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Abstract: In this article, we study the fractional SIR epidemic model with the Atangana–Baleanu–
Caputo fractional operator. We explore the properties and applicability of the ZZ transformation on the
Atangana–Baleanu–Caputo fractional operator as the ZZ transform of the Atangana–Baleanu–Caputo
fractional derivative. This study is an application of two power methods. We obtain a special solution
with the homotopy perturbation method (HPM) combined with the ZZ transformation scheme;
then we present the problem and study the existence of the solution, and also we apply this new
method to solving the fractional SIR epidemic with the ABC operator. The solutions show up as
infinite series. The behavior of the numerical solutions of this model, represented by series of the
evolution in the time fractional epidemic, is compared with the Adomian decomposition method
and the Laplace–Adomian decomposition method. The results showed an increase in the number of
immunized persons compared to the results obtained via those two methods.
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1. Introduction

Fractional calculus plays a fundamental role in modeling many problems in fluid
mechanics, acoustics and electromagnetism, as well as studying some phenomena of
dynamic systems [1–5]. Fractal calculus is very effective, for example, in dealing with
phenomena in hierarchical or porous media [6]. In the study just cited, J-H He touched
on the basic concept of the fractal gradient of temperature to reveal the basic properties
of calculus and then the fractal velocity and the derivative of the fractal material were
introduced to derive the laws of fluid mechanics and thermal conductivity in fractal space.
Many studies use different fractional operators to describe certain phenomena in physics,
engineering and biology [7–9]. For example, in [10], He et al. present the definition of
a new fractional derivative by demonstrating its application in explaining the excellent
thermal protection of polar bear hair so that the fractal porosity of its internal structure
makes the polar bear mathematically adapted to live in the harsh Arctic region. Recently,
many classifications of fractional operators have been proposed, for example, Caputo,
Riemann–Liouville, Caputo–Fabrizio, Atangana–Baleanu–Caputo fractional operators,
to accurately and successfully study and describe complex phenomena in science and
engineering [11,12].

In the recent past, definitions of fractional derivatives based on nonsingular kernels,
like the Atangana–Baleanu fractional derivative, were also provided. Additionally, some
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models of dissipative events cannot be fully characterized by a single fractional operator,
which highlights the significance of fractional derivatives with nonsingular kernels. Mate-
rial heterogeneities and some structures or media with varying scales can be depicted using
the Atangana–Baleanu operator. The new kernel’s nonlocality enables a better representa-
tion of memory within structures and media with various scales. Additionally, we may
state that this derivative can play a particular role in the investigation of some materials’
macroscopic behavior in relation to nonlocal exchanges, which are crucial for characterizing
a material’s properties. Therefore, the Atangana–Baleanu–Caputo fractional derivative is
the most general fractional operator based on the Mittag–Leffler function, which is more
suitable for describing real-world complex problems [13].

In [14], the authors take the advantages of the Atangana–Baleanu partial integral
operator and the Bessel functions, some differential dependency results were extracted
and the work was developed for the case of the analytical functions specified on the open
unit disk. The applications of the Atangana–Baleanu fractional integral were considered
in recent studies related to geometric function theory to obtain interesting differential
subordinations, etc.; see [15–18].

These complex problems have been studied in the literature, and are divided into
linear and nonlinear, as they have aroused the interest of many researchers who study their
behavior in terms of solvability, uniqueness and the stability of their solutions, especially
nonlinearity [19–21]. Due to the complexities of nonlinear phenomena in searching for their
solutions by modeling them into ordinary or fractional differential equations, they do not
always contain accurate analytical solutions. Because of this difficulty, researchers have
focused their attention on developing several numerical methods to find an approximate
solution. There are many techniques employed to search for the numerical solution of the
linear or nonlinear fractional differential equations, integral equations and the linear or
nonlinear systems of fractional differential equations. Since the integral transformations,
such as the Laplace transform, Sumudu transform, and so on, could not solve the nonlinear
types, we therefore note that many mathematicians have studied the methods of solving
nonlinear differential equations or nonlinear fractional differential systems. Among these
methods, we cite a more effective method called the homotopy perturbation method
(HPM) [22,23] and a modified Laplace transform to solve some nonlinear differential
equations such as the case of the ZZ transform. This integral transform generalizes a
few well-known transformations that are connected to other well-known transformations.
To obtain the natural transformation, divide the ZZ transformation by the adjusted variable.
The ZZ transform can be used to address problems without switching to a new frequency
domain and to provide new, iterative results since it has the ability to preserve the scale
and the unity, and the ZZ transform is useful for solving fractional differential equations
with variable coefficients [24–26].

