTV, and BF 
algorithms, and the integrity and contour information of the target is poor. The algorithm 
proposed in this paper filters out most of the noise at the target position and can roughly 
identify the contour information of the target, but the interior of the target is incomplete. 
When the SBR is equal to 0.4, the range image processed by the TV, FOTV, and BF algo-
rithms has a complete target that is roughly recovered, but there is still noise, and the 
smoothness of the range image is poor. This algorithm not only recovers the complete 
target precisely compared with the others but also shows few differences with the stand-
ard image and has a good denoising effect. When the SBR = 0.8, the range image target 
processed by the TV, FOTV, and BF algorithms is complete and smooth, but there is still 
a small amount of noise. This algorithm still ensures a good denoising effect. 

In order to verify the stability of the denoising performance of the algorithm pro-
posed with the same frame number and different SBRs, Monte Carlo experiments were 
conducted 1000 times on the TV, FOTV, and BF algorithms alongside the algorithm pro-
posed in this paper. The K, PSNR, and SSIM were used to evaluate the range image pro-
cessed by each algorithm. The average values of each index are shown in Table 2. 

Table 2. Denoising results of different signal-to-background ratios at frame 20. 

SBRS TV FOTV BF Proposed 

SBR = 0.3 
K 0.5589 K 0.4757 K 0.6154 K 0.6738 

PSNR 11.3933 PSNR 11.3409 PSNR 10.7250 PSNR 12.0630 

SBR = 0.4 
K 0.8342 K 0.7958 K 0.8405 K 0.9549 

PSNR 15.5224 PSNR 15.4328 PSNR 14.5584 PSNR 20.6488 

SBR = 0.5 
K 0.9350 K 0.9199 K 0.9361 K 0.9865 

PSNR 19.6460 PSNR 19.5210 PSNR 18.5497 PSNR 26.0541 

SBR = 0.6 
K 0.9747 K 0.9651 K 0.9750 K 0.9929 

PSNR 23.8157 PSNR 23.6289 PSNR 22.6735 PSNR 29.0068 

SBR = 0.7 
K 0.9900 K 0.9822 K 0.9902 K 0.9947 

PSNR 28.0463 PSNR 27.6851 PSNR 26.8942 PSNR 30.5839 

According to the above data, K and PSNR curves under different signal-to-back-
ground ratios under 20 frames are drawn, as shown in Figure 5. 

 
Figure 5. K of different SBRs when the number of frames is 20. 

As is discernible from Figures 5 and 6, the increase in the SBR, K, and PSNR of each 
algorithm is improved to varying degrees, and the K and PSNR of the algorithm proposed 
are superior to those of the comparison algorithms in regard to the SBRs. When the SBR 

Figure 5. K of different SBRs when the number of frames is 20.

As is discernible from Figures 5 and 6, the increase in the SBR, K, and PSNR of each
algorithm is improved to varying degrees, and the K and PSNR of the algorithm proposed
are superior to those of the comparison algorithms in regard to the SBRs. When the SBR
is 0.4, the K value of the TV, FOTV, and BF algorithms is less than 85%, and the PSNR is
less than 16, while the target K value of the algorithm in this paper reaches 95.49%, and the
PSNR value reaches 20.6488. It is proved that the algorithm proposed has good denoising
performance. When the SBR is 0.5, the K value of the algorithm proposed reaches 0.9865,
which is at least 5.11% higher than that of the other algorithms, and the PSNR value reaches
26.0541, which is at least 24.6% higher than that of the other algorithms.

The fractional-order derivative is a global operator with long memory, which distin-
guishes it from integer-order derivatives. When the depth image of a target contains a
large amount of noise, establishing connections between pixels can increase the influence
of noise on the current pixel. TV’s results are better than FOTV’s results.
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3.2.3. Simulation Analysis of Range Image with Different Frame Numbers When SBR Is 0.5

In order to verify the influence of different statistical frames on the denoising per-
formance of the algorithm proposed, the simulation data from when the SBR = 0.5 were
selected to discuss the processing results of the TV, FOTV, and BF algorithms and the
algorithm proposed in this paper when the frame numbers were 20, 25, 30, 35, 40, 45, and
50. The single Monte Carlo simulation results when the SBR is equal to 0.5 with different
frame numbers are shown in Table 3.

