
Citation: Koleva, M.N.; Vulkov, L.G.

Numerical Analysis of Direct and

Inverse Problems for a Fractional

Parabolic Integro-Differential

Equation. Fractal Fract. 2023, 7, 601.

https://doi.org/10.3390/

fractalfract7080601

Academic Editor: Ricardo Almeida

Received: 27 June 2023

Revised: 13 July 2023

Accepted: 2 August 2023

Published: 4 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Numerical Analysis of Direct and Inverse Problems for a
Fractional Parabolic Integro-Differential Equation
Miglena N. Koleva 1,∗ and Lubin G. Vulkov 2

1 Department of Mathematics, Faculty of Natural Sciences and Education, University of Ruse “Angel Kanchev”,
8 Studentska Street , 7017 Ruse, Bulgaria

2 Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of
Ruse “Angel Kanchev”, 8 Studentska Street, 7017 Ruse, Bulgaria; lvalkov@uni-ruse.bg

* Correspondence: mkoleva@uni-ruse.bg; Tel.: +359-82-888-587

Abstract: A mathematical model consisting of weakly coupled time fractional one parabolic PDE
and one ODE equations describing dynamical processes in porous media is our physical motivation.
As is often performed, by solving analytically the ODE equation, such a system is reduced to an
integro-parabolic equation. We focus on the numerical reconstruction of a diffusion coefficient at finite
number space-points measurements. The well-posedness of the direct problem is investigated and
energy estimates of their solutions are derived. The second order in time and space finite difference
approximation of the direct problem is analyzed. The approach of Lagrangian multiplier adjoint
equations is utilized to compute the Fréchet derivative of the least-square cost functional. A numerical
solution based on the conjugate gradient method (CGM) of the inverse problem is studied. A number
of computational examples are discussed.

Keywords: parabolic PDE-ODE system; Caputo derivative; integro-differential equation; finite
difference; least-squares discrepancy functional; Fréchet derivative; conjugate gradient method

1. Introduction

The second-order hyperbolic and parabolic systems of partial differential equations,
as well as coupled PDE-ODE systems, are a substantial theoretical foundation for many
mathematical and engineering problems [1–10]. In the present paper, we concentrate on
the features of a parabolic PDE-ODE system.

Recently, because of the the many applications, fractional integro-differential equations
are the focus of a large body of results. The classical integer order derivative is a local
operator, which is not adequate for a description of many processes in physics, mechanics,
industrial finance, etc. The fractional derivative is a nonlocal operator, which is often used to
model phenomena in heat mass transfer [4,5,11], medicine [12], viscoelastic materials [8,13],
porous media [1,5,7,10,14,15], mathematical biology and in particularly the honeybee
population [16], mathematical finance and economics—see [17,18] and references therein—
and atmosphere pollution [6,19].

In [4], analytical exact solutions to the neutron fractional parabolic PDE-ODE system
are derived. The inverse problems (IPs) of differential equations with time fractional
derivatives concern the recovery of a variety unknown parameters, such as source term,
fractional order, coefficients, etc. For instance, Georgiev and Vulkov [16] present a numerical
study of the inverse problem for coefficient determination in honeybee population models
with Caputo and Caputo–Fabrizio time fractional derivative, and in [13] a parameter
identification inverse problem is studied.

In this work, we numerically recover the unknown diffusion coefficient for a time
fractional integro-diffusion convection reaction equation, obtained from a model system of
differential equations.
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A System of a Parabolic and a Ordinary Differential Equation

As a simple physical motivation, we consider a model of non-Darcian flow in transport
media used to describe different real processes, see, e.g., [3,5,7,8,10,20].

Suppose that diffusion and solute transport initiate within the mobile phase, while the
change in solute concentration within the immobile phase is a dynamic process influenced
by the porous media’s low permeability and significant heterogeneity. The fractional calcu-
lus has been introduced as an efficient tool for modeling. A general form of a differential
equation system that describes such processes reads as follows [3,5,7,20]:

∂αu
∂tα
− ∂

∂x

(
a(x)

∂u
∂x
− v(x)u

)
+ rλ(x)(u− w) = 0 in QT = Ω× (0, T), Ω = (0, l), (1)

∂α1 w
∂tα1

+ λ(x)w = λ(x)u in QT . (2)

with the initial condition and appropriate boundary conditions. Here, 0 < α, α1 ≤ 1 and

∂αv
∂tα

=
1

Γ(1− α)

∫ t

0
(t− s)−α ∂v

∂s
(x, s)ds (3)

is the pointwise Caputo derivative [13,21–23]. With u and w are denoted the concentration
of a contaminant in the relevant phases. The authors of [24] using Equation (2) write an
integral formula for w(x, t) and placed it in (1) to obtain an integro-differential equation for
u(x, t), (x, t) ∈ QT . On this basis, we consider a more general equation:

∂αu
∂tα

=
∂

∂x

(
a(x, t)

∂u
∂x

)
+ b(x, t)

∂u
∂x

+ c(x, t)u +
∫ t

0
ρ(x, t, s)u(x, s)ds + f (x, t)

=Zu + f .
(4)

The remainder of the paper is constructed as follows. In Section 2, we give some
notations and discuss the well-posedness of the direct problem. Section 3 is devoted to the
numerical solution of the direct problem. In Section 4, we introduce the IP and study its
quasisolution. In Section 5, we introduce a finite difference method, combined with the
conjugate gradient method (CGM) to solve the IP. Section 6 presents computational results
that validate the analysis and demonstrate the efficiency of the proposed algorithm. Some
comments and conclusions finalized this paper.

