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Abstract: The time-fractional nonlinear Drinfeld–Sokolov–Wilson system, which has significance
in the study of traveling waves, shallow water waves, water dispersion, and fluid mechanics, is
examined in the presented work. Analytic exact solutions of the system are produced using the
modified auxiliary equation method. The fractional implications on the model are examined under
β-fractional derivative and a new fractional local derivative. Extracted solutions include rational,
trigonometric, and hyperbolic functions with dark, periodic, and kink solitons. Additionally, by
specifying values for fractional parameters, graphs are utilized to comprehend the fractional effects
on the obtained solutions.
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1. Introduction

Fractional calculus (FC) is a branch of mathematics that generalizes the concept of
differentiation and integration to non-integer orders. It has applications in many fields,
including physics, engineering, finance, and signal processing. FC provides a more ac-
curate way to model complex systems that exhibit non-local, long-term memory effects.
This includes phenomena such as anomalous diffusion, fractional Brownian motion, and
viscoelastic materials. In control theory, FC can be used to design advanced control systems
for complex physical systems, such as robotics and industrial processes. The fractional
derivative of a system’s output signal can provide valuable information about the system’s
behavior, which can be used to design more effective controllers. FC has great use in the
telecommunication industry. It provides a powerful tool for analyzing and processing
signals that exhibit non-local memory effects, such as speech and image processing. Frac-
tional differentiation and integration can be used to extract useful information from signals
and remove unwanted noise. FC has been used to develop advanced models for analyz-
ing financial markets, such as fractional Black-Scholes models and fractional stochastic
volatility models. It has been used in electrochemistry to study electrochemical kinetics
and transport processes in electrochemical systems, including battery systems. Overall,
FC provides a powerful tool for modeling and analyzing complex systems and processes
that exhibit non-local, long-term memory effects. Its applications are far-reaching and span
many different fields of science and engineering [1,2].
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Fractional models of PDEs offer a powerful mathematical tool to describe physical
phenomena that exhibit non-local interactions, long-range correlations, memory effects,
or fractal properties. By incorporating fractional derivatives or integrals, these models
provide more accurate and comprehensive descriptions of various natural processes, ex-
tending beyond the limitations of classical PDEs. The β-fractional derivative and the new
local fractional derivative are two relatively new definitions of fractional derivative that
offer alternative approaches to describe physical systems with memory effects and fractal
properties. By extending the concept of differentiation to non-integer orders and incorpo-
rating these derivatives into mathematical models, a more comprehensive understanding
of complex physical phenomena can be achieved.

The Drinfeld–Sokolov–Wilson (DSW) nonlinear system is a coupled system of partial
differential equations that arises in the study of solitons and integrable systems. Wilson first
proposed the DSW system as a generalization of the Korteweg–de Vries (KdV) equation.
Mathematical representation of the fractional DSW system is:

A
0 D

β
t U + αVVx = 0,

A
0 D

β
t V + sVUx + rUVx + ηVxxx = 0, (1)

