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Abstract: In this paper, the new representations of optical wave solutions to fiber Bragg gratings with
cubic—quartic dispersive reflectivity having the Kerr law of nonlinear refractive index structure are
retrieved with high accuracy. The residual power series technique is used to derive power series
solutions to this model. The fractional derivative is taken in Caputo’s sense. The residual power series
technique (RPST) provides the approximate solutions in truncated series form for specified initial
conditions. By using three test applications, the efficiency and validity of the employed technique
are demonstrated. By considering the suitable values of parameters, the power series solutions are
illustrated by sketching 2D, 3D, and contour profiles. The analysis of the obtained results reveals that
the RPST is a significant addition to exploring the dynamics of sustainable and smooth optical wave
propagation across long distances through optical fibers.

Keywords: Caputo’s fractional derivative; fiber Bragg gratings; residual power series technique;
Kerr law

1. Introduction

Over the last few decades, the investigation of optical wave propagation has caught
the attention of different scientists in applied mathematics. Many significant developments
have been made in the field of nonlinear optics [1-5]. In the realm of nonlinear optics, it is
widely known that the propagation of an optical pulse in nonlinear media, including Kerr
law and non-Kerr law, may be represented by the nonlinear Schrodinger equation [6]. The
Kerr law of nonlinearity arises when a light wave in an optical fiber experiences nonlinear
responses due to nonharmonic motion of electrons caused by an external electric field [7-9].
Low chromatic dispersion is one of the fundamental issues with soliton transmission over
intercontinental distances. To manage and lessen this effect, a number of strategies and
approaches have been applied. The project was then successfully completed by adding
gratings to optical fibers [10-12].

One of the most inventive technologies applied to nonlinear optics is fiber Bragg
grating (FBG) [13]. FBG technology has been embraced by the field of fiber optics since
its discovery. Presently, most fiber optic sensor systems use FBG technology. Due to
the inherent benefits of FBGs, including their compact size, quick reaction, dispersed
sensing, and immunity to the electromagnetic field, FBG-based sensing has attracted a
lot of research interest [14]. Measurements of numerous physical parameters, including
temperature, pressure, and strain are frequently performed using FBG technology [15]. For
a wide range of applications, FBGs are also useful in signal shaping as well as filtering
components [16].
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Occasionally, another difficulty comes when the chromatic dispersion is gradually
depleted, and hence, there is an unstable balance between the chromatic dispersion and
the nonlinearity, being followed by a possible pulse collapse. To overcome this difficulty,
the chromatic dispersion is replaced by a combination of third-order and fourth-order
dispersions.

Optical waves in FBGs with different nonlinear refractive indices, where the chromatic
dispersion is replaced by the third- and fourth-order dispersions together with the disper-
sive reflectivity have been retrieved analytically in the earlier studies. For example, Wang
et al. [17] investigated this model by implementing the trial equation approach to retrieve
cubic—quartic optical solitons in FBGs. Yildirim et al. [18] retrieved the soliton solutions
of this model with the sine-Gordon equation method. Malik et al. [19] investigated the
nonlinear Schrodinger equation, which considered the cubic—quartic form of nonlinear
refractive index with parabolic law of nonlinearity by Lie symmetry. Arnous et al. [20]
derived the optical solitons in FBGs with cubic—quartic dispersive reflectivity with the
aid of enhanced Kudryashov’s technique. Zayed et al. [21] used the auxiliary equation
approach to explore solitons in FBGs with cubic—quartic dispersive reflectivity having the
Kerr law of nonlinear refractive index.

In this paper, we consider a model in FBGs with cubic—quartic dispersive reflectivity
having a Kerr nonlinear refractive index and Caputo’s time-fractional derivative of order ¢
(0 < ¢ £ 1). The mathematical form of the considered model is expressed as

lDtQTl + 1810000 + 1100000 + (€1 |7/l|2 + d1|0|2)n +1ne + B0 =0,

lDfo + 1N ppo + baoeoo + (ca|n|* + da|n|?)o + 10200 + Ban =0, @
where (@, t) and o(®, t) denote wave profiles, and t and @ denote the time in dimension-
less form and the non-dimensional distance, respectively. The coefficients a i b]-, j, Cj, d i and
B; correspond to third-order dispersion, fourth-order dispersion, intermodal dispersion,
self-phase modulation, cross-phase modulation, and detuning parameters, respectively.
The exact solution of this model at ¢ = 1 is reported by Ming-Yue-Wang et al. [17].

The primary goal of this work is to present the optical wave solutions and their
graphical observations for the considered model in FBGs with Caputo’s time-fractional
derivative using the residual power series technique (RPST). The obtained results are novel,
and the proposed technique is utilized for the first time to study the considered fractional
model in this work.

The discipline of fractional calculus has seen tremendous advancements in study at the
intersection of probability, chaos, differential equations, and mathematical physics [22-26].
The nonlocal property of fractional differential equations (FDEs) is a significant advantage
of employing them in various mathematical modeling. Retrieving the analytical solutions
for FDEs is sometimes difficult to achieve due to the computational complexities of frac-
tional operators. In this respect, numerous methods have been constructed and motivated
to investigate the approximate solution for FDEs, among which are the Sinc-collocation
method [27], the predictor-corrector compact difference scheme [28], the variational it-
eration method [29], the homotopy analysis technique [30], the homotopy asymptotic
method [31], the homotopy perturbation scheme [32], the differential transform method [33],
the linearly compact scheme [34], the Adomian decomposition method [35] etc.

One of the most efficient techniques for exploring approximate analytic solutions
for linear and nonlinear FDEs is the residual power series technique (RPST) [36—40]. The
RPST was introduced by the Jordan mathematician Abu Arqub [41]. The RPST has been
successfully used to construct the approximate analytic solutions of FDEs without imple-
menting linearization, perturbation, or discretization techniques, showing the reliability
and simplicity of this technique. This proposed technique has been successfully applied
to investigate the solutions of time-fractional Whitham-Broer—Kaup equations [42], Black—
Scholes European option pricing equations [43], the KdV equation [44], the nonlinear
Schrodinger equation [45], the Biswas-Milovic equation [46], the Caudrey-Dodd-Gibbon-



Fractal Fract. 2023, 7, 625

3 0f24

Sawada—Kotera equation [47], etc. The suggested technique is a reliable, practical, and
astonishingly effective tool for examining the approximate solutions of many types of
real-life nonlinear models.