2. Well-Posedness of the Direct Problem

In the IP, it is assumed in advance that the corresponding direct problem is well-posed.
The main purpose of this section is the discussion of this question. In this section, our main
focus is on the discussion of this question. We consider the Equation (4), 0 < a0 ≤ a(x, t) ≤
a1, (x, t) ∈ QT and with no loss of generality, zero Dirichlet boundary conditions

u(0, t) = 0, u(l, t) = 0, (5)

and initial condition
u(x, 0) = u0(x). (6)

2.1. Notations and Preliminaries

In the following, we assume classical interpretations of fractional calculus and equa-
tions and will refer to monographs [22,23]. Further, let

Lp(0, T) :=
{

v :
∫ T

0
|v(t)|pdt < ∞

}
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with p ≥ 1 and

W1,1(0, T) :=
{

v ∈ L1(0, T) :
dv
dt
∈ L1(0, T)

}
,

where the norms are conventionally established by

‖v‖Lp(0,T) :=
(∫ T

0
|v(t)|pdt

)1/p

, ‖v‖W1,1(0,T) := ‖v‖L1(0,T) +

∥∥∥∥dv
dt

∥∥∥∥
L1(0,T)

.

In view of the Young inequality on the convolution, it could be directly established
that the classical Caputo derivative (3) could be well-defined for

v ∈W1,1(0, T) and
dαv
dtα
∈ L1(0, T).

The Riemann–Liouville left and right integrals of fractional order α are defined as
follows [22,23]:

(
Iα
0+u

)
(t) =

1
Γ(α)

∫ t

0

u(s)
(t− s)1α

ds,
(

Iα
T−u

)
(t) =

1
Γ(α)

∫ T

t

u(s)
(s− t)1α

ds,

and the corresponding Riemann–Liouville left and right fractional derivatives for 0 < α < 1
are defined as(

Dα
0+u

)
(t) =

1
Γ(1− α)

d
dt

∫ t

0

u(s)
(t− s)α

ds =
d
dt

((
I1−α
0+ u

)
(t)
)

,

(
Dα

T−u
)
(t) =

−1
Γ(1− α)

d
dt

∫ T

t

u(s)
(s− t)α

ds = − d
dt

((
I1−α
T− u

)
(t)
)

,

Further , the notations Iα
0+u and Dα

0+u will be used instead of
(

Iα
0+u

)
(t) and

(
Dα

0+u
)
(t),

respectively, etc.
Let us recall the integration by parts formula, see, e.g., [25] (Proposition 2.19) . Let

0 < α < 1 and assume that w(t) ∈ AC[0, T], w′(t) ∈ C1−α[0, T], and v(t) ∈ ACT
1−α[0, T],

where
Cα[0, T] := {y(t) : y(t)tα ∈ C[0, T]}

ACT
α [0, T] := {y(t) : y(t)(T − t)α ∈ AC[0, T]},

with C[0, T] and AC[0, T] being the classes of continuous and absolutely continuous func-
tions in [0, T] [22,23].

Then, we have the integration by parts formula∫ T

0

∂αw
∂tα

(t)v(t)dt = w(T)I1−α
T− v(T)− w(0)I1−α

T− v(0) +
∫ T

0
w(t)Dα

T−v(t)dt.

The subsequent Gronwall-type inequality is established in [26].

Lemma 1. Let the absolutely continuous function y(t) ≥ 0 satisfy the inequality

dαy(t)
∂tα

≤ c1y(t) + c2(t), 0 < α ≤ 1

for almost all t in [0, T], where c1 is a positive constant and c2(t) ≥ 0 is an integrable function on
[0, T]. Then,

y(t) ≤ y(0)Eα(c1tα) + Γ(α)Eα,α(c1tα)D−α
0t c2(t),

where

Eα(z) =
∞

∑
k=0

zk/Γ(αk + 1) and Eα,µ(z) =
∞

∑
k=0

zk/Γ(αk + µ)
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are the Mittag–Leffler functions.

Further, we also use the relation between Caputo and Rieamann–Liouville derivatives

dα
0y(t)
dtα

= Dα
0+y(t)− y(0)

Γ(1− α)
t−α, t ∈ (0, T], (7)

2.2. Solution of the Direct Problem

Now, following the results of Section 3 in [24] we show first the forward (direct)
problem (4)–(6) and present a priory estimates for the corresponding solutions.

Theorem 1. Suppose that the smoothness conditions hold:

0 < a0 < a(x) ≤ a1,

max
{
|b(x, t)|,

∣∣∣∣ ∂b
∂x

(x, t)
∣∣∣∣, |c(x, t)|, |ρ(x, t)|

}
≤ C,

and
a(x, t) ∈ C1,0(QT), b(x, t), c(x, t), f (x, t) ∈ C(QT).

Then,

u(x, t) ∈ C2,0(QT) ∩ C1,0(QT),
∂αu(x, t),

∂tα
∈ C(QT).

and the a priori estimate holds

‖u‖2
0 + Iα

0+

∥∥∥∥∂u
∂x

∥∥∥∥2

0
≤ C

(
‖u0‖2

0 + Iα
0+‖ f ‖2

0

)
, (8)

where C > 0 is a constant, which does not depend on u0 and f .

Here, we use standard notations [23,27]

( f , g)L2 =

l∫
0

f gdx, ( f , f )L2 = ‖ f ‖2
0,

as well as for the Hölder spaces C1,0, C2,0.
The proof of Theorem 1 resembles the one of Theorem 1 in [24], namely, first we take

the scalar product of Equation (4) with u. Then, we use Lemma 3 from [26] (continuous
version of Lemma 3 in the current study). Next, we apply several times the ε-Cauchy
inequality to estimate the terms of the scalar product and to obtain a basic inequality.
Further, we act with integral operator Iα

0+ to both sides of this inequality and obtain (8).
It follows from (8) that the uniqueness and stability of the solution of (4)–(6) in the

sense of the Sobolev norm

‖u‖2
0 + Iα

0+

∥∥∥∥∂u
∂x

∥∥∥∥2

0
,

i.e., the well-posedness of the direct problem.