Thus, we find that some researchers are working on a combination of analytical or
semi-analytical methods with certain integral transformations [27–30]. The HPM method
involves dividing the solution domain into sub-domains and transforming the FPDEs into
a set of algebraic equations. These equations are then solved by using other numerical
methods. The solution is then transformed back to the original domain and the solution is
obtained by combining the solutions from each sub-domain.

The homotopy perturbation method has been coupled with the ZZ transform (HPZ-
ZTM) to facilitate the process of solving ordinary differential equations and partial deriva-
tives of integer order or fractional order [31]. This combination has also been applied to
solve systems of nonlinear partial differential equations of fractional order. This method
combines the advantages of both the HPM and the ZZ Transform methods [23].

The aim of this work is to investigate the properties of the ZZ transformation on the
Atangana–Baleanu–Caputo fractional derivative; consequently, we combined it with the
homotopy perturbation method and applied this new technique to the linear and nonlinear
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general fractional differential non-homogeneous equations, especially to the following
fractional SIR epidemic model with the Atangana–Baleanu–Caputo fractional operator:

ABC
0 Dσ

ᵀS(ᵀ) = −βS(ᵀ)I(ᵀ), S(0) = N1
ABC
0 Dσ

ᵀI(ᵀ) = βS(ᵀ)I(ᵀ)− γI(ᵀ), I(0) = N2
ABC
0 Dσ

ᵀ<(ᵀ) = γI(ᵀ), <(0) = N3

(1)

Many studies have been tried to resolve the SIR epidemic model of integer order; in [32],
by using the homotopy analysis method; in [33], an exact solution was suggested via the
homotopy perturbation method; and the differential transform method in [34]. Recently, A.
Qazza and R. Saadeh presented the solution of the fractional SIR epidemic model with a
Caputo fractional derivative by using the Laplace residual-power-series method in [35].

This epidemic mathematical model is known as the Susceptible-Infected-Recovered
model (SIR) ([36,37]). Concerning the SIR model, it is assumed that in the presence of
Infectious Disease A, a fixed population size can be divided into three groups, that is, (S),
(I) and (R), respectively. Specifically, the compartments used in the McKendrick–Kermack
design are defined as follows [38]:

(a) Compartment (S) (susceptible) includes persons of the total population not yet
infected by the disease at time ᵀ, or those who are susceptible to the disease. The number
of persons in that compartment corresponds to S(ᵀ).

(b) Compartment (I) (infected) is composed of persons who have been infected by
the epidemic disease and who may transmit the disease to those in the sensitive category.
The number of persons in that compartment corresponds to I(ᵀ).

(c) Compartment (<) (recovered) is composed of individuals who have been infected
during outbreaks and have fully recovered. The number of persons in that compartment
corresponds to <(ᵀ). They cannot be infected again and they are unable to pass the disease
on to others.

The paper is organized as follows: In Section 2, we present some basic tools in the
form of definitions, properties of the fractional calculus and ZZ transform. In Section 3,
we introduce the main results of the homotopy perturbation method coupled with the ZZ
transform to the general nonlinear fractional differential equations. In Section 4, we apply
this method to the fractional SIR epidemic model with the Atangana–Baleanu–Caputo
fractional operator. In Section 5, we show the numerical results and discussion. Finally, we
conclude our research in the final section.

2. Basic Definitions

Definition 1. Let µ ∈ H1(0, I), I > 0, 0 ≤ σ < 1; then, the Atangana–Baleanu fractional
derivative in the Caputo sense [13,39] is given as:

ABC
0 Dσ

ᵀµ(ᵀ) =
Φ(σ)

1− σ

∫ ᵀ

0
µ′(s)Eσ[

σ

σ− 1
(ᵀ− s)σ]ds. (2)

where the kernel Eσ is the Mittag–Leffler function of one parameter and Φ(σ) is a normalization
function such that Φ(0) = Φ(1) = 1 [40].

