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Abstract: The composition H(z) = f (Φ(z)) is studied, where f is an entire function of a single
complex variable and Φ is an entire function of n complex variables with a vanished gradient.
Conditions are presented by the function Φ providing boundedness of the L-index in joint variables
for the function H, if the function f has bounded l-index for some positive continuous function l
and L(z) = l(Φ(z))(max{1, |Φ′z1

(z)|}, . . . , max{1, |Φ′zn
(z)|}), z ∈ Cn. Such a constrained function L

allows us to consider a function Φ with a nonempty zero set. The obtained results complement earlier
published results with Φ(z) 6= 0. Also, we study a more general composition H(w) = G(Φ(w)),
where G : Cn → C is an entire function of the bounded L-index in joint variables, Φ : Cm → Cn is
a vector-valued entire function, and L : Cn → Rn

+ is a continuous function. If the L-index of the
function G equals zero, then we construct a function L̃ : Cm → Rm

+ such that the function H has
bounded L̃-index in the joint variables z1, . . . , zn. The other group of our results concern a sum of
entire functions in several variables. As a general case, a sum of functions with bounded index is not
of bounded index. The same is also valid for the multidimensional case. We found simple conditions
proving that f1(z1) + f2(z2) belongs to the class of functions having bounded index in joint variables
z1, z2. We formulate some open problems based on the deduced results and on the usage of fractional
differentiation operators in the theory of functions with bounded index.

Keywords: entire function; several complex variables; composition; bounded index in joint variables;
sum of functions; gradient

MSC: 32A15; 32A17

1. Introduction

We examine some compositions of entire functions with usage of the notion of L-index
in joint variables. Our investigation is an extension of the paper in [1] to the case where the
first-order partial derivatives of the inner function can vanish, i.e., at least one of them (or
each of them) has nonempty zero set.

Let us recall some standard notations from [1,2]. Let Rn and Cn be n-dimensional real
and complex vector spaces, respectively, n ∈ N. Denote R+ = (0,+∞), 1 = (1, . . . , 1) ∈ Rn,
0 = (0, . . . , 0) ∈ Rn, 1j = (0, . . . , 0, 1︸︷︷︸

j-th place

, 0, . . . , 0). For K = (k1, . . . , kn) ∈ Zn
+, let us

write ‖K‖ = k1 + · · ·+ kn, K! = k1! · . . . · kn!. For A = (a1, . . . , an) ∈ Cn, B = (b1, . . . , bn) ∈
Cn, we will use formal notations without violation of the existence of these expressions A±
B = (a1± b1, . . . , an± bn), AB = (a1b1, · · · , anbn), A/B = (a1/b1, . . . , an/bn), and if A, B ∈
Rn, then AB = ab1

1 ab2
2 · . . . abn

n , max{A; B} = (max{a1; b1}, max{a2; b2}, . . . , max{an; bn}),
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and the notation A < B means that aj < bj for all j ∈ {1, . . . , n}. Similarly, the relation
A ≤ B is defined.

We denote the K-th order partial derivative of the entire function F(z) = F(z1, . . . , zn) by

F(K)(z) =
∂‖K‖F
∂zK =

∂k1+···+kn F

∂zk1
1 . . . ∂zkn

n
, where K = (k1, . . . , kn) ∈ Zn

+.

We suppose L(z) = (l1(z), . . . , ln(z)) and every component lj(z) is a positive continu-
ous function.

An entire function F of n complex variables is called a function of bounded L-index
in joint variables [3] if there exists a number m ∈ Z+ such that for all z ∈ Cn and
J = (j1, j2, . . . , jn) ∈ Zn

+, one has

|F(J)(z)|
J!LJ(z)

≤ max

{
|F(K)(z)|
K!LK(z)

: K ∈ Zn
+, ‖K‖ ≤ m

}
. (1)

The least integer m for which inequality (1) holds is called the L-index in joint variables
of the function F and is denoted by N(F, L). If lj(zj) ≡ 1, j ∈ {1, 2, . . . , n}, then the entire
function F is called a function of bounded index in joint variables or function of bounded
index [4–7]. If n = 1 then we obtain a notion of the l-index for entire functions with a
continuous function l : C→ R+ It first appeared in [8] as an extension of the index of an
entire function [9] to a wider class of entire functions whose growth exceed the growth
of exponential-type functions. A. Kuzyk and M. Sheremeta [8] put the j-th power of the
function l in the denominator of the Taylor coefficient from (1). This allowed them to
consider the concept of the index boundedness for any entire function such that its zero
multiplicities are uniformly bounded. The fact shows a big role of the denominator of the
fraction in the theory.