where A
0 D

β
t denotes the time fractional differential operator. In system (1), U : R×R→ R

is an arbitrary function [3,4] such that U and its first order partial derivatives with respect
to t and x are continuous on the domain R×R. Moreover, V : R×R→ R is an arbitrary
function such that V, its first order partial derivative with respect to t, and third order
partial derivatives with respect to x are continuous on the domain R×R. The considered
system of differential equations is solved on the whole domain R×R, where the constraint
conditions for the parameters must be satisfied for the existence of solutions. Moreover,
α, s, r, and η are real constants. Applications of the coupled DSW-system appear in the
study of traveling waves, shallow water waves, water dispersion, and fluid mechanics,
which can be studied using the concept of a fractional derivative in a much better way due to
the flexibility of the fractional order differential operators. In the limiting case, the fractional
order system converges to the integer order system as the fractional parameter approaches
unity. The physical significance of the DSW system extends beyond its mathematical
elegance. It has been found to have applications in various areas of physics, including
condensed matter physics, quantum field theory, and string theory. The soliton solutions
and integrability properties of the DSW equation provide insights into phenomena such
as magnetic flux quantization, quantum Hall effects, and topological excitations in high-
energy physics. The Drinfeld–Sokolov–Wilson (DSW) nonlinear system is a mathematical
model that describes the dynamics of a field taking values in a Lie algebra. It is a highly
integrable system with soliton solutions and is of interest in both theoretical and applied
physics, contributing to the understanding of fundamental phenomena in various fields.
Over the years, many researchers have studied this system using various mathematical
techniques and approaches. One of the early works on the DSW system was carried out by
Wilson. He showed that the DSW system has a rich set of symmetries that are related to the
affine Lie algebra of type A1. This work laid the foundation for further studies on the DSW
system using Lie algebra and symmetry methods. Naz, using the multiplier approach,
developed conservation laws for the DSW system [5]. These conservation laws are useful in
understanding the dynamics of the system and can also be used to construct exact solutions.
Zhang employed the variational method to study the DSW system and earned solitary
solutions and singular periodic solutions [6]. Morris and Kara showed that the formulation
that associates conservation laws and symmetries leads to double reduction in the case of
the DSW system [7]. Zhao et al. used Lie symmetry analysis to obtain the Lie algebra and
similarity reductions for the DSW system [8]. Jaradat et al. obtained approximate solutions
for the time fractional DSW system using the Riemann–Liouville fractional derivative and
the reduced polynomial method. This approach provides a systematic way of finding
approximate solutions for the system [9]. Tasbozan employed the sine-Gordon expansion
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method and perturbation iteration method to calculate exact and approximate analytical
solutions of the time fractional conformable DSW system [10]. Singh et al. examined the
Caputo DSW system via the homotopy analysis Sumudu transformation method [11]. This
method allows the construction of exact solutions for the system. Gao et al. studied the
time fractional DSW system under the AB fractional derivative using an amalgamation of q-
homotopy analysis scheme and Laplace transformation methodology [12]. Srivastava and
Saad employed the Adomian decomposition method to study the fractional version of the
DSW system under numerous fractional derivatives. This approach provides a powerful
tool for finding approximate solutions for the system [13]. Rozbayani and Ali explored
the system under a combination of Sumudu transform and Adomian decomposition
method [14]. Recently, the fractional DSW system has been examined with Mittage–Laffler
type kernels and exponential decay. This work provides insight into the behavior of the
system when the fractional derivative is replaced by a different kernel function [15]. There
are numerous exact approaches that can still be used to study the time fractional DSW
system. In the future, some powerful methods, including the variational method [16],
Sardar subequation method [17], and Wang’s Bäcklund transformation-based method [18]
could further serve as good mathematical tools to study the system. Wang’s Bäcklund
transformation-based method is a new method that converts fractional PDE into an ODE
using a new transformation and derives solutions involving four different functions [19].
Overall, the study of the DSW system offers insights into the behavior of nonlinear systems.
The use of symmetry and algebraic methods, as well as fractional calculus, has provided a
deeper understanding of the dynamics of the system and the properties of the solutions.

The main focus of the presented study is to investigate the nonlinear Drinfeld–Sokolov–
Wilson (DSW) system using the concept of β-fractional derivative and a new local fractional
derivative via modified auxiliary equation method. It is the first time that a fractional
nonlinear DSW system is being studied under the effect of β-fractional derivative and new
local fractional derivative using the modified auxiliary equation method. The suggested
methodology is proficient, easy to proceed, and reliable for extracting analytic exact so-
lutions of fractional nonlinear partial differential equations. This method can generate a
variety of closed form solutions, including trigonometric, hyperbolic, and rational func-
tions. Theoretically, various types of traveling wave solutions can be obtained by assigning
arbitrary values to free parameters appearing in the aforementioned technique for the
considered DSW system. In the laboratory, these solutions can be used as prior knowledge
to generate desired possible soliton pulses in fluids.