The RPST has several advantages. It is well-known for its accuracy and simplicity
to obtain the desired results. It does not require variable discretization, and there is no
requirement for huge computer memory or time to reach the solutions. Its nature is global
regarding the approximate analytical solutions, which makes it useful to investigate various
mathematical, engineering, and physical problems. Being analytic expressions, the results
obtained through the RPST can be further explored with derivative calculations.

The arrangement of this paper is given in the following manner. Some preliminar-
ies of fractional calculus and the RPST are presented in Section 2. A description of the
fundamental steps of the proposed method and the construction of a solution to the sug-
gested problem is illustrated in Section 3. Graphical findings for different applications are
exhibited in Section 4. The conclusion is presented in the last section.

2. Preliminaries

This section introduces the fundamental properties of fractional calculus theory, al-
lowing us to follow the solutions of a coupled nonlinear Schrodinger equation for the Kerr
law of nonlinear refractive index in FBGs.

The Caputo technique is chosen in this study because it is appropriate for real-world
physical problems, and it specifies integer-order initial conditions for FDEs.

Definition 1 ([22]). Caputo’s time-fractional derivative of order ¢ of 6(¢@, t) is defined as

ﬁfg(tﬂp)ﬁfl%q‘fg@dlp, 0<l-1<o<{t>yp>s>0mcl,
D{(w,t) =

¥6(,
2, g=(€EN.

Theorem 1 ([22]). If{ —1<0<{,{ € N, then
@) D{I}6(@,t) = 6(w, 1),

(b) IPD{5(@,t) = d(a, 1) — Xy 200,

Lemma 1 ([22]). If f(@) is a continuous function and o, ¢ > 0, then the following result holds:

Bf(@) = K1 f(@) = I f(@). @

Other basic properties of fractional-order derivatives are shown in [22-24]. Some
results from [48] that are important for the RPST are as follows:

Definition 2. A power series of the following form

Y ex(t—to) 0 =eg+er(t—to)? +ea(t—t)+..., 0<{—1<0<{ t>t, ()
k=0

is a fractional power series about t = t.

Definition 3. A multiple fractional power series about t = ty, for 0 < ¢ —1 < o < { is defined
as follows:

Zék )t — 1)k = 5o(@) + 61(@) (t — 1)+ 0o (@) (E—t) + ..., t>1y, (4)

where the coefficients of the series are & and are functions of @.
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Theorem 2. Assume that § has a fractional power series representation of the form at t = t,
=Y elt—t0), 0<7-1<0<y th<t<t+R ®)

If DX (t) are continuous on (to,tg + R), k = 0,1,2, ..., then the coefficients “e;” appearing
in Equation (5) can be determined as

o — Dke5(tg)
KT Tko+1)

where R is considered as the series’s radius of convergence.

Other results related to the RPST can be found in [37,48,49].

3. RPST to FBGs for Cubic-Quartic Dispersive Reflectivity with
Time-Fractional Derivative

Consider a coupled nonlinear Schrodinger equation with the cubic—quartic dispersive
reflectivity having the Kerr law of nonlinear refractive index as

ID{1 + 1810000 + b100ooo + (c1|n|* +d1]o|*)n + yne + Bro =0,

1D}o + aneeo + balloooo + (c2|n|* + da|n|?)o + 1200 + fan = 0,

(6)

subject to the initial conditions

n(@,0) = §(@), ”
o(w,0) =7(@),
where Df represents Caputo’s time-fractional derivative of order ¢. The fundamental
goal of this work is to develop the solution for Equations (6) and (7) by its power series
expansion among its truncated residual function.
For the construction of power series solutions of Equations (6) and (7), let

n(w,t) =p(w,t) +s(@,t),

o(@,t) = u(@, t) + w(@,t), ®)

where n(®,0) = p(®@,0) +1s(,0), and 0(®@,0) = u(®,0) + 1w(w,0). The following system
can be obtained using the above equations in (6) and (7) as

DtQS + M Wooo — P1loooo — ClP(P +s ) dip ( 2) + 150 — Pru =0,
Dfp + 1 lpoo + L Woooo + c15(p* + 82) + dis(u? + w?) + a1 pe + frw = 0, )
Dtgw + 425000 — L2Po000 — CZM(M +w ) dp (P +s ) +aweo — P2p =0,
Dfu + BPooo + bseoon + 2w (u? + w?) + dyw(p? + 57) 4 aguie + B2s = 0,

with initial conditions

p(®@,0) = 01(w),
s(@,0) = (@),
u(@,0) = &1 (@), o
w(@,0) = 52(@),
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3.1. General Procedure of the RPST

The following are the primary steps for the recommended process.
Step A. Assume the fractional power series solutions of above system regarding the initial
point (t = 0) as

tke

ng TR 11)
tko

ka I'(ko + 1)
ke

2 (@ I'(ko+ 1)
tke

Z’”" T D)

For the numerical values of fractional power series solutions for the system of equa-
tions with initial conditions, take the z — th truncated series of p(®, t),s(®,t), u(®,t), and
w(w,t) as pz(@,t),s:(@,t),uz(@,t), and w; (@, t), respectively, i.e.,

tke

ng TR 1) (12)
tke
ka T(ko+1)’

tke
Z k(@
I'(ko+ 1)

tke
Z ") g 7 1

Using the initial conditions, the 0 — th fractional power series solutions can be obtained

as
pO(‘Dr t) = gO((O) =0 ((D)/
so(@,t) = fo(@) = (@), (13)
uo(@, t) = lo(@) = ¢1(@),
wO((D, t) = mo(@) = (:;’2(09)
The system of Equations (12) can be rewritten as
ko
pz(@,t) = 1 (@ +28k k;+1)
tko
sz(@,t) = (@) + Z fr(@ Tko £ 1)’
ko (14)
z(, )+ Z @) F 1)
tke
ws (e, )+ 2 (@ T(ko+1)

The required expressions for z — th fractional power series solutions will be obtained
by varyingk =1,2,3,...,zin p(®,t),s(®@,t), u(w,t), and w(o, t).