Many papers are devoted to a composition of two holomorphic functions belonging
to different classes and various definitions of the index. Nowadays, the most exhaustively
investigated cases are case of the bounded l-index for entire functions of single variable
[8,10,11] and analytic in a disc functions [12,13] and the case of the bounded L-index in a
direction for multivariate entire functions [14] and analytic functions in a unit ball [15].

The case of the bounded index in joint variables is more difficult. This complexity is
due to the consideration of all possible partial derivatives for the composition instead of all
directional derivatives for a given direction as in the previous case. There are two papers
on this case. In the first paper, the authors deal with the composition of a single-variate
entire function with a finite l-index and an n-variate entire function [1]. The second paper
is devoted to the composition of an entire function of bounded l-index and an analytic
function in the unit ball [2]. But the authors studied composition in the case that every first-
order partial derivative of the inner function does not equal zero. Recently, for the finite
directional L-index, an approach was developed [14] to study the composition without
the condition that the zero set of the first-order directional derivative of the inner function
is empty.

Here, we will try to implement the mentioned approach for the notion of bounded
L-index in joint variables. We obtained Theorems 4 and 5. The first theorem can be applied
to consider a nonlinear partial differential equation. For example, we have a composite
PDE, make changes to the variables, and transform the equation to a simpler form. If the
simpler equation has analytic solutions of bounded index in some sense (see [16,17]), then
we can apply Theorem 4 to learn the properties of the entire solutions of the composite PDE.
Our second result (Theorem 5) can become a base for the introduction of the concept of
index for monogenic functions in a finite-dimensional commutative algebra [18,19], regular
functions of a quaternionic variable [20,21], or slice regular functions of a quaternionic
variable [22,23].
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2. Materials and Methods

To prove the main theorem, we need an auxiliary proposition. For R ∈ Rn
+, j ∈

{1, . . . , n} and L(z) = (l1(z), . . . , ln(z)), we define

Dn
[
z0, R/L(z0)

]
= {z ∈ Cn : |zj − z0

j | ≤ rj/lj(z0), j ∈ {1, . . . , n}}

λ1,j(z0, R) = inf
{

lj(z)/lj(z0) : z ∈ Dn
[
z0, R/L(z0)

]}
, λ1,j(R) = inf

z0∈Cn
λ1,j(z0, R),

λ2,j(z0, R) = sup
{

lj(z)/lj(z0) : z ∈ Dn
[
z0, R/L(z0)

]}
, λ2,j(R) = sup

z0∈Cn
λ2,j(z0, R),

By Qn we denote a class of functions L(z) for which every R ∈ Rn
+ satisfies the

condition 0 < λ1,j(R) ≤ λ2,j(R) < +∞. If n = 1, then Q ≡ Q1.

Theorem 1 ([24]). Let L ∈ Qn. An entire function F has bounded L-index in joint variables if and
only if there exist p ∈ Z+ and C1 ∈ R+ such that for each z ∈ Cn

max

{
|F(J)(z)|

LJ(z)
: ‖J‖ = p + 1

}
≤ C1 ·max

{
|F(K)(z)|

LK(z)
: ‖K‖ ≤ p

}
. (2)

Theorem 1 was fisrtly deduced by W.K. Hayman [25] for single-variate entire functions
having bounded index (n = 1, L(z) ≡ 1). M.M. Sheremeta [13] proved it for analytic
functions of one variable with finite bounded l-index. Here we will use the result for
multivariate entire functions with finite L-index in joint variables. Note that Hayman’s
Theorem is very convenient for investigating the properties of entire solutions of differential
equations [13,26].