The work being offered is organized as follows: Understanding of the fundamental
ideas for β-fractional derivative and new local fractional derivative is provided in Section 2.
Section 3 describes the MAE method in detail. In Section 4, the MAE method is employed
to provide exact solutions for the time fractional nonlinear DSW system. Discussion on the
obtained traveling structures is presented in Section 5, and the general conclusion is drawn
in Section 6.

2. Fundamentals of Fractional Derivatives

There have been several definitions of fractional derivatives developed over the years.
Almost all the presented definitions are unable to satisfy one or more mathematical prop-
erties of differential operators in classical calculus or they are too complicated to apply in
theoretical investigations. The β-fractional derivative and new local fractional derivative
are recently developed definitions of fractional derivative which satisfy almost all the prop-
erties of the integer order derivative. Owing to the useful mathematical properties of the
beta fractional derivative and new local fractional derivative, these definitions of fractional
derivatives are more suitable for obtaining new results for real life applications. Some key
ideas of FC that have been exercised in the presented study are included in this section.
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2.1. β-Derivative

Definition 1 ([20,21]). Atangana et al. introduced the β-fractional derivative for the first time in
2016. Let F : [a, ∞)→ R be an arbitrary function. Then the β-fractional derivative of F is defined, as:

A
0 D

β
t F(t) = lim

ε→0

F
(

t + ε
(

t + 1
Γ(β)

)1−β
)
− F(t)

ε
, (2)

for all t ≥ a, 0 < β ≤ 1.
If the limit in Equation (2) exists, then F is said to be β-differentiable. Here, Γ(β) is the well-

known gamma function defined by Γ(β) =
∫ ∞

0 tβ−1e−tdt. The gamma function is the generalization
of the factorial function to non-integer numbers.

The β-derivative has the following properties:

A
0 D

β
t (lF(t) + mG(t)) = l A

l D
β
t F(t) + m A

l D
β
t G(t), ∀ l, m ∈ R,

A
0 D

β
t (F(t) ∗G(t)) = G(t)A

l D
β
t F(t) + F(t)A

l D
β
t G(t),

A
0 D

β
t

{
F(t)
G(t)

}
=

G(t)A
l D

β
t F(t)− F(t)A

l D
β
t G(t)

G2(t)
,

A
0 D

β
t γ = 0, where γ is a constant.

If F is a differentiable function, then substituting ε =
(

t + 1
Γ(β)

)β−1
b, b → 0 when ε → 0,

Equation (2) can be written as

A
0 D

β
t (F(t)) =

(
t +

1
Γ(β

)1−β

lim
b→0

F(t + b)− F(t)
b

,

=

(
t +

1
Γ(β

)1−β dF(t)
dt

. (3)

This characteristic of β-fractional derivative is the main key that enables the use of any exact analytic
approach to derive specific results for the time fractional nonlinear DSW system (1).

The β-fractional integral is defined as:

A
0 Iβ

xF(x) =
∫ x

0

(
v +

1
Γ[β]

)β−1
F(v)dv.

2.2. A New Fractional Local Derivative

Definition 2. For all 0 < t, the new local fractional derivative is defined as

N β
hypF(t) = lim

ε→0

F
(

t + εt
1−β

2 sech
(
(1− β)t

1+β
2

))
− F(t)

ε
, 0 < β < 1.

A similar operator, N β
1 F(t), is studied in [22]. It can be noticed that for F : [a1, a2] −→ R with

a1 < t, if the limit limt→a+1
N β

hypF(t) exists, then

N β
hypF(a1) = lim

t→a+1
N β

hypF(t)

and F is β-differentiable at a1 with respect toN β
hypF(t). The new fractional local derivative satisfies

one important result, i.e.,
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N β
hypF(t) = t

1−β
2 sech

(
(1− β)t

1+β
2

)dF(t)
dt

, (4)

in which F : [a1, a2] −→ R is differentiable for a1 < t. The properties stated in [22] for theN β
1 F(t)

can be straightforwardly generalized to obtain Equation (4), and the following identity, which has
been proven in [23], is satisfied:

N β
hyp

[
2

1− β2 sinh
(
(1− β)t

1+β
2

)]
= 1. (5)

The chain rule
N β

hyp(F.G)(t) = F′(G(t))N β
hypG(t), (6)

holds. From Equations (5) and (6), it can be written as

N β
hypF(Λ) = ςF′(Λ), (7)

with
Λ =

2
1− β2 sinh

(
(1− β)ςt

1+β
2

)
, (8)

for the constant ς. This final finding is essential in the search of exact results for the fractional
DSW system.

3. Details of Suggested Methodology

Consider the nonlinear partial differential equation (NPDE) as

Q(Q,Qx,Qt,Qxx,Qxt, . . .) = 0, (9)

where Q = Q(x, t) is a solution of NPDE (9).
Making use of the transformation

Q(x, t) = q(χ), (10)

Equation (9) can be transformed into an ordinary differential equation by defining χ
with respect to the considered fractional derivative as

R(q, q′, q′′, . . .) = 0, (11)

where q′ = dq
dχ .

For β-derivative,

χ =
1
β

(
x +

1
Γ(β)

)β

− ω

β

(
t +

1
Γ(β)

)β

. (12)

For new local fractional derivative,

χ =
2

1− β2 sinh
(
(1− β)(x

1+β
2 −ω t

1+β
2

)
, (13)

where ω is used as a real constant.
The MAE method [24–26] assumes the general solution of Equation (11) as

ϕ(χ) = p0 +
n
∑
i=1

[
pi(hz)i + qi(hz)−i

]
, (14)

where pis, qis are constants to be calculated and z(χ) follows the auxiliary equation
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z′(χ) =
η1 + η0h−z + η2hz

ln h
. (15)

Here η0, η1, η2, and h are arbitrary constants with h > 0, h 6= 1. The solutions of
Equation (15) are as follows:

• If η2
1 − 4η0η2 < 0 and η2 6= 0,

hz(χ) =
−η1 +

√
4η0η2 − η2

1 tan(
√

4η0η2−η2
1 χ

2 )

2η2
or hz(χ) = −

η1 +
√

4η0η2 − η2
1 cot(

√
4η0η2−η2

1 χ
2 )

2η2
.

• If η2
1 − 4η0η2 > 0 and η2 6= 0,

hz(χ) = −
η1 +

√
η2

1 − 4η0η2 tanh(
√

η2
1−4η0η2χ

2 )

2η2
or hz(χ) = −

η1 +
√

η2
1 − 4η0η2 coth(

√
η2

1−4η0η2χ
2 )

2η2
.

• If η2
1 − 4η0η2 = 0 and η2 6= 0,

hz(χ) = −2 + η1χ

2η2χ
.

4. Construction of Solutions via Modified Auxiliary Equation Method

Considering the traveling wave transformation (10) along with Equations (12) and (13)
in system (1) gives

−ωU′ + αVV′ = 0 (16)

and
−ωV′ + sVU′ + rUV′ + ηV′′′ = 0. (17)

Simplification of Equations (16) and (17) gives

U =
αV2

2ω
(18)

and
6ηωV′′ + α(2s + r)V3 − 6ω2V = 0. (19)

Balancing the degrees of V′′ and V3 in Equation (19) gives n = 1. The general solution
of Equation (19) according to MAE method takes the form

V(χ) = p0 + p1hz + q1h−z. (20)

Inserting Equation (20) into Equation (19), along with Equation (15) and equating
coefficients of all powers of hz to zero, yields a system of algebraic equations. The possible
solutions of the system are

Family 1 :{ω = 1
2 η
(
4 η0η2 − η1

2), p0 = 1
2

√
− 24 η0η2−6 η1

2

α r+2 α s η η1, p1 = 0,

q1 =
√
− 24 η0η2−6 η1

2

α r+2 α s η0η}.