3. Numerical Solution of the Direct Problem

Here we construct a monotone finite difference discretization for (4)–(6) and investigate
the stability and convergence.

3.1. Difference Scheme

We construct a second-order monotone Samarskii-type [28] finite difference scheme
for the discretization in space and L2− 1σ scheme [29] of order 3− α for the temporal ap-
proximation.
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On the rectangle QT , we build the uniform mesh

whτ = wh × wτ = {(xi, tn), xi ∈ wh, tn ∈ wτ},

where

wh = {xi = ih, i = 0, 1, . . . , N, Nh = l},
wτ = {tn = nτ, n = 0, 1, . . . , M, Mτ = T}.

Further, we set ui = ui(t) = u(xi, t), Un
i = U(xi, tn) ≈ u(xi, tn).

To build a monotone scheme for (4)–(6), that satisfies the maximum principle for
arbitrary mesh step sizes, we consider the perturbation of Equation (4), see [28]

∂αu
∂tα

= L̃u +

t∫
0

ρ(x, t, s)u(x, s)ds + f (x, t), L̃u = ã(x)
∂

∂x

(
a(x, t)

∂u
∂x

)
+ b(x, t)

∂u
∂x

,

ã(x, t) =
1

1 + R(x, t)
, R(x, t) =

h|b(x, t)|
2a(x, t)

.

We write b(x, t) as a sum

b = b+ + b−, b+ =
1
2
(b + |b|) ≥ 0, b− =

1
2
(b− |b|) ≤ 0,

and approximate b ∂u
∂x in space as follows:(
b

∂u
∂x

)
i
=

(
b
a

(
a

∂u
∂x

))
i
≈ q+i pi+1(a)ux,i + q−i pi(a)ux,i,

where

q+i =
b+(xi, t)
a(xi, t)

≥ 0, q−i =
b−(xi, t)
a(xi, t)

≤ 0,

pi(a) =
1
2
(a(xi, t) + a(xi−1, t)) or pi(a) = a(xi−1/2, t),

ux,i =
ui+1 − ui

h
, ux,i =

ui − ui−1

h
.

Thus, the resulting semidiscretization

∂αu
∂tα

= ãi
(

piux,i
)

x,i +
(
q+
)

i pi+1ux,i +
(
q−
)

i piux,i + fi(t),

achieves a second-order of convergence in space, as is proved in [28], since

q± = b± + O(h2), aq± = b±, b+ − b− = |b|,

(p(a))(+1)ux = a
∂u
∂x

+ 0.5h
∂

∂x

(
p(a)

∂u
∂x

)
+ O(h2), (p(a))(+1) = pi+1(a),

p(a)ux = a
∂u
∂x
− 0.5h

∂

∂x

(
a

∂u
∂x

)
+ O(h2),

(
pux
)

x =
∂

∂x

(
k

∂u
∂x

)
+ O(h2).
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The temporal derivative is discretized by L2− 1σ formula of order O(τ3−α) at (xi, tn+σ),
tn+σ = (n + σ)τ, σ = 1− α/2, n = 0, 1, . . . , M− 1, derived in [29].

∂αu
∂tα
≈ DαUt,i :=

τ−α

Γ(2− α)

n

∑
j=0

c(n,α,σ)
j

(
u(xi, tn−j+1)− u(xi, tn−j)

)
, (9)

where, c(0,α,σ)
0 = d(α,σ)

0 for n = 0 and for n ≥ 1

c(n,α,σ)
j =


d(α,σ)

0 + b(α,σ)
1 , j = 0,

d(α,σ)
j + b(α,σ)

j+1 − b(α,σ)
j , 1 ≤ j ≤ n− 1,

d(α,σ)
n − b(α,σ)

n , j = n,

d(α,σ)
m =

{
σ1−α, m = 0,
(l + σ)1−α − (m− 1 + σ)1−α, m ≥ 1,

b(α,σ)
m =

1
2− α

[(m +σ)2−α−(m−1 +σ)2−α]− 1
2
[(m +σ)1−α+(m−1 +σ)1−α], m ≥ 1.

Using (9), the σ—weighted finite difference discretization of the Equation (4) is

Dα
c Ut,i = σΛ̃Un+1

i + (1− σ)Λ̃Un
i + cn+σ

i

(
σUn+1

i + (1− σ)Un
i

)
+ In+σ

i + f n+σ
i , (10)

i = 1, 2, . . . , N − 1, where

Λ̃Un+1
i = ãn+σ

i
(

pn+σ
i Un+1

x,i
)

x,i +
(
q+
)n+σ

i pn+σ
i+1 Un+1

x,i +
(
q−
)n+σ

i pn+σ
i Un+1

x,i ,

Λ̃Un
i =

1
h
(
an

i+1/2Un
x,i − an

i−1/2Un
x,i
)
+ bn+σ

i

Un
x,i + Un

x,i

2
,

pn+σ
i =

an+σ
i + an+σ

i−1
2

or pn+σ
i = an+σ

i−1/2,

an+σ
i = a(xi, tn+σ), an

i±1/2 = a(xi ± h/2, tn)

and similarly for bn+σ
i , (q±)n+σ

i and f n+σ
i .