Definition 2. The fractional integral of order σ of a new fractional derivative is defined by:

AB
0 I0

ᵀµ(ᵀ) =
1− σ

Φ(σ)
µ(ᵀ) +

σ

Φ(σ)Γ(σ)

∫ ᵀ

0
µ(y)(ᵀ− y)σ−1dy. (3)

Here Γ(.) is the Euler Gamma function.

2.1. Definitions and Properties of the ZZ Transform

We give some basic definitions and properties of the ZZ transform (see [24,25]).
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Throughout, set

A = {µ(ᵀ) : ∃M > 0, λ > 0, | µ(ᵀ) |≤ Meλᵀ, i f ᵀ ≥ 0},

and suppose that µ(ᵀ) is an integrable function defined on the set A.

Definition 3. Let µ(ᵀ) be a function defined for all ᵀ ≥ 0. The ZZ transform of µ(ᵀ) is the
function z(ϑ, ξ) defined by

Z [µ(ᵀ)] = z(ϑ, ξ) = ξ
∫ ∞

0
µ(ϑᵀ)e−ξᵀd ᵀ . (4)

The integral transform (4) exists for all ξ
ϑ > λ.

2.1.1. Some Properties of the ZZ Transform

Theorem 1. The ZZ transform of the nth derivative of µ(ᵀ) is given by

Z [µ(n)(ᵀ)](ξ, ϑ) = (
ξ

ϑ
)nZ [µ(ᵀ)]−

n−1

∑
k=0

(
ξ

ϑ
)n−kµ(k)(0),

ξ

ϑ
> 0, ∀n ∈ N. (5)

Theorem 2. The ZZ transform of convolution of functions µ(ᵀ) and ϕ(ᵀ)

Z [µ ∗ ϕ] = Z [µ].Z [ϕ]. (6)

Moreover,

Z−1[µ.ϕ] = Z−1[µ] ∗ Z−1[ϕ]. (7)

Proof. We have
µ ∗ ϕ =

∫ ∞

0
µ(x)ϕ(ᵀ− x)dx.

Using the ZZ transform and the Leibniz theorem, we obtain

Z [µ ∗ ϕ] = Z [
∫ ∞

0
µ(x)ϕ(ᵀ− x)dx] = ξ

∫ ∞

0
[
∫ ∞

0
µ(x)ϕ(ᵀ− x)dx]e−ξᵀdx,

By setting y = ᵀ− x, we obtain

Z [µ ∗ ϕ] = ξ
∫ ∞

0 µ(x)e−ξx
[∫ ∞

0
ϕ(y)e−ξydy

]
dx

= ξ
∫ ∞

0
µ(x)e−ξxdx.Z [ϕ]

= Z [µ].Z [ϕ].

Furthermore, the convolution of the inverse transform is

Z [Z−1(µ) ∗ Z−1(ϕ)] = µ.ϕ.

Hence,
Z−1[µ.ϕ] = Z−1(µ) ∗ Z−1(ϕ).

2.1.2. ZZ Transform of Several Elementary Functions

In this following table, we will give the transformation of some elementary functions
by the ZZ Transform.
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µ(ᵀ) Z [µ(ᵀ)]
ine 1 1

ine ᵀ ϑ
ξ

ine ᵀn n! ϑn

ξn , n = 0, 1, 2, . . .

ine ᵀσ Γ(σ + 1) ϑσ

ξσ , σ > 0.