Family 2 :{ω = 1
2 η
(
4 η0η2 − η1

2), p0 = 1
2

√
− 24 η0η2−6 η1

2

α r+2 α s η η1,

p1 =
√
− 24 η0η2−6 η1

2

α r+2 α s η2η, q1 = 0}.

Family 3 :{ω = − 1
4 Fη, p0 = − 18

√
3
√

α (r+2 s)Fη2η η0η1

α (r+2 s)( 3Fr
r+2 s +

6Fs
r+2 s−12 η0η2−6 η1

2)
,

p1 =
√

3
√

α (r+2 s)Fη2η

α (r+2 s) , q1 = 0}.
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where F =
(

4 η0η2 − η1
2 + 3

√
8 η0η1

2η2 + η1
4
)

. The solutions of the DSW-system corre-
sponding to family 1 are

• If η2
1 − 4η0η2 < 0 and η2 6= 0,

U11(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

+
2η0η η2

−η1 +
√

4 η0η2 − η1
2 tan

(
1
2

√
4 η0η2 − η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s

2

or

U∗11(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

− 2η0η η2

η1 +
√

4 η0η2 − η1
2 cot

(
1
2

√
4 η0η2 − η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s

2

and

V11(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

+
2η0η η2

−η1 +
√

4 η0η2 − η1
2 tan

(
1
2

√
4 η0η2 − η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s

or

V∗11(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

− 2η0η η2

η1 +
√

4 η0η2 − η1
2 cot

(
1
2

√
4 η0η2 − η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s
.

• If η2
1 − 4η0η2 > 0 and η2 6= 0,

U12(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

− 2η0η η2

η1 +
√
−4 η0η2 + η1

2 tanh
(

1
2

√
−4 η0η2 + η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s

2

or

U∗12(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

− 2η0η η2

η1 +
√
−4 η0η2 + η1

2 coth
(

1
2

√
−4 η0η2 + η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s

2
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and

V12(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

− 2η0η η2

η1 +
√
−4 η0η2 + η1

2 tanh
(

1
2

√
−4 η0η2 + η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s

or

V∗12(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

− 2η0η η2

η1 +
√
−4 η0η2 + η1

2 coth
(

1
2

√
−4 η0η2 + η1

2χ
)√−24 η0η2 − 6 η1

2

α r + 2 α s
.

Here, the constraint condition r 6= −2s must hold for the existence of solutions.
The solutions of DSW-system corresponding to family 2 are

• If η2
1 − 4η0η2 < 0 and η2 6= 0,

U21(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

+
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
−η1 +

√
4 η0η2 − η1

2 tan
(

1
2

√
4 η0η2 − η1

2χ

))2

or

U∗21(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

−1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
η1 +

√
4 η0η2 − η1

2 cot
(

1
2

√
4 η0η2 − η1

2χ

))2

and

V21(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

+
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
−η1 +

√
4 η0η2 − η1

2 tan
(

1
2

√
4 η0η2 − η1

2χ

))
or

V∗21(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

−1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
η1 +

√
4 η0η2 − η1

2 cot
(

1
2

√
4 η0η2 − η1

2χ

))
.

• If η2
1 − 4η0η2 > 0 and η2 6= 0,
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U22(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

−1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
η1 +

√
−4 η0η2 + η1

2 tanh
(

1
2

√
−4 η0η2 + η1

2χ

))2

or

U∗22(χ) =
α

η (4 η0η2 − η1
2)

1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

−1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
η1 +

√
−4 η0η2 + η1

2 coth
(

1
2

√
−4 η0η2 + η1

2χ

))2

and

V22(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

−1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
η1 +

√
−4 η0η2 + η1

2 tanh
(

1
2

√
−4 η0η2 + η1

2χ

))
or

V∗22(χ) =
1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η η1

−1
2

√
−24 η0η2 − 6 η1

2

α r + 2 α s
η

(
η1 +

√
−4 η0η2 + η1

2 coth
(

1
2

√
−4 η0η2 + η1

2χ

))
.