Let us denote

∇Φ(z) =
(∂Φ(z)

∂z1
, . . . ,

∂Φ(z)
∂zn

)
, |∇|Φ(z) =

(∣∣∣∂Φ(z)
∂z1

∣∣∣, . . . ,
∣∣∣∂Φ(z)

∂zn

∣∣∣). (3)

We recall known results on the composition of entire functions having bounded
L-index in joint variables. Similar results are also known for a unit ball (see [2]).

Theorem 2 ([1]). Let l ∈ Q, l(w) ≥ 1, f : C → C and Φ : Cn → C be entire functions such
that all partial derivatives of the first order for the function Φ are nonvanishing. Suppose L ∈ Qn,
where L(z) = l(Φ(z))|∇|Φ(z).

In addition, for the function Φ and for p chosen in (2) there exists C > 0 such that for all
z ∈ Cn and for all J = (j1, . . . , jn) ∈ Zn

+ \ {0}, ‖J‖ ≤ p + 1, one has |Φ(J)(z)| ≤ C|∇|Φ(z)J .
The entire function F(z) = f (Φ(z)) has bounded L-index in joint variables if and only if the entire
function f has bounded l-index.

Theorem 3 ([1]). Let L ∈ Q2, G : C2 → C be an entire function of bounded L-index in joint
variables, Φ1 : Cn → C and Φ2 : Cm → C be entire functions such that ∂Φ1(z)

∂zk
6= 0, ∂Φ2(w)

∂wl
6= 0,

k ∈ {1, . . . , n}, l ∈ {1, . . . , m}. If for all z ∈ Cn, w ∈ Cm, J ∈ Zn
+ \ {0}, I ∈ Zm

+ \ {0},
‖J‖ ≤ N(G, L) + 1, ‖I‖ ≤ N(G, L) + 1, one has

|Φ(J)
1 (z)| ≤ C|∇|Φ1(z)J , |Φ(I)

2 (w)| ≤ C|∇|Φ2(w)I , C ≡ const > 0,

and L̃ ∈ Qn+m, then H(z, w) = G(Φ1(z), Φ2(w)) has bounded L̃-index in joint variables in the
space Cn+m, where L̃(z, w) = (l1(Φ1(z))|∇|Φ1(z), l2(Φ2(w))|∇|Φ2(w)).

There exists a simple example of functions which do not satisfy the conditions in
Theorems 2 and 3.
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Example 1. We choose f (w) = ew and Φ(z1, z2) = sin(z1) cos(z2). The index of the function f
equals 0 because f (p)(w) = ew. Let us consider the composite function F(z1, z2) = f (Φ(z1, z2)) =
esin(z1) cos(z2). Calculate the gradient of the function Φ :

∇Φ(z1, z2) = (cos(z1) cos(z2),− sin(z1) sin(z2)).

One should observe that the zero sets of the functions cos(z1) cos(z2) and − sin(z1) sin(z2) are
not empty. Therefore, Theorem 2 is not applicable to this composition. After the proof of Theorem 4,
we will return to this example.

3. Results on Composition of Entire Functions

Removing the condition ∂Φ(z)
∂zk
6= 0 in Theorem 2 and slightly increasing the function

L, we deduce a new result.

Theorem 4. Let l ∈ Q such that l(z) ≥ 1 for all z ∈ C, g : C → C be an entire function of
bounded l-index, and Φ : Cn → C be an entire function, n ≥ 2, such that

L ∈ Qn, L(w) = max{1, |∇|Φ(w)}l(Φ(w)). (4)

If there exists C2 ≥ 1 such that for all w ∈ Cn and for all J ∈ Zn
+ \ {0} with ‖J‖ ≤ N(g, l) + 1,

one has

|Φ(J)(w)| ≤ C2(l(Φ(w)))1/(N(g,l)+1)(|∇|Φ(w))J , (5)

then the entire function H(w) = g(Φ(w)) : Cn → C has bounded L-index in joint variables.

Proof. The following formula was proved in [1]:

H(K)(w) = g(‖K‖)(Φ(w))(∇Φ(w))K +
‖K‖−1

∑
j=1

g(j)(Φ(w))Qj,K(w), (6)

where

Qj,K(w) = ∑
11 p11

+...+1n p1n+...+KpK=K

0≤p11+...+p1n≤j−1

cj,K,p11 ,...,pK (Φ
(11)(w))p11 . . . (Φ(1n)(w))p1n . . . (Φ(K)(w))pK ,

and cj,K,p11 ,...,pK ∈ Z+ are some coefficients, K ∈ Zn
+.