Table 3. Denoising results of different frames when SBR = 0.5.

Frames TV FOTV BF Proposed

20
K 0.5589 K 0.4757 K 0.6154 K 0.6738

PSNR 11.3933 PSNR 11.3409 PSNR 10.7250 PSNR 12.0630

25
K 0.6648 K 0.5867 K 0.6958 K 0.8198

PSNR 12.5166 PSNR 12.4527 PSNR 11.7458 PSNR 14.6361

30
K 0.7469 K 0.6841 K 0.7634 K 0.9018

PSNR 13.7025 PSNR 13.6282 PSNR 12.8409 PSNR 17.2648

35
K 0.8067 K 0.7586 K 0.8157 K 0.9439

PSNR 14.8628 PSNR 14.7775 PSNR 13.9279 PSNR 19.6990

40
K 0.8525 K 0.8179 K 0.8576 K 0.9645

PSNR 16.0490 PSNR 15.9514 PSNR 15.0531 PSNR 21.6841

45
K 0.8864 K 0.8600 K 0.8897 K 0.9760

PSNR 17.2072 PSNR 17.1003 PSNR 16.1692 PSNR 23.3974

50
K 0.9126 K 0.8921 K 0.9148 K 0.9827

PSNR 18.3680 PSNR 18.2520 PSNR 17.2977 PSNR 24.9162

From Figures 7 and 8, it can be seen that the K and PSNRs of each algorithm are
improved to varying degrees with the increase in the statistical frame number. When the
statistical frame number was 25, the K of the TV, FOTV, and BF algorithms did not exceed
70%. In contrast, the K of the algorithm proposed reached 0.8198, which indicates a better
denoising of the range image. When the quantity of image frames is 35, compared with the
other comparison algorithms, the K and PSNR of the algorithm proposed are improved by
at least 13.58% and 24.55%.



Fractal Fract. 2023, 7, 674 16 of 21

Fractal Fract. 2023, 7, x FOR PEER REVIEW 15 of 20 
 

 

From Figures 7 and 8, it can be seen that the K and PSNRs of each algorithm are 
improved to varying degrees with the increase in the statistical frame number. When the 
statistical frame number was 25, the K of the TV, FOTV, and BF algorithms did not exceed 
70%. In contrast, the K of the algorithm proposed reached 0.8198, which indicates a better 
denoising of the range image. When the quantity of image frames is 35, compared with 
the other comparison algorithms, the K and PSNR of the algorithm proposed are im-
proved by at least 13.58% and 24.55%. 

  
Figure 7. K of different frames when SBR = 0.5. 

  
Figure 8. PSNR of different frames when SBR = 0.5. 

4. Experimental Verification 
4.1. Experimental System Construction 

A 64 × 64 array GM-APD was selected as the detector of the system when building 
the laser radar system with a separate transmitter and receiver, as shown in Figure 9. The 
transmit–receive field of view was 0.9° × 0.9°, and a 1064 nm fiber laser was selected as 
the laser source, of which the pulse laser output energy was set to 110 uJ with a 10 ns pulse 
width and 15 kHz repetition frequency. 

Figure 7. K of different frames when SBR = 0.5.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 15 of 20 
 

 

From Figures 7 and 8, it can be seen that the K and PSNRs of each algorithm are 
improved to varying degrees with the increase in the statistical frame number. When the 
statistical frame number was 25, the K of the TV, FOTV, and BF algorithms did not exceed 
70%. In contrast, the K of the algorithm proposed reached 0.8198, which indicates a better 
denoising of the range image. When the quantity of image frames is 35, compared with 
the other comparison algorithms, the K and PSNR of the algorithm proposed are im-
proved by at least 13.58% and 24.55%. 