Lemma 1. Let 0 < n < 1 and λ ∈ R such that ξ
ϑ < |λ| 1n ; then,

Z [ᵀσ−1Eγ
n,σ(λ.ᵀn)(ξ, ϑ)] = (

ϑ

ξ
)α.(1− λ(

ϑ

ξ
)n)−γ,

ξ

ϑ
> 0. (8)

Proof. We have

Z [ᵀσ−1Eγ
n,σ(λ.ᵀn)(ξ, ϑ)] =

ξ

ϑ

∫ ∞

0
ᵀσ−1Eγ

n,σ(λ.ᵀn)e−
ξ
ϑ dᵀ

=
ξ

ϑ

∫ ∞

0
ᵀσ−1

∞

∑
k=0

γk
Γ(nk + σ)

.
(λᵀn)k

k!
e−

ξ
ϑ dᵀ

=
∞

∑
k=0

γk
Γ(nk + σ)

.
λk

k!
ξ

ϑ

∫ ∞

0
ᵀnk+σ−1e−

ξ
ϑ dᵀ

=
∞

∑
k=0

γk
Γ(nk + σ)

.
λk

k!
ξ

ϑ
Z [ᵀnk+σ−1]

=
∞

∑
k=0

γk
Γ(nk + σ)

.
λk

k!
ξ

ϑ
Γ(nk + σ)(

ϑ

ξ
)nk+γ

= (
ϑ

ξ
)σ.

∞

∑
k=0

γk
k!

[λ(
ϑ

ξ
)n]k.

Since ξ
ϑ < |λ| 1n , the result is that

Z [ᵀσ−1Eγ
n,σ(λ.ᵀn)(ξ, ϑ)] = (

ϑ

ξ
)σ.(1− λ(

ϑ

ξ
)n)−γ.

Corollary 1. In the same way as in the last Lemma 1, we obtained the ZZ transform of the function
En(λᵀn) as:

Z [En(λᵀn)](ξ, ϑ) = (
ϑ

ξ
)(

( ξ
ϑ )

n

( ξ
ϑ )

n − λ
), (9)

and the ZZ transform of the function ᵀσ−1En(λᵀn) as:

Z [ᵀσ−1En(λᵀn)](ξ, ϑ) =
( ξ

ϑ )
n−σ

( ξ
ϑ )

n − λ
. (10)

Theorem 3. The ZZ transform of the Atangana–Baleanu–Caputo fractional derivative ABC0 Dσ
ᵀ is

defined as:

Z [ABC0 Dσ
ᵀµ(ᵀ)](ϑ, ξ) =

Φ(σ)

1− σ

Z [µ(ᵀ)]( ξ
ϑ )

σ − ( ξ
ϑ )

σ−1µ(0)

( ξ
ϑ )

σ + σ
1−σ

. (11)
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Proof. We have ∫ ᵀ

0
µ′(x)Eσ

[
σ

σ− 1
(ᵀ− x)σ

]
dx = µ′(ᵀ) ∗ Eσ

[
σ

σ− 1
ᵀσ

]
, (12)

then one has

Z [ABC0 Dσ
ᵀµ(ᵀ)](ϑ, ξ) = Z

[
Φ(σ)

1− σ

∫ ᵀ

0
µ′(x)Eσ(

σ

σ− 1
(ᵀ− x)σ)dx

]
(13)

=
Φ(σ)

1− σ
Z
[

µ′(ᵀ) ∗ Eσ(
σ

σ− 1
ᵀσ)

]
=

Φ(σ)

1− σ
Z [µ′(ᵀ)].Z

[
Eσ(

σ

σ− 1
ᵀσ)

]
.

By using (5) and applying the result found in Corollary 1, we have

Z [ABC0 Dσ
ᵀµ(ᵀ)](ϑ, ξ) = Φ(σ)

1−σ [ ξ
ϑZ [µ(ᵀ)]− µ(0)] ϑ

ξ
( ξ

ϑ )
σ

( ξ
ϑ )

σ− σ
σ−1

= Φ(σ)
1−σ

Z [µ(ᵀ)]( ξ
ϑ )

σ−( ξ
ϑ )

σ−1µ(0)

( ξ
ϑ )

σ+ σ
1−σ

.
(14)

3. Implementation of HPZZTM to the General Nonlinear Fractional
Differential Equations

We present the basic idea of the homotopy perturbation ZZ transform method, so we
consider the following general nonlinear fractional partial differential non-homogeneous
equation

ABC
0 Dσ

ᵀµ(x,ᵀ) + Rµ(x,ᵀ) + Nµ(x,ᵀ) = g(x,ᵀ), (15)

with the initial terms
µ(x, 0) = h(x) and µᵀ(x, 0) = f (x), (16)

where R is the differential linear operator, N is the nonlinear operator and g(x,ᵀ) is the
source terms.