Fractal Fract. 2023, 7, 625

6 of 24

Step B. For Equations (9) and (10), the residual functions will be constructed. This construc-
tion will be made in the following manner as

9% Pw otu

Resp(@,t) = 30 T M35 blw —c1p(p? +5%) —dip(u® + w?) + txl — Biu,
d°p du otw 8

Ress(@,t) = 550 +a a3 3 +bla vl +c15(p? +5%) + dys(u® +w )+1xla + Biw,

0%w d%s ot Jw (15)
Resy,(@,t) = S —HIZW — bza—aﬁ — czu(u2 + wz) — dzp(pz +sz) + 042% — Bap,

0°u 93 d%s ou
Reso(@,t) = S+ aza—w’; +bagp + e2w(i’ +0?) + dyw(p +5%) + aag + Pos.

Taking p; = pz(®@,t),s; = sz(@,t),u; = uz(®,t), and w, = w;(w@,t), then the z — th
residual functions z = 1,2, 3, ... can be defined as

9%s Bw, tu,

ds,
Respz(@,t) = 55 +a15 3 —bi5 —c1pz(p? +52) —dipz (12 + w )+061a — Bz,

°p, u, 84

ap:
Ress . (@,t) = 350 +aq 503 (p? +52) + dysz (1% + w?) + ay —— o 2 4 Brws,
w s ot Jw
Resy (@, t) = TQZ + aZa—wg — 172%;742 — czuz(uf +w ) dzpz(pz +s ) +ay—— aw — Bapz,
0%, 8 d4s U,
Resyz(@,t) = 350 Py pz + bza (u 4w ) + dzwz(pz +s ) + aza— + B2sz. (16)

Some important results of Res,(@,t), Ress(@,t), Res, (@, t), and Res,(@,t) that are
useful for the residual power series solutions fori = 1,2, ..., z are stated below:
1. Resy(@,t) =0,Ress(@,t) = 0,Resy(@,t) = 0,Resy(@,t) =0
2. lim Respz(ci) t) = Resy(@,t), lim Ress.(@,t) = Ress(@, 1),
Z—00

Zhﬁm Resy (@, 1) = Resu(a),t),zl% Resy z(@,t) = Resy (@, t)
foreach@w € ITand t = 0,
3. DResp(w@,0) = D*®Res).(@,0) =0,
D@Ress(@,0) = D*@Ress ,(@,0) = 0,
D@Res, (@,0) = D*@Res, ,(@,0) = 0,
D@Resy (@,0) = D™ Resy, . (@,0) = 0.

Step C. Substituting p. (@, t),s: (@, t),uz(®@,t), and w;(w@,t) into (16) and calculating the

fractional derivative Dt(z_l)g of Resy.(@,t),Ress.(@,t),Res,(@,t), and Resy.(@,t),
z = 1,2,3,... at the initial point (f = 0), together with results mentioned in Step B,
the resulting algebraic systems are as follows:

D(Zfl)QResp,Z(w,O) =0,
Dt(Z l)QRessz((i),O) =0,
Dt(Z 1)QResuZ((D,O) =0, 47
Dt(zfl)QReswz((D,O) =0

Step D. The required values of gx (@), fx (@), Iy (@), and my (@), k = 1,2,...,z can be derived
by solving Systems (17). Finally, the z — th residual power series solutions can be obtained.

In the next discussion, the first, second, and third residual power series solutions of
the suggested problem are developed in detail by following the above steps.
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3.2. Residual Power Series Solutions of Proposed Model

For z = 1, the first approximated residual power series solutions can be written as

pr(@,1) = o (@) +gl<w>r(;il),

51(@, 1) = o(@) + fl(w)r(gtil),

un(@,1) = & (@) + l1(w)r(gtil),
#0

wy(@,t) = &2(@) +my (@)m~

Following are the first residual functions:

E)Qsl a w1 a u asl
Respi(@,t) = =0 + G55 ~bis g —c1p1(pi +s7) — lel(”%*‘w%)‘*‘“la*—ﬁluL
?u 9*wq op1
Res; (@, t) = atr;l ta ! 5 + b1 Fy L+ crsi(p}+s9) +d151(”1+w1)+“1 %o Lt By,

(18)
ale a S1 84 1 8w1
T + B35~ bz% — iy (1 + w}) — dauy (pF + 5) + M55 T Bap1,

9%y *Pp o*sy 2 2 2. 2 du
310 +ay——= 303 + bzw + cowy (uf + wi) + dawy (p7 +57) —&-az@ + Bos1,

Resu,l ((DI t) =

Resy (@, t) =

where p; = p1(@,t),51 = s1(@,t),u; = up(@,t), and wy = wq(w,t). Substitute the 1st
truncated series p1(@,t),s1(®,t),u1(®,t), and wy(®,t) into the first residual functions,
Resp| (@,t), Ress1(@,t), Res, 1(@,t), and Resy, 1 (@, t), respectively, as

3

Respa(@,1) =(@) a1 (1(@) + mi(@) gy ) — i (61(0) + (@) s

I'(o+1)
~a(a@) @y )| (n@+a@ r(ltig))2+<az(w)+f1(w)
r(lﬁg))z} ~ i (a1@) + s1(@) 1 ) | (@) + @)z Q))Z

te

+(a@ @ s ) |+ (2@ + @ s )
- p1(@@ + @) ).

Rese1(@,) =51(@) + a1 0 (1(0) + 1(@) i ) + b (2(@) + (@) s

T 1+o0)
+a(n@) + i@y ) | (n@ ra@ r(ltig))2+(rfz(@)+f1(w)
mﬁg)ﬂ i (02(@) + 51(0) 5 ) | (E1(@) + @) s Q))2+

e

(e26@)+ m(m)mm)z} +args (2(0) + g1(@) ¢ Q)>
B (Cz(@) +m1<w>mt—ie)),
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3 tQ 4

Resy (@, t) =mi (@) + ”23%3 <‘72(‘D) + fl(@)m) - bzaaﬁ (‘ﬁ(co) + g1(c0)r(1tiig))

te 0

~a(a@ +h@ gy ) | (6@ +zl<w>r(f+g))2 +(@l@) +m@)

nfig)ﬂ - (@) +51(@) 57 g7 ) | (@ +gl<w>r(lﬁg))2+

(@ +f1<w>r(fig))2} oz (0@ +m(@) 0 )

t0

) (Ul(@) +81(@)m>,

3 4
Resw,l ((D, t) :ll (LD) + az% (U] ((O) +&1 ((D)F(ltiig)) + bzaaﬁ (0’2(@) + f1 (w)ﬁ)

te

+a(a@+m@) g ) (@@ +zl<w>mt—ig))2 + (@@ +m@

(o aomg)s 09
to

<02(w) +fl(w)m>2} + “z% (él(w) + ll(w)r(ltiig)>

o \? %
r<1+e)> } +"2<§2("")*””(‘”)ruw)

te

+ B2 (0’2(@) +f1(@)m> .