  
Figure 7. K of different frames when SBR = 0.5. 

  
Figure 8. PSNR of different frames when SBR = 0.5. 

4. Experimental Verification 
4.1. Experimental System Construction 

A 64 × 64 array GM-APD was selected as the detector of the system when building 
the laser radar system with a separate transmitter and receiver, as shown in Figure 9. The 
transmit–receive field of view was 0.9° × 0.9°, and a 1064 nm fiber laser was selected as 
the laser source, of which the pulse laser output energy was set to 110 uJ with a 10 ns pulse 
width and 15 kHz repetition frequency. 

Figure 8. PSNR of different frames when SBR = 0.5.

4. Experimental Verification
4.1. Experimental System Construction

A 64 × 64 array GM-APD was selected as the detector of the system when building
the laser radar system with a separate transmitter and receiver, as shown in Figure 9. The
transmit–receive field of view was 0.9◦ × 0.9◦, and a 1064 nm fiber laser was selected as the
laser source, of which the pulse laser output energy was set to 110 uJ with a 10 ns pulse
width and 15 kHz repetition frequency.
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4.2. Experimental Data Processing and Analysis

Imaging experiments were conducted on residential buildings with a range of 446.1 m
to 463.2 m under strong sunlight to verify the denoising performance of the algorithm
proposed. The scenario of the target area is shown in Figure 10. In order to obtain the
ideal range image, the same target region was detected and imaged by the peak-picking
method at night. A total of 5000 frames were used for the multi-frame statistics. The image
obtained was taken as the ideal range image of the target, as shown in Figure 11.
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Figure 11. Ideal target range image.

In the daytime imaging experiment, the SBR was equal to 0.8. In the case of 100 frames,
the TV denoising, FOTV denoising, and BF denoising algorithms, as well as the algorithm
proposed in this paper, were used to denoise the range image obtained by the maximum
likelihood estimation method. Figures 12–15 show the result after denoising.
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The denoising algorithm designed in this paper can denoise the target range image
better than the contrast method and produce a smoother target region. Various indicators
were used to evaluate the reconstructed range image quality, the data results are shown in
Table 4.

Table 4. Range image reconstruction results.

Evaluation
Metric TV Denoising FOTV

Denoising BF Denoising Proposed

K 0.8270 0.7828 0.8885 0.9283
PSNR 4.6869 4.6866 4.6871 4.6969

The denoising method proposed in this paper improves the target restoration degree
by at least 4.29%, and the PSNR is 4.6969, both of which are better than those of the
comparison algorithms. For GM-APD range images, the method provided in this paper’s
denoising performance has been successfully verified as good.

In order to verify the advancement of our algorithm, our algorithm is compared
with [21] in the case of 100 frames, and the SBR is 0.8. Figure 16 shows the denoised results.
The comparative data between [21] and the algorithm proposed are presented in Table 5.
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Table 5. Range image reconstruction results.

Evaluation Metric [21] Proposed

K 0.8965 0.9283
PSNR 4.4421 4.6969

Both K and PSNR of the proposed algorithm are superior to the comparison algorithm,
which can verify the advancement of the proposed algorithm.

5. Discussion

In order to achieve the denoising of GM-APD lidar range images with a low SBR, a
fractional-order total variational GM-APD lidar range-image denoising method based on a
spatial kernel function and range kernel function was proposed. The simulation results
show that when the SBR is equal to 0.4, and the statistical frame number is 20, compared
with BF denoising, FOTV denoising, and TV denoising, the K and PSNR of the algorithm
proposed here are improved by at least 11.98% and 24.83%, respectively. The experimental
results show that when the SBR is 0.8 and the statistical frame number is 100, the K of
the algorithm proposed increases by at least 0.2% compared with that obtained via BF
denoising, FOTV denoising, and TV denoising. It can be seen that the denoising method
proposed in this paper has a good image denoising effect under the condition of a low SBR.
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