When we apply the ZZ transformation on either side of (15), we obtain

Z [ABC0 Dσ
ᵀµ(x,ᵀ)] +Z [Rµ(x,ᵀ)] +Z [Nµ(x,ᵀ)] = Z [g(x,ᵀ)]. (17)

Using this transformation’s differentiating characteristic, we have

Z [µ(x,ᵀ)] = h(x) +
ϑ

s
f (x)−

(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [g(x,ᵀ)− Rµ(x,ᵀ)− Nµ(x,ᵀ)]. (18)

Consider the reverse ZZ transformation on each side of (18) and then according to (16),
we obtain

µ(x,ᵀ) = G(x,ᵀ)−Z−1
[(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [Rµ(x,ᵀ) + Nµ(x,ᵀ)]

]
, (19)

where the terms G(x,ᵀ) are the non-homogeneous terms and the previously established
conditions. Now, we apply the perturbation technique ([22,41]). We express the solution
with this technique as a power series in ρ, as shown below

µ(x,ᵀ) =
∞

∑
n=0

ρnµn(x,ᵀ). (20)
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We break down the nonlinear term into

Nµ(x,ᵀ) =
∞

∑
n=0

ρn Hn(µ), (21)

where Hn are the polynomials of He [23], which are calculated with the following formulas

Hn(µ0, ..., µn) =
1
n!

∂n

∂ρn

[
N

(
∞

∑
i=0

ρiµi

)]
ρ=0

, n = 0, 1, 2, 3, · · · (22)

By substituting (20) and (21) into Equation (19), we obtain

∞

∑
n=0

ρnµn = G(x,ᵀ)−
(
Z−1

[(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z
[

R
∞

∑
n=0

ρnµn +
∞

∑
n=0

ρnHn(µ)

]])
, (23)

This is a coupling of the homotopy perturbation method and the ZZ transform (HPZZTM).
Now, by matching both sides of Equation (23) with respect to the power of ρ, we obtain

the following first terms of the solution

ρ0 : µ0(x,ᵀ) = G(x,ᵀ),

ρ1 : µ1(x,ᵀ) = −Z−1
[(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [Rµ0(x,ᵀ) + H0(µ)]

]
,

ρ2 : µ2(x,ᵀ) = −Z−1
[(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [Rµ1(x,ᵀ) + H1(µ)]

]
,

ρ3 : µ3(x,ᵀ) = −Z−1
[(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [Rµ2(x,ᵀ) + H2(µ)]

]
,

...

(24)

Finally, the approximate solution is calculated by

µ(x,ᵀ) = µ0(x,ᵀ) + µ1(x,ᵀ) + µ2(x,ᵀ) + µ3(x,ᵀ) + · · ·

In [42,43], it has been established that this series converges.

4. Study the Epidemic Model with Atangana–Baleanu–Caputo Fractional Derivative
4.1. Presentation of the Problem

The problem of the spread of a disease in a supposed population of constant size
during the period of the epidemic is examined in [44].

At time ᵀ, suppose the population consists of S(ᵀ) susceptible population: the popu-
lation not infected to date and subject to the infection.

I(ᵀ) represent the infected population: those who have the disease and are still
at large.

<(ᵀ) represents the recovered population: those who have recovered and have there-
fore become immune.

Suppose there is a constant rate between S(ᵀ) and<(ᵀ) which causes the transmission.
Then, over time δᵀ, δS become infectious, or

δS = −βSIδᵀ, β > 0.

If γ > 0 is the isolation rate of the current infected population, then

δS = βSIδ ᵀ−γIδ ᵀ .