By using Equations (17) and (19), the required values of f1(®@), g1(®@), 11 (@), and m; (@)
are given as
A(@) = 81(@) +61(@)%01 (@) + 82(@)?01 (@) + 01(@)? + 01 (@) 02 (@) — (@) — &5 (@) + &1 (@),
21(@) = —&2(@) — 61(@)’02(@) — £2(@)?02(@) — 72(@)? — 01 (@) 202 (@) — 0} (@) — &7 (@) — &5 (@),
m (@) = 01(@) + & (@)E(@)* + &1(@)01 (@) + &1 (@) + &1(0)72(@)? — & (@) — o) (@) + o1 (@),
h(@) = —02(@) — &1(0)2E (@) — &(@)71 (@) — &2(@)? + &(@)7(@)? — & (@) — o (@) — o ().
The approximate solutions with z = 1 can be written as

e

pi(@,t) = o1(@) + T+ < — H(@) = 8(0)?02 (@) — (@)% 02 (@) — 02 (@)? — 01 (@) 0 (@)

— (@) - V(@) - ¥ (w)),

s1(@,1) = 02(@) + = <C (@) +¢1(@)*01 (@) + E2(@)201 (@) + 01 (@) + 01 (@) 02 (@)
1(@, 2 ETLG 1 1 2 1 1 1(@)02

— (@) - (@) + @5‘”(@)),

e (@)~ 8(0P0) - 2@)n(@) - @) +a@)n@)?

— @) — o (@) wé”(w)),

ur(@,t) = &1 (@) +

wy(@,t) = G(@) + ] (01 (@) +E1(@)22(@)* + &1 (@)01(@)? + 81 (@) + &1 (@) 0a(@)

te
I'(l+o

~ &h(@) — o (@) + oY <w>).
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For z = 2, the second approximated residual power series solutions can be written as

pa(@,1) = 1(@) + 1(0) oy + (@) 5
52(0,) = 020) + F1(@) o + (@ 5
(@) = 61(0) +h(0) o + (@) g

0n(@,1) = (@) + 1 (@) o + @)

Following are the second residual functions:

Resya(@,) = 22 4y 52—, T2 a4 ) — dupa(ud + ) + 1 2% — B,
Resgo(@,t) = 3;;22 + 1?;;{32 +bla4 +c152(p2+52)+d152(u2+w2)+4x1% + Brwo,
Res,o(@,t) = aa% as gj;; bzaa Y2 — ety (13 + w3) — douy (p3 + 53) +uczaa—w2 — Bapa,
Resyp(@,t) = 85;2 + za;cg; +b234 T + ot (43 + w3) + dywa (p3 + 53) +1x2 a 2 4 Bos.

Substitute the second truncated series py(@, t),s2(@, t), uz (@, t), and wy (@, t) into the
second residual functions Res, (@, t), Ress2(@,t), Res, (@, t), and Resy (@, t), respec-
tively, as

te 03 te 2y
Respa(@,t) = fi(®@) +f2(@)m + M35 (Cl(‘D) + ml(@)m + mz(@)m>

H@)Hz(w)r(lﬂg)) cl( @)+ 01@) o5

2 20 2
+ 2@ ) | (1@ 8@ o e @) * (2@ A@)
to e \? to 120
i+ +f2(w)71"(1+29)) } —dq (Ul(w)+g1(w)7r(1+q) +g2(w)7r(1+29))
e

2 20 \?
(8@ +h@) g +R@) gy )+ (@) +m(@) g +m@

20 2 ) to 120
raTEg) | e (@) Ay @) Ty

te t2
~51(61(@) + h(@) 5 + @) 5y )

ot te t2e te
b (1(@) +h@) g
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3

e P} te tZQ
Resg (@, t) =g1 () +g2(w)m +a53 (Cl (@) +1h (@)m + ZZ(Q)W)

ot e 120
+h15 (gz(w) + m1(w)m + mz(@)m> +c1 (Uz(@) +h
0 #20 #20

o 2
@) gy @) g ) | (@) + 1@ pror + @) g

o 20 \? ; to
+<az(w)+f1(a>)r(1+q)+fz(w) dra) |+ (@) 4 @) s + @

120 e \?2 to
m) Ké‘l( )+11((17) (1+Q) +lZ(@)m) + (62(w)+ml(w)r(1+g)

2 2 2
+m2(w)r(lt7j2@) } +0<1% (171(@) +g1(<9)r(1tiig) +82(‘D)r(1tfg2g))

o 120
+ B1 (52(‘9) +m1(w)m +m2(@)m)/

t 9° £ £20
Resy (@, t) =my(@) +m2(@)m + ﬂ2$ ((Tz((ﬂ) +f1((D)r(1 ) —‘rfz(a))m)
o* 120
~bges 4( 71(@) + 1(@ )r( 5+ 8@ )~ (8@ +hi@)
#0 10 120 2
Ti+o) 1+2 )[( ) +hi@ 1+g)+12("°)r(1+2g)>

t0

2
*(gz(w”’”l( g ) | (@ @y

2 2 2

+gz(w)mt7+gzg)) [(m(w) +g1(co)mtiig) +gz(w)mt7+g29)) + <a2(a>)
£ 120 2 0 te

—I—mz((D)m) — B2 <‘71(‘D) +81(09)m +g2(@)m)'

te 3 £2e

4 2
+bza?o ( 2(@) + (@) Fr oy (1+Q) + fo(@ )ngg)>+c2(§2(‘o)+ml

Resyp (@, t) =11 (@) + (@)

te 12e

10 12¢ 2
@ g @) 2 ) | (8@ @) @) )

te 12e
+ (80@) + m(@) g + @)

tQ

2
m) ] +da <§2(@) +m1(@)m (20)