Also, it was deduced [1] that

g(k)(Φ(w)) =
H(k1i)(w)

(Φ(1i)(w))k
+

1
(Φ(1i)w))2k

k−1

∑
j=1

H(j1i)(w)(Φ(1i)(w))jQ̃j,k(w), (7)

where
Q̃j,k(w)= ∑

m1+...+kmk=2(k−j)
bj,k,m1,...,mk

(Φ(1i)(w))m1 . . .(Φ(k1i)(w))mk , (8)

and bj,k,m1,...,mk
∈ Z are some coefficients, i ∈ {1, . . . , n}, k ∈ Z+.

We suppose that the hypothesis of the theorem is satisfied. It means that the entire
function g : C → C is of bounded l-index, and the entire function Φ : Cn → C obeys (5).
Denote L̃(w) = |∇|Φ(w)l(Φ(w)). Replacing K in (6) by J and dividing it by (L̃(w))J , for
any J ∈ Zm

+ \ {0} we have

|H(J)(w)|
(L̃(w))J

≤ |g
(‖J‖)(Φ(w))|
(L̃(w))J

· |∇|Φ(w))J +
‖J‖−1

∑
k=1

|g(k)(Φ(w))|
(L̃(w))J

· |Qk,J(w)|.
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Substituting L̃(w) = |∇|Φ(w)l(Φ(w)) in the last estimate, we deduce

|H(J)(w)|
(L̃(w))J

≤ |g(‖J‖)(Φ(w))|
(|∇|Φ(w))J(l(Φ(w)))‖J‖ · |∇|Φ(w))J +

‖J‖−1

∑
k=1

|g(k)(Φ(w))|
(|∇|Φ(w))J(l(Φ(w)))‖J‖ · |Qk,J(w)|

≤ |g
(‖J‖)(Φ(w))|

(l(Φ(w)))‖J‖ +
‖J‖−1

∑
k=1

|g(k)(Φ(w))|
(|∇|Φ(w))J(l(Φ(w)))‖J‖ · |Qk,J(w)|. (9)

By Theorem 1, inequality (2) is valid for F = g, p = N(g, l) :

|g(N(g,l)+1)(z)|
(l(z))N(g,l)+1

≤ C1 ·max

{
|g(k)(z)|
(l(z))k : 0 ≤ k ≤ N(g, l)

}
.

Applying this inequality with z = Φ(w) to (9), we obtain for ‖J‖ = N(g, l) + 1 :

|H(J)(w)|
(L̃(w))J

≤ max
{ |g(k)(Φ(w))|

(l(Φ(w)))k : 0 ≤ k ≤ N(g, l)
}

× max
‖J‖=N(g,l)+1

(
C1 +

‖J‖−1

∑
k=1

|Qk,J(w)|
(|∇|Φ(w))J(l(Φ(w)))‖J‖−k

)
. (10)

In view of (5), it is possible to deduce the upper estimate of |Qk,J(w)|

|Qk,J(w)| ≤ ∑
11 p11

+...+1n p1n+...+JpJ=J

0≤p11+...+p1n≤k−1

|ck,J,p11 ,...,pJ ||Φ
(11)(w)|p11 . . . |Φ(1n)(w)|p1n . . . |Φ(J)(w)|pJ

≤ ∑
11 p11

+...+1n p1n+...+JpJ=J

0≤p11+...+p1n≤k−1

|ck,J,p11 ,...,pJ |C
‖J‖
2 (l(Φ(w)))‖J‖/(N(g,l)+1)(|∇|Φ(w))J

≤ ĉk,J(l(Φ(w)))‖J‖/(N(g,l)+1)(|∇|Φ(w))J , (11)

where ĉk,J = C‖J‖
2 ∑11 p11

+...+1n p1n+...+JpJ=J

0≤p11+...+p1n≤k−1

|ck,J,p11 ,...,pJ |. We substitute estimate (11) in (10) and

use ‖J‖ = N(g, l) + 1, that is, (l(Φ(w)))‖J‖/(N(g,l)+1) = l(Φ(w)). Therefore, the following
inequality is valid:

|H(J)(w)|
(L̃(w))J

≤ max
{ |g(k)(Φ(w))|

(l(Φ(w)))k : 0 ≤ k ≤ N(g, l)
}

× max
‖J‖=N(g,l)+1

(
C1 +

‖J‖−1

∑
k=1

ĉk,J(l(Φ(w)))‖J‖/(N(g,l)+1)(|∇|Φ(w))J

(|∇|Φ(w))J(l(Φ(w)))‖J‖−k

)
= max

{ |g(k)(Φ(w))|
(l(Φ(w)))k : 0 ≤ k ≤ N(g, l)

}
max

‖J‖=N(g,l)+1

(
C1 +

‖J‖−1

∑
k=1

ĉk,J

(l(Φ(w)))‖J‖−1−k

)
.

Since l(Φ(w)) ≥ 1, one has (l(Φ(w)))‖J‖−1−k ≥ 1 for k ≤ ‖J‖ − 1. Thus, for ‖J‖ =
N(g, l) + 1

|H(J)(w)|
(L̃(w))J

≤ C3 max
{ |g(k)(Φ(w))|

(l(Φ(w)))k : 0 ≤ k ≤ N(g, l)
}

, (12)
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where C3 = max‖J‖=N(g,l)+1

(
C1 + ∑

N(g,l)
k=1 ĉk,J

)
. Dividing equality (7) by lk(Φ(w)) and

estimating by the modulus, we deduce for each i ∈ {1, . . . , n}

|g(k)(Φ(w))|
lk(Φ(w))

≤ |H(k1i)(w)|
lk(Φ(w))|Φ(1i)(w)|k

+
1

|Φ(1i)(w)|2klk(Φ(w))

k−1

∑
j=1
|H(j1i)(w)||Φ(1i)(w)|j|Q̃j,k(w)|

=
|H(k1i)(w)|

lk(Φ(w))|Φ(1i)(w)|k
+

k−1

∑
j=1

Q̃j,k(w)|
|Φ(1i)(w)|2k−2jlk−j(Φ(w))

|H(j1i)(w)|
|Φ(1i)(w)|jl j(Φ(w))

.

Introducing the maximum of the fraction |H(j1i)(w)|
|Φ(1i)(w)|j l j(Φ(w))

over j ∈ {1, . . . , k}, we can

increase the previous estimate

|g(k)(Φ(w))|
lk(Φ(w))

≤ max
1≤j≤k

{
|H(j1i)(w)|

l j(Φ(w))|Φ(1i)(w)|j

}(
1 +

k−1

∑
j=1

|Q̃j,k(w)|
lk−j(Φ(w))|Φ(1i)(w)|2(k−j)

)
Substituting the expression from (8) instead of Q̃j,k(w), we obtain

|g(k)(Φ(w))|
lk(Φ(w))

≤ max

{
|H(j1i)(w)|

l j(Φ(w))|Φ(1i)(w)|j
: 1 ≤ j ≤ k

}

×
(

1 +
k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
| |Φ

(1i)(w)|m1 . . .|Φ(k1i)(w)|mk

lk−j(Φ(w))|Φ(1i)(w)|2(k−j)

)
. (13)

Estimating (5) and l(z) ≥ 1 gives us

|Φ(s1i)(w)| ≤ C2ls/2(Φ(w))|Φ(1i)(w)|s,

because s/2 ≥ 1/(N(g, l) + 1) for s ∈ {1, 2, . . . , N(g, l) + 1}. Substituting the right-hand
side of this inequality in (13), we deduce

|g(k)(Φ(w))|
lk(Φ(w))

≤max

{
|H(j1i)(w)|

l j(Φ(w))|Φ(1i)(w)|j
: 1 ≤ j ≤ k

}(
1+

k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
|(C2)

m1+m2+...+mk
(l(Φ(w)))(m1+2m2+...+kmk)/2|Φ(1i)(w)|m1+2m2+...+kmk

lk−j(Φ(w))|Φ(1i)(w)|2(k−j)

)
.