The number of new isolated population δ< is given by

δ< = γIδ ᵀ .
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Now δᵀ→ 0, then the following system determines the progress of the disease:
ABC
0 Dσ

ᵀS(ᵀ) = −βS(ᵀ)I(ᵀ), S(0) = N1
ABC
0 Dσ

ᵀI(ᵀ) = βS(ᵀ)I(ᵀ)− γI(ᵀ), I(0) = N2
ABC
0 Dσ

ᵀ<(ᵀ) = γI(ᵀ), <(0) = N3

. (25)

4.2. The Existence of the Solution

We define these operators:
f1(ᵀ, Ω(ᵀ)) = −βS(ᵀ)I(ᵀ)
f2(ᵀ, Ω(ᵀ)) = βS(ᵀ)I(ᵀ)− γI(ᵀ)
f3(ᵀ, Ω(ᵀ)) = γI(ᵀ)

, (26)

and the matrix form of the system (25) is

ABC
0 Dσ

ᵀΩ(ᵀ) = F(ᵀ, Ω(ᵀ)), Ω(0) = Ω0, (27)

where Ω(ᵀ) = (S(ᵀ), I(ᵀ),R(ᵀ)), Ω0(S(0), I(0),R(0)) and F(ᵀ, Ω(ᵀ)) = ( f1(ᵀ, Ω(ᵀ)),
f2(ᵀ, Ω(ᵀ)), f3(ᵀ, Ω(ᵀ))).

Lemma 2. The function F is Lipschitz continuous on [0, T]× B(Ω0, q), with

[0, T]× B(Ω0, q) = {(ᵀ, Ω(ᵀ)) ∈ [0, T]×R3
+, sup

ᵀ∈[0,T]
‖Ω(ᵀ)−Ω0‖1 ≤ q},

so there exists a constant L ∈ R+, ∀(ᵀ, Ω1(ᵀ)), (ᵀ, Ω2(ᵀ)) ∈ [0, T]× B(Ω0, q) and

‖F(ᵀ, Ω1(ᵀ))− F(ᵀ, Ω2(ᵀ))‖1 ≤ L‖Ω1(ᵀ)−Ω2(ᵀ)‖1, (28)

with ‖Ω(ᵀ)‖1 = ∑3
i=1 |Ωi(ᵀ)| being the Manhattan norm.

Proof. We shall prove that the function F satisfies the Lipschitz condition in the second
argument Ω.

‖F(ᵀ, Ω1(ᵀ))− F(ᵀ, Ω2(ᵀ))‖1 = | f1(ᵀ, Ω1(ᵀ))− f1(ᵀ, Ω2(ᵀ))|+ | f2(ᵀ, Ω1(ᵀ))− f2(ᵀ, Ω2(ᵀ))|
+| f3(ᵀ, Ω1(ᵀ))− f3(ᵀ, Ω2(ᵀ))|
= | − βS1(ᵀ)I1(ᵀ) + βS2(ᵀ)I2(ᵀ)|+ |βS1(ᵀ)I1(ᵀ)− γI1(ᵀ)
−βS2(ᵀ)I2(ᵀ) + γI2(ᵀ)|+ |γI1(ᵀ)− γI2(ᵀ)|,

(29)

and we have

| − βS1(ᵀ)I1(ᵀ) + βS2(ᵀ)I2(ᵀ)| = β|S1(ᵀ)I1(ᵀ)− S1(ᵀ)I2(ᵀ) + S1(ᵀ)I2(ᵀ)− S2(ᵀ)I2(ᵀ)|
≤ β|S1(ᵀ)||I1(ᵀ)− I2(ᵀ)|+ β|I2(ᵀ)||S1(ᵀ)− S2(ᵀ)|.

(30)

In the same way, we can prove that

|βS1(ᵀ)I1(ᵀ)− γI1(ᵀ)− βS2(ᵀ)I2(ᵀ) + γI2(ᵀ)|| ≤ β|S1(ᵀ)||I1(ᵀ)− I2(ᵀ)|+ β|I2(ᵀ)||S1(ᵀ)− S2(ᵀ)|
+γ|I1(ᵀ)− I2(ᵀ)|.