By In
i in (10), we denote the approximation of the integral in the Equation (4), namely,

In+σ
i ≈

tn+σ∫
0

ρ(xi, tn+σ, s)u(xi, s)ds

=
n

∑
j=1

tj∫
tj−1

ρ(xi, tn+σ, s)u(xi, s)ds +
tn+σ∫
tn

ρ(xi, tn+σ, s)u(xi, s)ds

≈
n

∑
j=1

u(xi, tj−1/2)

tj∫
tj−1

ρ(x, tn+σ, s)ds + u(xi, tn)

tn+σ∫
tn

ρ(x, tn+σ, s)ds

≈
n

∑
j=1

U j−1
i + U j

i
2

tj∫
tj−1

ρ(xi, tn+σ, s)ds + Un
i

tn+σ∫
tn

ρ(xi, tn+σ, s)ds. (11)

The approximation (11) is obtained in the same fashion as the discretization of the
fractional integral operator.
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Further, the integrals in (11) can be computed by the trapezoidal rule, midpoint rule
or exactly, depending on the function ρ.

The Dirichlet boundary conditions (5) and initial condition (6) are incorporated into
the numerical scheme straightforwardly:

σUn+1
0 + (1− σ)Un

0 = 0, σUn+1
N + (1− σ)Un

N = 0, n = 1, 2, . . . , M,

U0
i = u0(xi), i = 0, 1, . . . , N.

(12)

Lemma 2 ([30]). Suppose that the non-negative Un, ϕn, n = 0, 1, . . . fulfill the inequalities

Dα
tj+τUn ≤ ε1Un+1 + ε2Un + ϕn, n ≥ 1,

where ε1 > ε2 ≥ 0 are constants. Then, there exists τ∗, such that: for τ ≤ τ∗, we have

Un ≤ 2
(

U0 +
tα
n

Γ(1 + α)
max

0≤ñ≤n
ϕñ
)

Eα(2εtα
n), 1 ≤ n ≤ M,

where ε = ε1 + ε2(2− 21−α)−1 .
Further, we use the difference scheme inequality as well.

Lemma 3 ([29]). For every mesh function U(t), defined on wτ , the inequality holds:

U(σ)Dα
tj+σ

U ≥ 1
2

Dα
tj+σ

(U2),

where U(σ) = σUn+1 + (1− σ)U, where U = Un.

3.2. Solvability and Convergence

In the following theorem, we present the energy estimate of the difference scheme (10)–(12).

Theorem 2. Let the conditions Theorem 1 be satisfied. Then, there exists τ∗ such that, if τ ≤ τ∗,
for the problem (10), (12) the a priori estimate holds:

‖Un+1‖0 ≤ C(‖U0‖2
0 + max ‖Fñ‖2

0), (13)

where the positive constant C is independent on h and τ.

Proof. We apply the energy method of Samarskii [28] for the case d = I0. With this aim,
we introduce the scalar product along with its corresponding norms:

(U, V) =
N−1

∑
i=1

UiVih, (U, V] =
N

∑
i=1

UiVih, (U, U) = (1, U2) = ‖U‖2
0.

We obtain the scalar product of U(σ) with (10):(
Dα

tn+σU, U(σ)
)
=
(

ã(p(a)U(σ)
x )x, U(σ)

)
+
(

q+(p(a))(+1)U(σ)
x , U(σ)

)
+
(

q− p(a)U(σ)
x , U(σ)

)
+

(
n+σ

∑
m=0

ρ̃n
i,mUm

i τ̃, U(σ)

)
+
(

F, U(σ)
)

.
(14)

We estimate each term of the equality (14) using Lemma 3:
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(
Dα

tn+σU, U(σ)
)
≥ 1

2

(
1, Dα

tn+σU2
)
≥ 1

2
Dα

tn+σ‖U‖2
0,(

ã
(

p(a)U(σ)
x
)

x, U(σ)
)
= ãp(a)U(σ)

x U(σ)
∣∣∣x=xN

x=x0
−
(

p(a)U(σ)
x , (ãU(σ))x

]
−
(

p(a)ãxU(σ)
x U(σ)

]
−
(

p(a)ã(−1), (U(σ)
x )2

]
≤ − 1

1 + hC1

(
p(a)ã, (U(σ)

x )2
]
+ ε‖U(σ)

x ]|20 + C2(ε)‖U(σ)‖2
0,(

q−p(a)U(σ)
x , U(σ)

)
+
(

q+(p(a))(+1)U(σ)
x , U(σ)

)
≤ ε‖U(σ)

x ]|20 + C3(ε)‖U(σ)‖2
0,(

n+σ

∑
m=0

ρ̃n
i,mUm

i τ̃, U(σ)

)
≤ 1

2

(
U(σ)

)2
+

(
n+σ

∑
m=0

ρ̃n
i,mUm

i τ

)2

≤ 1
2
‖U(σ)‖2

0 +
1
2

(
n+σ

∑
m=0

ρ̃n
i,m

n+σ

∑
m=0

U2
mτ

)

≤ 1
2
‖U(σ)‖2

0 + C4

n+σ

∑
m=0

(1, U2
m)τ̃

≤ 1
2
‖U(σ)‖2

0 + C4

n+σ

∑
m=0
‖Um‖2

0τ,(
F, U(σ)

)
≤ 1

2
‖U(σ)‖2

0 +
1
2
‖F‖2

0.

Finally, inserting the last estimates in (14), we obtain

Dα
tn+σ‖U‖2

0 + ‖U
(σ)
x ‖

2
0

≤ εC5‖U
(σ)
x ]|20 + C6(ε)‖U(σ)‖2

0 + C7

n+σ

∑
m=0
‖Um‖2

0τ + C8‖F‖2
0.