Since m1 + 2m2 + . . . + kmk = 2(k− j), we obtain (l(Φ(w)))k−j|Φ(1i)(w)|2(k−j) in the
nominator under the sum. The expression matches with the denominator and reduces with
it. Thus, it yields

|g(k)(Φ(w))|
lk(Φ(w))

≤ C4 max

{
|H(j1i)(w)|

l j(Φ(w))|Φ(1i)(w)|j
: 1 ≤ j ≤ k

}
, (14)

where

C4 = 1+
k−1

∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
|(C2)

m1+m2+...+mk .
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Then, from inequality (12) and (14), we obtain for each i ∈ {1, . . . , n} and ‖J‖ =
N(g, l) + 1

|H(J)(w)|
(L̃(w))J

≤ C5 max

{
|H(j1i)(w)|

l j(Φ(w))|Φ(1i)(w)|j
: 0 ≤ j ≤ N(g, l)

}
, (15)

where C5 = C3C4. Estimate (15) is established by the assumption that every component of
the gradient ∇Φ does not vanish, i.e., Φ(1i)(w) 6= 0. Our proof is significant for equality
(7), providing an estimate of the k-th order derivative of the function g by smaller-order
partial derivatives of the function H in the variable wi. Similarly to [1], by the method of
mathematical induction an analog of (7) can be proved for the mixed partial derivative
J ∈ Zn

+ :

g(‖J‖)(w) =
H(J)(w)

(∇Φ(w))J +
1

(∇Φ(w))2J ∑
0<‖K‖≤‖J‖−1,

K≤J

H(K)(w)(∇Φ(w))KQ∗(w; J, K),

where Q∗(w; J, K) is constructed by analogy to Qj,K(w), Q̃j,k(w). Then, repeating consider-
ations from (9) to (15) as in [1], we deduce for ‖J‖ = N(g, l) + 1

|H(J)(w)|
(L̃(w))J

≤ C max

{
|H(K)(w)|

(l(Φ(w)))‖K‖|∇Φ(w)|K
: 0 < ‖K‖ ≤ N(g, l), K ≤ J

}
, (16)

where C > 1 is a constant.
We should like to point out that L(w) = l(Φ(w))max{1, |∇|Φ(w)}. We introduce the

function L to inequality (16) for ‖J‖ = N(g, l) + 1 in the following form:

|H(J)(w)|
(L(w))J ·

(L(w))J

(L̃(w))J
≤ C max

{
|H(K)(w)|
(L(w))K ·

(L(w))K

(L̃(w))K
: 0 < ‖K‖ ≤ N(g, l), K ≤ J

}
.

Inverting the fraction (L(w))J

(L̃(w))J , one has

|H(J)(w)|
(L(w))J ≤ C

(L̃(w))J

(L(w))J max

{
|H(K)(w)|
(L(w))K ·

(L(w))K

(L̃(w))K
: 0 < ‖K‖ ≤ N(g, l), K ≤ J

}
.

Applying max
a,b∈A⊂R+

{a · b} ≤ max
a∈A⊂R+

{a} · max
b∈A⊂R+

{b} with a finite set A to the right-

hand side of the inequality, we establish

|H(J)(w)|
(L(w))J ≤ C

(L̃(w))J

(L(w))J max

{
|H(K)(w)|
(L(w))K : 0 < ‖K‖ ≤ N(g, l), K ≤ J

}

×max

{
(L(w))K

(L̃(w))K
: 0 < ‖K‖ ≤ N(g, l), K ≤ J

}
.

Since max{a : a ∈ A ⊂ R+} = 1
min{1/a: a∈A⊂R+} , the last estimate can be rewritten as

|H(J)(w)|
(L(w))J ≤

C(L̃(w)/L(w))J max
{
|H(K)(w)|
(L(w))K : 0 < ‖K‖ ≤ N(g, l), K ≤ J

}
min{(L̃(w)/L(w))K : 0 < ‖K‖ ≤ N(g, l), K ≤ J}

. (17)

Let T0 = T(w) = L̃(w)/L(w) = |∇|Φ(w)
max{1,|∇|Φ(w)} ∈ Rn

+ and K0 ≤ J, 0 < ‖K0‖ ≤ N(g, l)

(K0 ∈ Zn
+) be such that (T0)

K0 = min{TK
0 : 0 < ‖K‖ ≤ N(g, l), K ≤ J}. One should
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observe that T0 ∈ (0, 1]n and ‖J − K0‖ ≥ N(g, l) + 1− N(g, l) = 1, and J − K0 ≥ 1s for
some s ∈ {1, . . . , n}. Hence,

T J
0

TK0
0

= T J−K0
0 ≤ T1s

0 ≤ 1.