(31)

Then

‖F(ᵀ, Ω1(ᵀ))− F(ᵀ, Ω2(ᵀ))‖1 ≤ 2β|I2(ᵀ)||S1(ᵀ)− S2(ᵀ)|+ 2β|S1(ᵀ)||I1(ᵀ)− I2(ᵀ)|
+2γ|I1(ᵀ)− I2(ᵀ)|
≤ (2β(q + I(0))|S1(ᵀ)− S2(ᵀ)|+ (2β(q + S(0)) + 2γ)|I1(ᵀ)− I2(ᵀ)|
≤ L‖Ω1(ᵀ)−Ω2(ᵀ)‖1,

(32)
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where
L = max{(2β(q + I(0)), (2β(q + S(0)) + 2γ)}.

4.3. The Solution by Applying This Approach

First, we apply the ZZ transform to two sides of (25) with the use of its property
Z [ABC0 Dσ

ᵀS(ᵀ)] = −βZ [S(ᵀ)I(ᵀ)]
Z [ABC0 Dσ

ᵀI(ᵀ)] = βZ [S(ᵀ)I(ᵀ)]− γZ [I(ᵀ)]
Z [ABC0 Dσ

ᵀ<(ᵀ)] = γZ [I(ᵀ)]
. (33)



Z [S(ᵀ)] = S(0)−
(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
βZ [S(ᵀ)I(ᵀ)]

Z [I(ᵀ)] = I(0)−
(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
(βZ [S(ᵀ)I(ᵀ)]− γZ [I(ᵀ)])

Z [<(ᵀ)] = <(0)−
(

1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
γZ [I(ᵀ)]

. (34)

In the second, we take the inverse ZZ transform for both sides of (33) and using the
initial conditions, we have

S(ᵀ) = N1 − βZ−1
[(

1− α

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [S(ᵀ)I(ᵀ)]

]
I(ᵀ) = N2 +Z−1

[(
1− σ

Φ(σ)
+

α

Φ(σ)
(

ϑ

ξ
)σ

)
βZ [S(ᵀ)I(ᵀ)]− γZ [I(ᵀ)]

]
<(ᵀ) = N3 + γZ−1

[(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [I(ᵀ)]

] . (35)

Now, we represent the solutions as the following infinite series

S(ᵀ) =
∞

∑
n=0

ρnSn(ᵀ), I(ᵀ) =
∞

∑
n=0

ρnIn(ᵀ) <(ᵀ) =
∞

∑
n=0

ρn<n(ᵀ), (36)

and the nonlinear terms as
∞

∑
n=0

ρn Hn = S .I (37)

By substituting (36) and (37) with (35), we obtain

∑∞
n=0 ρnSn(ᵀ) = N1 − ρβZ−1

[(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [

∞

∑
n=0

ρn Hn]

]

∑∞
n=0 ρnIn(ᵀ) = N2 + ρβZ−1

[(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [

∞

∑
n=0

ρn Hn]

]

−ργZ−1

[(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [

∞

∑
n=0

ρnIn(ᵀ)]

]

∑∞
n=0 ρn<n(ᵀ) = N3 + ργZ−1

[(
1− σ

Φ(σ)
+

σ

Φ(σ)
(

ϑ

ξ
)σ

)
Z [

∞

∑
n=0

ρnIn(ᵀ)]

]
. (38)



Fractal Fract. 2023, 7, 618 10 of 14

The first elements of He’s polynomials are provided by

H0 = N1N2,

H1 = [(βN1N2 − γN2)N1 − βN1N2
2 ]

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀσ

Γ(σ + 1)

)
,

H2 = [N1N2(β2N2
1 − 3β2N1N2 − 2βγN1 + 3βγN2)]

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ2σ

Γ(2σ + 1)

)
,

...

(39)

Using (39) and comparing the two sides of (38), we obtain

S0(ᵀ) = N1,

S1(ᵀ) = −βN1N2

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀσ

Γ(σ + 1)

)
,

S2(ᵀ) = −βN1N2(βN1 − γ− βN2)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ2σ

Γ(2σ + 1)

)
,

S3(ᵀ) = −βN1N2(β2N2
1 + β2N2

2 − 2βγN1 − 4β2N1N2 + 3βγN2 + γ2)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ3σ

Γ(3σ + 1)

)
,

...