£2 £2 z
(@) 17557 ) | (2@ 1@ g 0@ gy ) + (2@

te 12 2 te
+f1(w)m+f2(w)m> }ﬂL 2a (51( @) +h(@ )m

20

2
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By using Equations (17) and (20), the required values of f,(®), g2(®@), 2(@), and my (@)
are given as
f(@) =1(@) + 81(@)§F (@) + 81(@)&2(@)* + 211 (@)&1 (@)1 (@) + 2m1 (@) G2 (@)1 (@)
+381(@)01 (@) + 2£1(@)01 (@)02(@) + §1(@) 02 (@) (@) —mi” (@) + 1Y (@),

$2(@) = —m (@) — f1(@)& (@) — f1(@)E(@)? — 211 (@)1 (@) 02 (@) — 2m1 (@) &2 (@) (@)
— 31(@)02(@) — 281(@)01 (@)02(@) — g1(@)02(@) — g1 (@) — 11 (@) — m (@),

ma (@) =g1(@) + 1 (@) 33 (@) + 1 (@)1 (@)% + 281 (@)1 (@)1 (@) + 21 (@)1 (@) 2 (@)
+ 31 (@)E1 (@)% + 2m1 (0)&1 (@) E2(@) + 1 (@)02(@)% — 1ty (@) — £ (@) + g1 (@),

L(®) = - fi(@) — mi (@)} (@) — my (@) (@) — 281 (@) &2 (@)1 (@) — 2f1 (@) E2 (@) 02 (@)
—3m1(@)82(@)? — 211(@)Z1(@)Z2(@) — my (@) (@) ~ (@) — g7 (@) — 1 (@).
The following are approximate solutions with z = 2:

t¢

pa(@,t) :Ul(w)+m<—62( ) = 61(@) 20 (@) = 22(@)*02(@) ~ 02(@)° ~ 01(@)202(@) — 77 (@)

3) ) 12 > 2 o (@)02(@)
i@ - (@) + 1135~ (@)~ A@)F @) - @)@ - 2h (@) (@)
—2m1(@)82(@) (@) — 31(@)02(@)* = 281 (@)1 (@) 02 (@) — g1(@)02 ()
~si@) - 1@ - ni’(@)),

52(@,1) =02 (@) + ﬁ (51 (@) + E1(0)01 (@) + £2(0)201(@) + 01(@)° + 01 (@)02 (@) — (@)

120

@)+ 8@ + 17 (1@) +1(@F@) + 81 (@@ + 20 (@) (@) (@)
+ 2 (@)22(@)1 (@) + 381 (@)01 (@)* + 21 (@)01 (@)02(®@) + g1 (@) (@)
- fi@) = n (@) + 1 @) ),

uz(@, t) =1 (@) + r(1t7g+g) ( — (@) = £1(@)*62(@) — &2(@)01(@)* — &2(@)* + &2(@)02 (@) — & (@)
£2e

— o (@) ~o(@)) + g7 ( — @)~ m(@)F@) — m(@)i (@) ~251(@)22 (@) (@)
—2f1(@)62(@)02 (@) = 3m1(@)G2(@)* — 211 (@)§1(@)G2(@) — 11 (@) (@)

wa(@, 1) :éz(w)+mtiig)<m(w)+§1(w)§z( P+ 61 (@)01 (@) + E1(@)° + &1 (@)0a(@)? — (@)

— @)+ (@) + gy (91@) +h @)F(@) +h@)n (@) + 201 (@)1 (@)en (@)
F24(@)2 (@)02(@) + 31 (@)1 (@) +2m (@)1 (@)22(@) + (@) (@)’
- @) - @+ 5 @)
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For z = 3, the third approximated residual power series solutions can be written as

2 3
p3(@,1) = 1(@) + §1(@) r(fi 2 +82<w>1~<1t+gzg> +83<‘9>r<1t+g3@'
t0 120 t3¢
(@ 1) = 02(@) + Al@) oy + L@ a5y T @ gy
0 2 §
uz(@,t) = ¢1(@) + ll(w)ﬁ + 12(‘9)1~(1t_:’29) + 13((9)1“(1:—93@'
t0 t2e £

w3(@, ) = £2(@) - m1 (@) oy + m2(@) 0y (@) F a0y

Following are the third residual functions:

093 a3w3 4u3 0s3
Resps(@,t) = 7 +a15 -3 — bz —c1p3(p3 +53) — dips(u3 + w3) + a5 -~ Pius,
a° 3 a3u3 84 a
Ressz(@,t) = ati taos 5 thio g >+ c153(p3 + 53) + disa (ud + wl) + MT + Brws,
89w3 8353 841/[3 Jw
Res,3(@,t) = 5 T35~ by S0t cous(uf + w3) — daus(p3 +53) + ao 5~ a — B2ps,
0%u 9° 9%s3 Jdusz
Resy3(@,t) = 50 5 1o acsg + bza 1 34 c2w3(u3 + w3) + dzZU3(P3 + 53) + txza— + B2s3.

Substitute the third truncated series p3(®, t),s3(®, t), usz(®,t), and w3 (@, t) into the
third residual functions, Res,3(@,t), Ress 3(@,t), Res, 3(, t), and Resy,3(, t), respectively,
as

te 12e ? I
Resya(@,) = (@) + (@) gy + F(@) 307 + alﬁ (1@ +m@) o

120 3¢ e
+m2(co)m +M3((D)I,(T3Q)) 151 (61( )+ll(c’0)m + (@)
120 £30 te 120
m‘”ﬂ‘@m) 1( 01(@) + g1(@ )m ‘*‘82(‘@@
3 2
8@ a7 ) | (@ 810) s + 82(@) 5+ 83(@)
20

2
| + (Uz(@) +f1(‘9)r(1t7_gi_g) +f2(w)m + f3(@)

2 10 120
T +30) } —dy (‘71(@) +g1(fi7)m +82(‘D)m +g3(@)

Ti+o) 2( )r(1+2g)
te £20

TQ) + mz(‘o)m +m3(@)

)
£30 ) I £2e
g )| (8@ + 1@ i + @ g + hle)
)2

t3g 2 o
M) } +lxl%(‘fz(w)Jrfl(@)m + fo(@)
I

T(1+20) +f3(w)m) —h <Cl(x) + ll(@)m + (o)
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20 3