Therefore,

(L̃(w)/L(w))J

min{(L̃(w)/L(w))K : 0 < ‖K‖ ≤ N(g, l), K ≤ J}
= T J−K0

0 ≤ T1s
0 ≤ 1.

Thus, from inequality (17), we obtain

|H(J)(w)|
(L(w))J ≤ C max

{
|H(K)(w)|
(L(w))K : 0 < ‖K‖ ≤ N(g, l), K ≤ J

}
. (18)

Let J∗ ∈ Z.+ be such that

max
‖J‖=N(g,l)+1

|H(J)(w)|
(L(w))J =

|H(J∗)(w)|
(L(w))J∗

and ‖J∗‖ = N(g, l) + 1. Then, we deduce from (18)

max

{
|H(J)(w)|
(L(w))J : ‖J‖ = N(g, l) + 1

}
=
|H(J∗)(w)|
(L(w))J∗

≤ C max

{
|H(K)(w)|
(L(w))K : 0 < ‖K‖ ≤ N(g, l), K ≤ J∗

}

≤ C max

{
|H(K)(w)|
(L(w))K : 0 < ‖K‖ ≤ N(g, l)

}
(19)

for all w such that Φ(1i)(w) 6= 0.
If Φ(1i)(w) = 0 for some i, then for any J ∈ Zn

+ with ‖J‖ ≤ N(g, l) + 1 and Ji 6= 0
inequality (5) implies Φ(J)(w) = 0. In view of (6), it means H(J)(w) = 0. Thus, inequality
(19) also holds for the points w belonging to zero for at least one component of the gradient
∇Φ.

Therefore, by Theorem 1, we conclude that the function H belongs to the class of
functions with finite L-index in joint variables.

Example 2. Returning to Example 1, we can apply Theorem 4 to that composition. The function
Φ(z1, z2) = sin(z1) cos(z2) satisfies (5) for J = (0, 1) and J = (1, 0). Thus, the function
esin(z1) cos(z2) has bounded L-index in joint variables, where the function L is constructed by (4):
L(z1, z2) = (max{1, | cos(z1) cos(z2)|}, max{1, | sin(z1) sin(z2)|}.

Now we consider a more general composition if the entire function g is multivariate.
For L = (l1, . . . , ln) : Cn → Rn

+ and Φ = (φ1, . . . , φn) with φs : Cms → C for
s ∈ {1, . . . , n}, we denote

Φ(w) = (φ1(w1,1, . . . , w1,m1)), φ2(w2,1, . . . , w2,m2), . . . , φn(wn,1, . . . , wn,mn))),

L(Φ(w))=(l1(Φ(w))), . . . , l1(Φ(w))︸ ︷︷ ︸
m1 times

, . . . , ln(Φ(w)), . . . , ln(Φ(w))︸ ︷︷ ︸
mn times

),

∇Φ(w)=(∇φ1(w1),∇φ2(w2), . . . ,∇φn(wn)),

|∇|Φ(z)=(|∇|φ1(w1), |∇|φ2(w2), . . . , |∇|φn(wn)),
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where w = (w1, . . . , wn), ws = (ws,1, ws,2, . . . , ws,ms) ∈ Cms , ∇φs(ws), and |∇|φs(ws) are
defined in (3), s ∈ {1, . . . , n}. Similarly, J = (j1, . . . , jn) and js = (js,1, js,2, . . . , js,ms) ∈ Zms

+ .

Removing the conditions ∂Φ1(z)
∂zk

6= 0, ∂Φ2(w)
∂wl

6= 0 in Theorem 3 we can also deduce

a new result with the greater function L̃. But the result is obtained only in the case that
the L-index of the outer function for the composition equals zero (see below Remark 1 for
the explanation).