Here, the constraint condition r 6= −2s must hold for the existence of solutions.
The solutions of DSW-system corresponding to family 3 are

• If η2
1 − 4η0η2 < 0 and η2 6= 0,

U31(χ) = − 2α

Fη

−18

√
3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

+
1
2

√
3
√

α (r + 2 s)Fη
(
−η1 +

√
4 η0η2 − η1

2 tan
(

1
2

√
4 η0η2 − η1

2χ
))

α (r + 2 s)

2

or

U∗31(χ) = − 2α

Fη

−18

√
3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−1
2

√
3
√

α (r + 2 s)Fη
(

η1 +
√

4 η0η2 − η1
2 cot

(
1
2

√
4 η0η2 − η1

2χ
))

α (r + 2 s)

2
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and

V31(χ) = − 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

+
1
2

√
3
√

α (r + 2 s)Fη
(
−η1 +

√
4 η0η2 − η1

2 tan
(

1
2

√
4 η0η2 − η1

2χ
))

α (r + 2 s)

or

V∗31(χ) = − 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−1
2

√
3
√

α (r + 2 s)Fη
(

η1 +
√

4 η0η2 − η1
2 cot

(
1
2

√
4 η0η2 − η1

2χ
))

α (r + 2 s)
.

• If η2
1 − 4η0η2 > 0 and η2 6= 0,

U32(χ) = − 2α

Fη

− 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−1
2

√
3
√

α (r + 2 s)Fη
(

η1 +
√
−4 η0η2 + η1

2 tanh
(

1
2

√
−4 η0η2 + η1

2χ
))

α (r + 2 s)

2

or

U∗32(χ) = − 2α

Fη

− 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−1
2

√
3
√

α (r + 2 s)Fη
(

η1 +
√
−4 η0η2 + η1

2 coth
(

1
2

√
−4 η0η2 + η1

2χ
))

α (r + 2 s)

2

and

V32(χ) = − 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−1
2

√
3
√

α (r + 2 s)Fη
(

η1 +
√
−4 η0η2 + η1

2 tanh
(

1
2

√
−4 η0η2 + η1

2χ
))

α (r + 2 s)

or

V∗32(χ) = − 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−1
2

√
3
√

α (r + 2 s)Fη
(

η1 +
√
−4 η0η2 + η1

2 coth
(

1
2

√
−4 η0η2 + η1

2χ
))

α (r + 2 s)
.

• If η2
1 − 4η0η2 = 0 and η2 6= 0,
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U33(χ) = − 2α

Fγ

− 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
)

−
√

3
√

α (r + 2 s)Fη (χ η1 + 2)
2α (r + 2 s)χ

)2

and

V33(χ) = − 18
√

3
√

α (r + 2 s)Fη2η η0η1

α (r + 2 s)
(

3Fr
r+2 s +

6Fs
r+2 s − 12 η0η2 − 6 η1

2
) − √3

√
α (r + 2 s)Fη (χ η1 + 2)

2α (r + 2 s)χ
.

Here, the constraint condition r 6= −2s must hold for the existence of solutions.