Then, taking ε = 1/(2C5), we obtain

Dα
tn+σ‖U‖2

0 +
1
2
‖U(σ)

x ‖
2
0 ≤ C9‖U(σ)‖2

0 + C10

n+σ

∑
m=0
‖Um‖2

0τ + C11‖F‖2
0. (15)

In view of

n+σ

∑
m=0
‖Um‖2

0τ =
n

∑
m=0
‖Um‖2

0τ + 0.5τ‖Un‖2
0,

we rewrite (15) as follows:

Dα
tn+σ‖U‖2

0 ≤ C12(σ)‖Un+1‖2
0 + C13(σ)‖Un‖2

0 + C14Gn,

where

Gn =
n

∑
m=0
‖Um‖2

0τ + ‖F‖2
0.

Now, the application of Lemma 1 to the last inequality results in

‖U j+1‖2
0 ≤ C15

(
‖U0‖2

0 +
tα
n

Γ(1 + α)
max

0≤ñ≤n
Gñ
)

,

where the constant C15 > 0 does not depend on h and τ.
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In view of the expression for Gn, we restate the last inequality in the following:

‖Un+1‖2
0 ≤ C15‖U0‖2

0 + max
0≤ñ≤n

ñ

∑
m=0

(
‖Un‖2

0τ + ‖Fñ‖2
0

)
.

Letting zn+1 = max0≤ñ≤n ‖Uñ‖2
0 we obtain from the last inequality

zn+1 ≤ C16

n

∑
m=0

zmτ + C17Gn
1 , (16)

where
Gn

1 = ‖U0‖2
0 +

tα
n

Γ(1 + α)
max ‖Fñ‖2

0.

The application of the Gronwall lemma from [S, Ch.3] to (16) gives the a priori esti-
mate (13).

The inequality (13) provides the unicity and stability of the difference scheme (10), (12)
with respect to the right-hand side and initial data.

Further, again using Theorem 1, we will obtain an accuracy estimate for the difference
problem (10), (12). Let Vn

i = Un
i − un

i , where un
i = u(xi, tn) and u(x, t) is the solution

of the differential problem (4)–(6), while U(xi, tn) = Uṅ
i is the solution of the difference

problem (10), (12). Then, inserting U = V + u in (10), (12), for the mesh function V, we
derive the following discrete problem:

Dα
tn+σV = L̃V(σ) +

n+σ

∑
m=1

ρ̃n
imVm

i + ϕn
i , (x, t) ∈ wh,τ ,

V(σ)
0 = V(σ)

N = 0, V(x, 0) = 0,

(17)

with approximation error ϕ = O(h2 + τ2).
Applying Theorem 1 to the problem (17), we find

‖Vn+1‖2
0 ≤ C max

0≤ñ≤n
‖ϕñ‖,

where the constant C > 0 is independent on h and τ. From this inequality follows the
convergence of the discretization (10), (12) towards the solution of the differential prob-
lem (4)–(6) on the each time level, so that there exists τ∗ s.t. for τ ≤ τ0 the estimate holds
‖Un+1 − un+1‖0 ≤ C(h2 + τ2).

4. Quasi Solution of the IP

For the ease of simplicity we further consider space space-dependent coefficient
a = a(x) in the Equation (4). Then, the IP is to reconstruct a(x) under the measurements

u(x∗i , t) = gi(t), i = 1, . . . , I, x∗i ∈ (0, l). (18)

We employ the Lagrange multiplier technique [2,27,31] to obtain the Fréchet gradient of
the least-squares discrepancy functional associated with the quasisolution of the IP (4)–(6),
(18). Because of the instability of their solutions with respect to (18), these IPs are ill-
posed [2,27,31].

Moreover, in our case, the solution’s uniqueness of the IP is dependent on the place-
ment of the points x∗i in (18) along with the initial and boundary conditions.

Consider the operator form A(a) = g of the problem (4)–(6), (18). Here, A : A → G
denotes an injective operator, a ∈ A = {a0 ≤ a(x)≤ a1, a ∈ C(Ω)} represents the
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admissible set and g = (g1(t), . . . , gI(t)) ∈ G, where G is Euclidian space. Our IP is
reformulated as a minimization problem:

a∗ = argmin
a∈A

J(a), J(a) =
I

∑
i=1

∫ T

0
(u(x∗i , t; a)− gi(t))2dt, (19)

with u(x∗, t; a) being the solution to the problem (4)–(6).
In order to numerically investigate the recovering of the diffusion coefficient a(x) from

the observations at interior points, we employ the conjugate gradient method (CGM). It
is grounded in the utilization of the Fréchet gradient of the objective functional (19). The
increment of the functional δJ(a) = J(a+ δa)− J(a) could be express as follows [2,27,31,32]:

δJ(a) = 〈U , δa〉H ,

where with 〈·, ·〉 we denote the scalar product in H = L2(Ω). Therefore, ∇J(a) = U . We
use the adjoint operator

Z∗ψ :=
∂

∂x

(
a(x, t)

∂ψ

∂x
− b(x, t)ψ

)
+

(
c(x, t)− ∂b(x, t)

∂x

)
ψ +

∫ T

t
ρ(x, s, t)ψ(x, s)ds.

Theorem 3. The functional J(a) in (19) is Fréchet differentiable and its gradient is defined by

∇J(a) =
∫ T

0

∂ψ

∂x
∂u
∂x

dt, (20)

where ψ(x, t) is the solution of the backward adjoint problem to the forward problem (4)–(6), (18),
i.e.,

Dα
T−ψ = Z∗ψ +

I

∑
i=1

2(u− gi)δ(x− x∗i ) in QT , (21)

I1−α
T− ψ(x, T) = 0, x ∈ Ω, (22)

and
ψ(0, t) = 0, ψ(l, t) = 0, t ∈ (0, T). (23)

The proof resembles the one of Theorem 3 in [24]. A key role has the so-called
sensitivity problem . By u(x, t; a) := u(x, t) we denote that u(x, t) depends on the parameter
a(x). Assume that for a ∈ A and a + δa ∈ A, δu(x, t; δa) := u(x, t; a + δa)− u(x, t; a).