_ a9 e
T(1+20) ‘o

(§1 (@) +ll(‘9)m

Resss(@,1) = g1(@) +gz<w>% + (@)

Tl1+e
120 iy 120
(@) 5 + @) e )+hlaw4 (e2(@) @) 11 g5 + (@ 1
t3¢

120 3¢
m>+c1( 0 (@) + fi(@ ) (1+ )+f2(@)m+f3(@)m)

+ (@) “

-+ ms3 ((D)

2
+g2(@) T 1+3Q)> + <f72(‘9) +f1(@)m

t2e
I(1+20)

|:<(71(£D)+g1(&?) ( F(l +20)

0 i 2
erfs(‘ﬂ)m) }Jﬁdl(‘TZ( )+ fi(@ ) I
3¢

30 2
+ 5@ g ) [ (80)+ (@) g @) g H@) ey ) + (2@

+my (@)

1+0)
3

+ f2(@) ) + f2(@)

1+Q

t
) +m2((ﬂ)r(

e 20 30 2 )
I(1+o 1+2@)+m3(w)r(1+3g)> ]+“1%(‘Tl(‘o)+gl(‘o)
e 120

3¢ Iy
g RO gy @ i ag ) A (80 m(@) i @)

120 3¢
ri+29) "™ 130 )

iy 12e 93
e @ ey 2 (@) A@)
2 30 4
@) 1 55 PO 07 ) ~ Pt (@) + 1@
120 130 1o
s FE@ s )~ (6@ +h@) rr s @
£3¢

@) i )| (0 + (@) s + 5@ gy 5@ g )
(1+30) I'(1+o) I'(1+20) I'(1+30)

+ (220 +m@) £

Resy3(@,t) = my (@) + ma(@)

£ 2
Tt A +m3(@)F(1+3Q)) } d2<01(‘°)

g J—
2 3
1@ gy + 2@ r g + 8@ g )| (1@ 4@

1+ 0)
@)y (w)pg)2+(o (@) + fil@)
T1+o)  $2Ta+20 "8 Ta 130 2 NI T T T 0)
120 B \? ) te
+f2(w)m +f3(co)m) ] +a2%<§2(w)+m1(w)m
2 3
(@) 17 55 @) 3 )~ Pa(1(@) + @) g @)

120 13
T(1+ 20) +83(@) T(1+ 30) )
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120 93

+ l3(w)m + aZﬁ <Ul((o) +g1((D) r( “

Resw,3 (LU, t) = 11 ((D) + 1 (LO) TQ)

1o
I'(1+o)
120 13¢ o* 1@
+gz(@)m +83(‘9)m) + bZﬁ (‘72(‘9) Jrfl(fﬂ)l—(liJrq) + fo(®@)

2 h@) e ) Yo (gz(w) (@)= (@)t
I'(1+20) I'(1+30) T'(1+o) T'(1+20)
£3¢ te £20 B \?
@) 57307 ) | (80 +h@) o + @ e g + @) i3

1 120 13 2 71
(80 £ m@) g+ @) gy g ) | va(e) @

b (@) = (@)= my(@) )
1“(1+g) 1“(1+2@) r(

)
) (@@

1+0)
120 13¢ 1 120

2
+gz(‘o)m +83(@)m) + <‘72((D) +f1(@)m +f2(w)m

30 2 20
+f3(®)ﬁ) ] +0<2% <§1((D) +11(@)1~(1t73_g) ‘HZ(‘D)m

13e

2, 3
+13(w)m> + B2 (02(‘9) +f1(‘9)r(1tj_ ) +f2(‘9)r(1t+gzg) +f3(w)1“(%g3@)>’

By using Equations (17) and (21), we get the values of f3(®), g3(®@), I3(@), and m3(@) as,

f3(@) =h(@) + $2(@)81(@)* + §2(@)&2(@)* + 21 (@)&1 (@)1 (@) + 2m3 (@) &2 (@) o1 (@)

+352(@)01 (@) + 2£2(0)01 (@)02(@) + 2(@)2 (@) + 13 (231()

h(@)& (@) + 281 (@)my (@) & (@) + f1(@)%01 (@) + 381 (@)%01 (@) + 11 (@)1 (@)

+my(@)201 (@) + 2f1(w)g1(@)02(w)) ~ fo(@) - (@) + 11 (@),

$3(@) = —my(®) — fo(@)&1 (@)% — fo(@)& (@) — 2 (@)1 (@) 02 (@) — 21m2 (@) E2 (@) 02 (@)

-3 (@)en(@)? - 2p2(@)er(@)0a(@) + l@)or(@) ~ 12 (251 (@)

(@)1 (@) + 2f1 (@)m1 (@) &2 (@) + m1 (@) (@) + 3f1(@)?02 (@) + 81(@)* 02 (@)

+1(@)202(@) + 2 (@)g1 (@) (w)) — (@)~ 1P (@) - miP (@),

m3(@) =g2(@) + (@)1 (@) + L (@) 02 (@) + 2£2(@) &1 (@) 02 (@) + 282 (@)1 (@)1 (@)
+ (@) (@) + 2ma(@)6 (0)22() + h(@)22(@) + 1+ o (2h()
my(@)&2 (@) + 2f1 (@)1 (@) 02 (@) + my (@)*E1 (@) + 311 (@)*E1 (@) + §1(@)*E1 (@)

+ f1(@)26 (@) + 2g1(w>zl<w>al<w>) —mh(@) — A1 (@) + 85V (@),

(@) = — fo(®) — ma(@)& (@)% — 211 (@) & (@) — 3 (@) &2 (@) — 2f2(@) &2 (@) 02 (@)

= 202(0)42(0)01(@) ~ (@)1 (@)° + (@) ~ i3 (2Au(@)

m1 (@) &2 (@)2f1 (@)my (@) o2 (@) + Iy (@)my ()81 (@) + f1(@)*E2(@) + 11 (0)*52 ()
+81(@)*&(@)m1 ()& (@) + 3mq (@)E1 (@) + 281 (@) my (@)01(@)>