(40)

And

I0(ᵀ) = N2,

I1(ᵀ) = (βN1N2 − γN2)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀσ

Γ(σ + 1)

)
,

I2(ᵀ) = N2(β2N2
1 − 2βγN1 − β2N1N2 + γ2)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ2σ

Γ(2σ + 1)

)
,

I3(ᵀ) = N2(β3N3
1 + β3N1N2

2 − 3β2γN2
1 − 4β3N2

1 N2
2 + 4β2γN1N2

+3βγ2N1 − γ3)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ3σ

Γ(3σ + 1)

)
,

...

(41)

Also

<0(ᵀ) = N3,

<1(ᵀ) = γN2

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀσ

Γ(σ + 1)

)
,

<2(ᵀ) = γ(βN1N2 − γN2)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ2σ

Γ(2σ + 1)

)
,

<3(ᵀ) = γN2(β2N2
1 − 2βγN1 − β2N1N2 + γ2)

(
1− σ

Φ(σ)
+

σ

Φ(σ)

ᵀ3σ

Γ(3σ + 1)

)
.

...

(42)

5. Numerical Results and Discussion

For the comparison with the results of Biazar [45,46], we consider the follow-
ing values:

σ = 1;
N1 = 20 Initial population of S(ᵀ), who are susceptible;
N2 = 15 Initial population of I(ᵀ), who are infected;
N3 = 10 Initial population of <(ᵀ), who are recovered;
β = 0.01 Rate of change from susceptible population to infected population;
γ = 0.02 Rate of change from infected population to recovered population.



Fractal Fract. 2023, 7, 618 11 of 14

The three-term approximations for S(ᵀ), I(ᵀ) and <(ᵀ) are calculated and presen-
ted below.

S(ᵀ) = 20− 3 ᵀ−0.045 ᵀ2 +0.0280 ᵀ3 . . . ,
I(ᵀ) = 15 + 2.7 ᵀ+0.08 ᵀ2 −0.02817 ᵀ3 . . . ,
<(ᵀ) = 10 + 0.3 ᵀ+0.027 ᵀ2 +0.00012 ᵀ3 . . .

(43)

These results (43) are illustrated in Figure 1; as shown in the graphs, the number of
infected persons increases and then is followed by a decrease in the number of susceptible
people during the period of the epidemic; during this time of epidemic, the number of
people immunized increases compared to the results of the number of immune population
obtained via the Adomian decomposition method and the Laplace–Adomian decompo-
sition method (see graphs 1, 2 and 3 of [45] and the graphs 1 and 2 and the table of [46]).
Comparing the results obtained via HPZZTM with those obtained via ADM in [45] and
L-ADM in [46] shows that the results of the three-term approximations of HPZZTM are
the same as the results of the three-term approximations of ADM and L-ADM. Hence, we
conclude that this method has proven successful in this epidemic model (Figures 2–4).

Figure 1. The three-term approximations for S(ᵀ), I(ᵀ) and <(ᵀ).

Figure 2. Nature of solution S(ᵀ) with respect to time for different values of σ.

Figure 3. Nature of solution I(ᵀ) with respect to time for different values of σ.
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Figure 4. Nature of solution <(ᵀ) with respect to time for different values of σ.

6. Conclusions

The study presented in this paper is an investigation of the properties of the ZZ trans-
form with respect to the Atangana–Baleanu–Caputo fractional operator; additionally, we
combined the homotopy perturbation method with the ZZ integral transform, which is
called the homotopy perturbation ZZ transform method (HPZZTM). This method was also
used to solve the linear and nonlinear general fractional differential non-homogeneous equa-
tions, especially the fractional SIR epidemic model with the Atangana–Baleanu–Caputo
fractional operator. Therefore, this new method is easy to apply to reach the desired results,
as illustrated with the help of the presented model through the results obtained; it was also
compared with the Adomian decomposition method and the Laplace–Adomian decompo-
sition method. The HPZZTM method has proven its effectiveness and potential in solving
these types of equations and it enabled us to obtain the exact solution in a faster way than
the classical methods such as ADM and L-ADM presented in [45,46]; this is what the results
showed as the number of immunized persons increased compared to the results obtained
via these two methods. The ease of use and the strength of this method in achieving a
solution is evidence of its speed in solving the example presented in this work or other
linear or nonlinear problems.
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