Hence, the deviation δu := δu(x, t; δa) fulfills the next IBVP with an accuracy up to
terms of order o(|δa|)2:

∂αδu
∂tα

= Z(δu) +
∂

∂x

(
δa

∂u
∂x

)
in QT , (24)

δu(x, 0) = 0, x ∈ Ω, (25)

δu(0, t) = 0, δu(l, t) = 0, t ∈ (0, T). (26)

Next, for the minimization of the functional (19), we apply the Lagrange multiplier
method [2,27,31] and follow the procedure outlined in [24] to obtain the gradient (20).

5. Conjugate Gradient Steepest Descent Method

We explore the CGM [2,24,27,31,33] in developing a numerical algorithm to solve
the IP for recovering the diffusion coefficient from interior concentration observations in
porous media. As is common knowledge, the Fréchet gradient (20) plays a key role.

The iterative procedure is implemented by applying the CGM (see, e.g., [2,27,31,33])

ak+1(x) = ak(x) + βkdk(x), k = 0, 1, . . . , (27)
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where k denotes the number of iteration, ak and ak+1 correspond to consecutive approxima-
tions of the minimizer, and dk(x) and βk refer to the search direction and the search step
size, respectively.

At each step, the search direction dk(x) is computed as a linear combination of the
steepest descent direction at the current approximation and the search direction from
previous iterations, namely,

d0(x) = −∇J[a0(x)], dk(x) = −∇J[ak(x)] + γkdk−1(x), i = 1, 2, . . . , (28)

with γk being the conjugation coefficient. An often-used choice of γk is as follows [2,27,32]:

γ0 = 0, γk =

∫ l

0
|∇J[ak(x)]|2dx∫ l

0
|∇J[ak−1(x)]|2dx

, k = 1, 2, . . .

first proposed by Fletcher and Reeves [34]. The coefficient βk is determined through
the use of line search, which involves minimizing along the specified search direction,
βk = argminβ J(ak(x) + βdk(x)). Applying the sensitivity problem (24)–(26), a method
similar to [35] can be employed to linearize the objective functional J(ak(x) + βdk(x)) with
respect to β and obtain the search step size

βk =

∑I
i=1

t∫
0
(ukx∗i , t; ak)− gi(t))δukx∗i , t; ak)

∑I
i=1

t∫
0
[δuk(x∗i , t; ak)]2

dt, (29)

where uk and δuk are the corresponding direct and sensitivity problems solutions and
a(x) = ak(x), δa = dk(x).

6. Numerically Solving the Inverse Problem

In this section, we will develop numerical discretizations for solving the IP. To this aim,
we need to approximate adjoint problem (21)–(23), sensitivity problem (24)–(26), gradient
of the functional (20), etc.

6.1. Discretization of the Adjoint Problem

Now, we consider (21)–(23). Applying the temporal inversion t∗ = T − t in (21),
we obtain a forward problem with an initial instead of terminal condition and ψ(x, t) =
ψ(x, T − t∗) = ψ∗(x, t∗), a(x, T − t) = a∗(x, t∗), b(x, T − t) = b∗(x, t∗), c(x, T − t) =
c∗(x, t∗), u(x, T − t) = u∗(x, t∗). With the fractional derivative Dα

T−ψ, we deal as in [14],
applying also the variable change s∗ = T − s, namely,

Dα
T−ψ(xi, t) =

−1
Γ(1− α)

d
dt

T∫
t

ψ(xi, s)
(s− t)αi

ds =
−1

Γ(1− αi)

d
dt∗

0∫
t∗

ψ∗(xi, s∗)
(T − s∗ − (T − t∗))αi

ds∗

=
1

Γ(1− αi)

d
dt∗

t∗∫
0

ψ∗(xi, s∗)
(t∗ − s∗)αi

ds∗ = Dα
0+ψ∗(xi, t∗).

Next, in view of (7), considering ψi(x, T) = ψ∗i (x, 0), we obtain

Dαi
0+ψ∗(xi, t∗) =

∂αψ∗(xi, t∗)
∂(t∗)α

+
ψ∗(xi, 0)
Γ(1− α)

(t∗)−α.

We take ψ∗(xi, 0) = 0, since in this case (22), (23) are satisfied for t∗ = T − t.
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We treat the time integral in (21) similarly

T∫
t

ρ(x, t, s)u(x, s)ds =
t∗∫

0

ρ∗(x, t∗, s∗)u∗(x, s∗)ds∗,

where ρ∗(x, t∗, s∗) = ρ(x, T − t∗, T − s∗), u∗(x, s∗) = u(x, T − s∗).
Then, we approximate the adjoint problem in the same fashion as the direct problem

and derive

Dα
c (Ψ

∗)t∗ ,i =σΛ̃∗(Ψ∗)n+1
i + (1− σ)Λ̃∗(Ψ∗)n

i + (c̃∗)n+σ
i

(
σ(Ψ∗)n+1

i + (1− σ)(Ψ∗)n
i

)
+ (I∗)n+σ

i + ( f ∗)n+σ
i , i = 1, 2, . . . , N − 1,

(30)

where (y∗)n+σ
i = y∗(xi, t∗n+σ), c̃∗ = c∗ − 2 ∂b∗

∂x , (Ψ∗)n
i = ψ∗(xi, tn) and

Λ̃∗(Ψ∗)n+1
i = (ã∗)n+σ

i
(
(p∗)n+σ

i (Ψ∗)n+1
x,i
)