+ (@) + 87 (@) + A (o).
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Thus, following are the approximate solutions with z = 3:

e

I'(l1+o)
@) 12 ) 2
~di(@) - (@) - 8@ + i35 (- M@ - A@F @ - Al@)a@)
— 211 (@)§1(@) 02 (@) — 2m1 (@)82(@) 02 (@) — 31 (@) 02 (@) — 281 (@)1 (@) 02 (@)
2 3) @) e

- s1(@0@)? - gi(@) 1) @) - @) + 155y (~ @)
— f2(@)&1(@)* = £2(@)52(@) — 21 (@)81 (@) 02 (@) — 2 (@)E2 (@) (@)
~3h(@)n(@) - (@) (@) + (@ - [ g 2)
h(@)§1(@) + 2f1(@)m1 (@)&2 (@) + 11 (@)202 (@) + 31 (@)% 02(@) + 81(@) 02 (@)

(@ (@) +2f, (w)ga(w)m(w)} ~ ghl@) — 1 (@) — mY <w>),

p3(@,t) =01 (@) + (— & (@) — &1(0)202 (@) — E2(@)? 02 (@) — 02 (@) — 01(@) %02 (@)

s3(@,t) =02 (@) + r(1t7ig) (Cl(@) +81(@)201 (@) + &2(@)°01 (@) + 01 (@)’ + 01 (@) 02 (@)
2
(@) =& @)+ <w>) + r(ff“’m) (h(w) +51(@)3 (@) +81(@)2(@)°

+201(@)81(@)01 (@) +2m1 (@)&2(@)e1 (@) + 381 (@)1 (@) +2f1(@) 1 (@) 02 (@)

3¢
+81(@0(@)? - fi(@) - @) +17(@) + o (@)

+ 82(@)81 (@)% + 2(@)E2(@)? + 2L (@) &1 (@) 01 (@) + 2 (@) & (@) 0y (@)
+300)0(0) +2(@)01(@)02(0) + g2(@)en(@)? + A2 [2:(0)
(@)1 (@) + 281 (@)m1 (@)52(@) + f1(@)*01 (@) + 381 (@)%01 (@) + 11 (@)1 (@)

(@)% (@) + 2fi (@) g1 (@) (@ >} (@) - (@) + 11 (@ >>),

uz(@,t) =G1(@) + r(ltij_g) ( — (@) = &1(0)62(@) — &2(@)1 (@) — G2(@)° + &2 (@) 72 (@)?
20
- @) o) ~of"(@)) + 1107 (i@ —m <w>a%<w> (@) (@)

241(0)E2(@)01 (@) — 2f1 (@)a (@)02 () — 3y (@)Ea(0)? — 2y ()1 (@) (@)
3,
—m(@)o(@) — 1 (@) — ¢ (@) — £9( ) - (

T(1+30)
= mp(@)81(@)* = 2161(@)&2 (@) — 3m2(@)52(@)? — 2f2(@)G2(@) 02 (@)
= 262(0)2(@)01 (@) = ma()0r (@) + ma@)ea(@) — [T 263 (@)

m1 (@) & (@)2f1 (@)m1 (@)03 (@) + 1 (@)my (@) &1 (@) + f1(@)*E2 (@) + 1 (@)*E2 (@)
+ 81(@)*E2 (@) m1 (@)*E2 (@) + 3my (@)% (@) + 281 (@) my (@) oy (@)}

+ (@) + 5% (@) + Y <w>),
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w3(@,t) =8 (@) + r(%_g) (‘71(‘9) +81(@)82(@) + §1(@)01 (@) + 61(@)° + &1 (@) 02 (@)
- 8@ - o @+ ol (@) + i (51(0) @B (@) + h@) (@)

+201(2)21(@)01(2) + 261 (@)01(@)22(@) +31 (@)1 (2) + 2m1 ()51 (@) 2 ()
3
+h(@0(@)? - m(@) ~ @)+ (@) + 750 (20@)

+ L(@)01(@)* + (@) 02 (@)% + 2f2(@) &1 (@) 02 (@) + 282(@)E1 (@) (@)
+305(@) (@) + 2ma(@)6 (0)22(@) + h(@)E2(@) + 1+ o3 |2 (@)
m1(@)&2(@) + 2f1 (@)1 (@) 02 (@) + my (@)*E1 (@) + 31 (@)%E1 (@) + §1(@)*E1 (@)

 A@)E (@) +2g1<w>zl<w>ol<w>} — (@) — £ (@) + g <w>).

4. Graphical Representation

To depict the reliability of the RPST to obtain the optical solutions to fiber Bragg gratings
with cubic—quartic dispersive reflectivity having the Kerr law of nonlinear refractive index structures,
three applications are examined. The fractional derivative is defined by Caputo’s sense.

Example 1. Examine the system,

thgn + 1110000 + 1100000 + (cl\n|2 + d1|o|2)n +wing + B1o =0,

(22)
lDtQO + rnpoo + baloooo + (C2|n|2 + dz‘n|2)0 + 10005 + Pon = 0,

where 0 < ¢ < 1, subject to the initial conditions,

o0 ((55)  [on- (VO (28) Tea)) s Jow o, 29

o(w,0) = 2((%;{?) %1 [(71 —72) tanh? <w ((;;;3> i ¢— @o)) + ’yz}) exp’(’m”) . (24)

This problem has an analytical solution for ¢ = 1 that is provided in [17] as

o = ()" o (S (2) ) oot =,

o =2( () [im =t (VEBL((522) *2-) o] oo @)

For graphical observations, 2D plotting, contour plotting, and 3D plotting are constructed for
Example 1 and shown in the Figures 1-6. It can be seen that the power series solutions very accurately
agreed with the analytical solutions. Finally, by employing a large number of terms from the residual
power series approximations, a lower error can be attained. The 2D graphs for Example 1 illustrate
that the solution had nearly identical behavior for the standard case ¢ = 1 and various values of ¢ in
terms of accuracy.
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P(x)

s3(x)

-4 -2 . X
-4
2+
4}
J— v=l —— v=09
us(x)
\ L L L L X
-4 -2 ! X
-4
-2+
-4}
—_ —_— =1 ——v=09 —_ —_— =1 —v=09

Figure 1. Two-dimensional (2D) graphs of the 3rd residual power series solutions with various values
of o for Example 1 with A3 = —1,k=1,91 =2, =10 =0,k =1,t =0.01,and 6 = 0.