5. Results and Discussions

Three-dimensional surface graphs are used to illustrate the dynamical behavior of
the earned results. Each figure consists of two parts, (a) and (b). In Figures 1–8, (a)
corresponds to fractional value 0.85 while (b) is plotted for 0.99, respectively. Figures 1,
2, 5, 6 and 9 show traveling variations of solutions in the case of β-fractional derivative,
while Figures 3, 4, 7, 8 and 10 show traveling variations of solutions in the case of new local
fractional derivative. Figures 1–4 show the traveling pattern of solutions U12(x, t) and
V12(x, t). It can be noticed that when the value of the fractional parameter approaches
1, the dark soliton behavior dominates in case of U12(x, t) while dark peakon behavior
dominates in case of V12(x, t). Figures 5–8 show the traveling pattern of solutions U∗12(x, t)
and V∗12(x, t). It may be noticed that when the value of fractional parameter approaches to
1 the periodic behavior dominates. Kink solitons are observed for U22(x, t) and V22(x, t),
as shown in Figures 9 and 10. Part (a) depicts the traveling structure of U22(x, t), while
(b) represents V22(x, t), respectively. The values of free parameters for which these graphs
are plotted are mentioned in the caption of each plot. Through graphical illustrations, it
can be noticed that various forms of traveling wave structures are obtained for the time
fractional nonlinear DSW system using the modified auxiliary equation method including
dark, periodic, and kink solitons. Solutions similar to Figures 9 and 10 have already been
obtained in the literature [11,15]. Moreover, periodic traveling structure has also been
reported for the DSW system [6], which assures the correctness of the MAE method and
obtained results. Further, among these obtained structures, dark solitons are shown in
Figures 1–4. Dark solitons are important in a sense that they are less prone to loss and more
stable in disturbing conditions. Dark solitons have thus found extensive use in the fields of
nonlinear sciences as they can travel far without any disturbance in their structure.
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(a) (b)

Figure 1. Three–dimensional graphics corresponding to β–fractional derivative of (a) |U22(x, t)|
with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |V22(x, t)| with
β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.

(a) (b)

Figure 2. Three–dimensional graphics corresponding to a new local fractional derivative of
(a) |U22(x, t)| with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |V22(x, t)|
with β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.

(a) (b)

Figure 3. Three–dimensional graphics corresponding to β–fractional derivative of (a) |U12(x, t)|
with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |U12(x, t)| with
β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 .
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(a) (b)

Figure 4. Three–dimensional graphics corresponding to β–fractional derivative of (a) |V12(x, t)|
with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |V12(x, t)| with
β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 .

(a) (b)

Figure 5. Three–dimensional graphics corresponding to a new local fractional derivative of
(a) |U12(x, t)| with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |U12(x, t)|
with β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.

(a) (b)

Figure 6. Three–dimensional graphics corresponding to a new local fractional derivative of
(a) |V12(x, t)| with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |V12(x, t)|
with β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.
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(a) (b)

Figure 7. Three-dimensional graphics corresponding to β-fractional derivative of (a) |U∗12(x, t)|
with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |U∗12(x, t)| with
β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.

(a) (b)

Figure 8. Three–dimensional graphics corresponding to β–fractional derivative of (a) |V12∗(x, t)|
with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |V12∗(x, t)| with
β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.

(a) (b)

Figure 9. Three–dimensional graphics corresponding to a new local fractional derivative of
(a) |U12∗(x, t)| with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |U12∗(x, t)|
with β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.
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(a) (b)

Figure 10. Three–dimensional graphics corresponding to a new local fractional derivative of
(a) |V12∗(x, t)| with β = 0.85, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5 (b) |V12∗(x, t)|
with β = 0.99, α = 1, r = 1, s = 0.5, η = 1, η0 = 0.5, η1 = 2, η2 = 0.5.

6. Conclusions

In this paper, the time fractional nonlinear Drinfeld–Sokolov–Wilson system is studied
using the modified auxiliary equation method. The definition of β-fractional derivative
and a new local fraction derivative is applied to the fractional DSW system. Some of
the obtained results are illustrated graphically for thorough understanding of physical
behavior of the constructed traveling wave solutions. The variations in the wave structure
for various orders of fractional derivative are graphically depicted in Figures 1–10. The
observed patterns of the fractional DSW system demonstrate that the new local fractional
derivative shows more clear traveling structures in comparison to β-fractional derivative,
as fractional parameter is taken closer to 1. The obtained solutions show dark soliton, dark
peakon, periodic, and kink solitonic structures. They also agree with earlier observations
reported in the literature, demonstrating the validity of the suggested method. The work
presented also includes some intriguing patterns that can be used in future research on the
nature of the DSW system and the results of the aforementioned methodology.
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