x,i −
(
(q∗)+

)n+σ

i (p∗)n+σ
i+1 (Ψ∗)n+1

x,i

−
(
(q∗)−

)n+σ

i (p∗)n+σ
i (Ψ∗)n+1

x,i ,

Λ̃∗(Ψ∗)n
i =

1
h
(
(a∗)n

i+1/2(Ψ
∗)n

x,i − (a∗)n
i−1/2(Ψ

∗)n
x,i
)
− (b∗)n+σ

i

(Ψ∗)n
x,i + (Ψ∗)n

x,i

2
,

(I∗)n+σ
i =

n

∑
j=1

(Ψ∗)j−1
i + (Ψ∗)j

i
2

t∗j∫
t∗j−1

ρ(x, t∗n+σ, s∗)ds∗ + (Ψ∗)j
i

t∗n+σ∫
t∗n

ρ∗(x, t∗n+σ, s∗)ds∗.

For Dirichlet boundary conditions (23), we have

σ(Ψ∗)n+1
0 + (1− σ)(Ψ∗)n

0 = 0, σ(Ψ∗)n+1
N + (1− σ)(Ψ∗)n

N = 0. (31)

6.2. Discretization of the Sensitivity Problem

To obtain numerical the solution δUn
i of the sensitivity problem (24)–(26), we proceed

in the same manner as for the direct problem:

Dα
c δUt,i = σΛ̃δUn+1

i + (1− σ)Λ̃δUn
i + (c)n+σ

i

(
σδUn+1

i + (1− σ)δUn
i

)
+

δai+1/2

h

(
σδUn+1

x,i + (1− σ)δUn
x,i

)
− δai−1/2

h

(
σδUn+1

x,i + (1− σ)δUn
x,i

)
,

σδUn+1
0 + (1− σ)δUn

0 = 0, σδUn+1
N + (1− σ)δUn

N = 0,

δU0
i = 0, i = 0, 1, . . . , N,

(32)

where δai−1/2 = 0.5(ai−1 + ai).

6.3. Discretization of the Gradient of the Functional and γk

For the approximation of the gradient of the functional at spatial grid node xi,
i = 1, 2, . . . , N − 1, we apply central second order discretization and the trapezoidal rule:

∇J(ak)(xi) =
M

∑
j=1

tj∫
tj−1

∂ψ(xi, s)
∂x

∂u(xi, s)
∂x

ds ≈ 1
4h2

M

∑
j=1

tj∫
tj−1

Ψ̃i(s)Ũi(s)ds

≈ τ

8h2

(
Ψ̃0

i Ũ0
i + 2

M

∑
j=1

Ψ̃j
iŨ

j
i + Ψ̃M−1

i ŨM
i

)
,

(33)

where Ψ̃i = Ψi+1 −Ψi−1 and Ũi = Ui+1 −Ui−1.
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In order to obtain the conjugate coefficient at iteration number k > 0, we need to solve
the integral

l∫
0

∇J(ak) =

l∫
0

T∫
0

∂ψ

∂x
∂u
∂x

dsdx ≈ τ

16h

M−1

∑
l=0

N−1

∑
i=0

(
Ψ̃j

iŨ
j
i + Ψ̃j

i+1Ũ j
i+1

+ Ψ̃j+1
i Ũ j+1

i + Ψ̃j+1
i+1Ũ j+1

i+1

)
.

6.4. Realization

The CGM for solving the IP is realized by the Algorithm 1.

Algorithm 1 Inverse problem

Require: a0, ε
Ensure: a∗, U(xi, tn; a∗)

k← 0
Calculate J(ak), using (19)

while J(ak)− J(ak−1) > ε J do
U(xi, tn; ak)← direct problem (10), (12)
Ψ(xi, tn; ak)← adjoint problem (30), (31)
Calculate ∇J(ak), using (33)
Calculate dk, using (28)
δak+1 ← dk

δU(xi, tn; ak)← sensitivity problem (32)
Calculate βk, using (29)
ak+1 ← ak + βkdk in view of (27)
k← k + 1

end while
a∗ ← ak+1

U(xi, tn; a∗)← (10), (12)

7. Computational Results

Here, we provide numerical results from computations for both direct and inverse
problems in order to illustrate the effectiveness and accuracy of the suggested numerical
method. The computational domain is [0, 1]× [0, 1].

We consider (4)–(6), with r.h.s f (x, t), initial and boundary conditions, such that
u(x, t) = t4+α sin(πx), is the exact solution. The other model parameters are

a(x) = 2x2 + 3, b(x, t) = x + t, c(x, t) = −3x + t− 2,

ρ(x, t) = 2x + t2, u0(t) = u1(t) = 0.

Example 1 (Direct problem). In this test, we check the accuracy of the numerical scheme (10), (12)
for the direct problem. We give errors and convergence rates in maximal norm for N = M, namely,

EN = max
0≤i≤N

max
0≤n≤N

|u(xi, tn)−Un
i |, CRh = log2

EN

E2N .

In Table 1, we illustrate the order of convergence in space and time. As a benchmark
test, we also include the case of integer time derivative, namely α = 1. The computations
are conducted for τ = h. Results show that the order of convergence is O(τ2 + h2).
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Table 1. Errors and spatial convergence rate of the solution of the direct problem.