P b
0010 T T T T 7 0010 T T r T r
0.008 - 4 0.008
0.006 + 0.006 -
0.004 - 4 0.004
0.002 - < 0.002 -
h n " N n . h n n n | I
5 6 7 8 9 10 5 6 7 8 9 10
b ws X
0.010 T T T T ] 0.010 " T T T T |
0.008 - ~ 0.008
0.006 |- 4 0.006 -
0.004 - - 0.004 |-
0.002 - - 0.002 - 4
n n n n d h n n n N .
5 6 7 8 9 10 5 6 7 8 9 10

Figure 2. Contour plots for the 3rd residual power series solutions p3(®, t), s3(@, t), uz (@, t), and
ws(w, t) with various values of ¢ for Example 1 with A3 = -1,k =1,71 =2,7 =1,{p = 0,x =
1,t =0.01,and 6 = 0.
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Analytical Approximate

Figure 3. Three-dimensional (3D) surface plots of analytical solution and approximate solutions
p3(@,t) ato =1of Example 1 with A3 = —1,k=1,91 =2, =1, =0,k =1,and 8 = 0.

Analytical Approximate

Figure 4. Three-dimensional (3D) surface plots of analytical solution and approximate solutions
s3(@,t) at g =1 of Example 1 with As = -1, k=171 =2, =18 =0,k =1,and 6 = 0.

Analytical Approximate

Figure 5. Three-dimensional (3D) surface plots of analytical solution and approximate solutions
uz(w,t) ato =1of Example lwith A3 = —1,k=1,91 =27 =1, =0,k =1,and 8 = 0.
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Analytical Approximate

Figure 6. Three-dimensional (3D) surface plots of analytical solution and approximate solutions
w3(w,t) at 0 =1 of Example 1 with A3 = —1,k=1,71 =2,72=1,{p=0,x =1,and § = 0.

Example 2. Examine the system

lDfn —+ L1000 —+ blOwa‘)@(D + (C1|n|2 =+ d1|0|2)7’l + e =+ ‘310 = O,

0 > 2 27)
1Dy 0 + 1apn00e + baloooo + (c2|n|~ + da|n|7)o + 1200 + fon = 0,

where 0 < ¢ < 1, subject to the initial conditions

n(@,0) = ((]ﬁ,‘f) (1 = 72tk (VT2 <(_1§1?23)_61§ ) +n|) g

tanh(—x@ + 0) exp! "0+,

o 2((58)" - (STD(38) e ]

15k2
tanh(—k@ + 0) exp'( @ +0)

The advantage of using the RPST is that it establishes the continuous approximated solutions.
In the Figures 7-9, the power series generated solutions of (27) are depicted geometrically by 3D
plotting, contour plotting and 2D plotting. Error can be reduced by taking many terms, and the
efficiency of the method can be increased.

Example 3. Examine the system,

LDth + 1810000 + b10oooo + (c1|n|2 + d1|0|2)n +ine + P10 =0,

o 2 2 (30)
Do + 1a2n000 + baloooo + (c2|n|” + da|n|%)o + ap00 + Ban =0,

where 0 < o < 1, subject to the initial conditions,

0= ((T22) " [em e (VO (20) e )] )

sinh(—k@ + 8) exp'( 7@+,

15k2

sinh(—x@ 4 0) exp'(~*@+0) |

0(@,0) = 2<(1§;{“23)61 {(71 — ) tanh? (@((ms);é—é‘o)) +’72D (32)

Figure 10 represents the mathematical behavior of Equation (30) subject to initial conditions
Equations (31) and (32). It can be clearly observed that the obtained solution also depends on the
initial conditions. By varying the initial conditions, the mathematical behavior of a problem also
changes. Consequently, the proposed technique is an effective technique for the approximated
solutions of different fractional-order models.



Fractal Fract. 2023, 7, 625 20 of 24

Approximate Approximate

Figure 7. Three-dimensional (3D) surface plots approximate solutions p3(®, t), s3(®@, t), uz(®, t), and
w3(@,t) at o =1 of Example 2 with A3 = -1, k=171 =2, =1, =0,k =1,and 6 = 0.

b
0.010 [} . . . . 1 0.010f
0.008 | 0.008 -
0.006 0.006 -
0.004 - 0.004 -
0.002 | 0.002 -
5 6 7 8 9 10
b
0.010 : : ! ! { o.o10F Bl
0.008 0.008 -
0.006 0.006 -
0.004 0.004 -
0.002 < 0.002
5 3 7 8 9 10

Figure 8. Contour plots for the 3rd residual power series solutions with various values of ¢ for
Example 2 with A3 = -1,k =1,91=2,72 =1,y =0,k =1,t =0.01,and 6 = 0.
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Ps(x) s3(x)
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/ / 20 15 -10

—_—v=1 —— v=09

—_— —_— =1 —v=09

Figure 9. Two-dimensional (2D) graphs of the 3rd residual power series solutions
p3(@,t),s3(w,t), us(w@,t), and w3 (@, t) with various values of ¢ for Example 2 with A3 = —1,k =
L,1m=27=13%=0x=1t=001,and § = 0.
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us(x) w3(x)
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Figure 10. Two-dimensional (2D) graphs of the 3rd residual power series solutions with various
values of ¢ for Example 3 with A3 = -1,k =1,71 =2,72 =1,5p =0,k =1, = 0.01,and 6 = 0.
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5. Conclusions

In this paper, the RPST with Caputo’s time-fractional derivative is applied to develop the
approximate solutions to FBGs with cubic—quartic dispersive reflectivity having the Kerr law of
nonlinear refractive index, with high accuracy for the first time. The efficiency and reliability of the
RPST are established by three test applications with different initial conditions. It is worth mentioning
that the RPST structure has a rapidly converging series with components that are easily calculated
with symbolic calculation software. The obtained results are also demonstrated through 2D and 3D
representations by taking different values of ¢. Since the exact solution of the problem for ¢ = 1is
available in the literature, a graphical comparison is made to confirm that the RPS approximation
solutions are in agreement with the exact solutions for ¢ = 1. The variation in the solutions for change
in the value of ¢ is also observed. The consequence found by using the active RPST is that it can be
successfully used to investigate the dynamics of nonlinear models in the field of optical fibers.
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