α N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280

0.25 E 1.536 × 10−4 3.916 × 10−5 9.886 × 10−6 2.4838 × 10−6 6.221 × 10−7 1.557 × 10−7

CRh 1.972 1.986 1.993 1.997 1.999
0.5 E 5.351 × 10−4 1.398 × 10−4 3.507 × 10−5 8.739 × 10−6 2.191 × 10−6 5.489 × 10−7

CRh 1.936 1.995 2.005 1.996 1.997
0.85 E 9.656 × 10−4 2.559 × 10−4 6.393 × 10−5 1.586 × 10−5 3.974 × 10−6 9.969 × 10−7

CRh 1.916 2.001 2.012 1.997 1.997
1 E 1.086 × 10−3 2.891 × 10−4 7.226 × 10−5 1.792 × 10−5 4.498 × 10−6 1.129 × 10−6

CRh 1.909 2.000 2.011 1.995 1.996

Example 2 (Inverse problem). With this test, we demonstrate the efficiency in recovering the
diffusion coefficient a(x) and solution u of the IP. The initial guess for the diffusion coefficient is
generated by [36]

a0 = a(x) + 2ρaa(x)($(x)− 0.5), (34)

where $(x) is a uniformly distributed random function in the interval [0, 1] and a(x) is the exact
diffusion coefficient. In the same fashion, we generate noisy data

gi(tn) = u(xi, tn) + 2ρuu(xi, tn)($(x)− 0.5), i = 1, 2, . . . , I, n = 1, 2, . . . , M, (35)

where u(xi, tn) is the exact solution at points of measurements (xi, tn).

The measurements are located at grid nodes; namely, we take seven spatial nodes
I = 7, at x∗i = [0.1, 0.2, 0.5, 0.6, 0.7, 0.8, 0.9] and all time layers. The initial data are reg-
ularized by smoothing the function a0 using fifth-degree polynomial curve fitting. The
stopping accuracy is ε J = 10−3. Actually, for all presented experiments at the first 2–3 it-
erations, the functional J decreases more rapidly and then, the decreasing is very small.
On Figures 1 and 2, we plot the true (exact) and restored diffusion coefficient a(x) and error
|u−U| of the computed by the inverse problem solution U for N = M = 80, α = 0.5 and
α = 0.9, ρa = 0.05, ρu = 0.01.
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Figure 1. Exact (solid line) and restored (line with circles) diffusion coefficient a(x) (left) and solution u
(right), α = 0.5, ρa = 0.05, ρu = 0.01.
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Figure 2. Exact (solid line) and restored (line with circles) diffusion coefficient a(x) (left) and solution u
(right), α = 0.9, ρa = 0.05, ρu = 0.01.

In Figure 3, we depict the exact and restored diffusion a(x) for N = M = 80, α = 0.25
and α = 0.95, ρa = 0.1 and ρu = 0.05. We observe that for both values of the fractional
order, the accuracy of the restored function is very close.
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Figure 3. Exact (solid line) and restored (line with circles) diffusion coefficient a(x), α = 0.25 (left) and
α = 0.95 (right), ρa = 0.1, ρu = 0.03.

The results show that the main factor for the accuracy of the solution is the deviation
of the measurements, rather than the fractional order.

Next, we take initial function, right-hand side

u0(x) = 2 sin(πx), f (x, t) = 5
(

Γ(1 + α1) +
Γ(1 + 2α1)

Γ(1 + α1)
tα1 +

Γ(1 + 3α1)

Γ(1 + 2α1)
t2α1

)
sin(πx)

and generate perturbed data from (34), (35), replacing the exact solution u with a numerical
solution of the direct problem, computed for the exact diffusion coefficient. Then, the solu-
tion of the discrete inverse problem U will be compared with the corresponding numerical
solution of the direct problem. The computations are performed for N = M = 80 and the
same points of measurements as in previous test. On Figure 4 (left), we illustrate the impact
of the fractional order on the accuracy for ρa = 0.1, ρu = 0.08. As before, we deduce that
it is not so significant. On Figure 4 (right), we examine the impact of the perturbation on
the accuracy for α = 0.5. We observe that the deviation has a larger impact on accuracy
than the fractional order. On Figure 5, we plot the error of the solution for α = 0.5 and two
sets of perturbation ρa = ρu = 0.01 and ρa = ρu = 0.1. In spite of the noise affecting the
accuracy of the solution, it is evident that the precision of the solution is quite satisfactory
when employing the recovered diffusion coefficient.
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Figure 4. Dependence on the fractional order (left): exact (solid line) and restored diffusion coefficient
a(x), α = 0.25 (line with triangles), α = 0.5 (line with squares), α = 0.95 (line with circles), ρa = 0.1,
ρu = 0.08; dependence on the perturbation (right): Exact (solid line) and restored diffusion coefficient
a(x), ρa = 0.01, ρu = 0.01 (line with triangles), ρa = 0.05, ρu = 0.01 (line with circles), ρa = 0.01,
ρu = 0.05 (line with squares), ρa = 0.1, ρu = 0.1 (line with stars).

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

2

4

6

8

x 10
−4

t
x

E
rr

o
r 

U

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

2

4

6

8

x 10
−3

E
rr

o
r 

U

Figure 5. Error of the solution for ρa = ρu = 0.01 (left) and ρa = ρu = 0.1 (right).

The computational simulations, presented in this section to test the proposed approach
are implemented by MATLABr R2022a.

8. Conclusions

In this paper, we have solved a single fractional parabolic integro-differential equation,
derived by reducing a coupled fractional parabolic PDE-ODE system. First, we discussed
the well-posedness of the Dirichlet problem and then we performed an analysis for sta-
bility and convergence of Alikhanov’s scheme [29]. We have developed an approach for
numerical recovering of the space-dependent diffusion coefficient using a finite number of
space points observations. We have experimentally illustrated the efficacy of the suggested
method. The order of the fractional derivative does not significantly affect the results.
The numerical tests with perturbed data showed the accurate recovery of the diffusion
coefficient with a satisfactory error.

We intend to expand the investigation presented in this paper to other inverse problems
of type [37–42] for one and multidimensional systems of fractional differential equations.
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