Proposition 1. Let L ∈ Qn, G : Cn → C be an entire function of bounded L-index in joint
variables with N(G, L) = 0, φs : Cms → C be entire functions, ls(z) ≥ 1 for each s ∈ {1, . . . , n}
and for all z ∈ Cn. If L̃ ∈ Qm with L̃(w) = max{1, |∇|Φ(w)}L(Φ(w)) and m = ∑n

j=1 mj ,
then the function H(w) = G(Φ(w)) has bounded L̃-index in joint variables.

Proof. Let N(G, L) = 0. Then, by Hayman’s Theorem for the function G from (2) with
p = 0, one has for every z ∈ Cn and s ∈ {1, . . . , n},

|G(1s)(z)|
ls(z)

≤ C|G(z)|. (20)

Denote 1s,j = (0, . . . , 0, 1︸︷︷︸
j+m1+m2+...+ms−1-th place

, 0 . . . , 0) with s ∈ {1, . . . , n}, j ∈ {1, . . . , ms}.

Then, for the function H(w) = G(Φ(w)), we evaluate the first-order partial derivative:

H(1s,j)(w) = G(1s)(Φ(w))φ
(1j)
s (ws). In view of (20), for z = Φ(w) we obtain

|H(1s,j)(w)|
(L̃(w))1s,j

=
|G(1s)(Φ(w))| · |φ(1j)

s (ws)|

max{1, |φ(1j)
s (ws)|}ls(Φ(w))

≤ C|G(Φ(w))| = C|H(w)|, (21)

because ls(z) ≥ 1 and |φ
(1j)
s (ws)|

max{1,|φ
(1j)
s (ws)|}

≤ 1. Then by, Theorem 1, estimate (21) implies that

the function H has the desired property.

Actually, in Proposition (1) and Theorem 4, the vector-valued entire functions having
bounded index in joint variables have implicitly appeared. There are few papers on this
class of functions of a single variable [27–29], and of several variables [26,30].

4. Results on Sum of Entire Functions Having Bounded Index

The product of entire functions of bounded index has the same property [31,32]. But
W. Pugh [33] demonstrated that the addition of functions having bounded index can go
out of the class. This fact is based on the idea that every entire function with unbounded
multiplicities of zeros has unbounded index. Moreover, the class of entire functions having
bounded index is not closed under differentiation (see an example in [34]). W. Pugh, R.
Roy, and S. Shah [33,35] deduced different conditions providing index boundedness for a
sum of two entire functions of bounded index. Later, their assertions were transferred for
a multidimensional case for functions of bounded L-index in direction, and for functions
of bounded L-index in joint variables [3]. But these conditions are very cumbersome and
difficult to verify. Therefore, we found new simple conditions for a partial case.

Theorem 5. If f1(z1), f2(z2) are entire transcendental functions, and their derivatives f ′1(z1),
f ′2(z2) are functions having bounded index, then the function F(z1, z2) = f1(z1) + f2(z2) is also
of bounded index in joint variables and N(F) ≤ 1 + max{N( f ′1), N( f ′2)}.

Proof. Suppose that f ′1(z1), f ′2(z2) are functions of bounded index. In view of the definition
of index boundedness (see inequality (1) for n = 1 and L ≡ 1), the functions f1(z1), f2(z2)
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are also functions of bounded index. Then this means that for any integer p ≥ 0 and all
zj ∈ C, one has

| f (p)
j (zj)|

p!
≤ max

0≤k≤N( f j)

| f (k)j (zj)|
k!

(22)

and for any integer p ≥ 0 and all zj ∈ C one has

|( f ′j (zj))
(p)|

p!
≤ max

0≤k≤N( f ′j )

|( f ′j (zj))
(k)|

k!

or equivalently
|( f (s)j (zj))|

s!
≤ max

1≤k≤1+N( f ′j )

k| f (k)j (zj)|
s · k!

. (23)

Let us consider the function F(z1, z2) = f1(z1) + f2(z2). Calculate its partial derivatives:

F(k,0)(z1, z2) = f (k)1 (z1) for any k ≥ 1, (24)

F(0,s)(z1, z2) = f (s)2 (z2) for any s ≥ 1,

F(k,s)(z1, z2) = 0 for any k ≥ 1, s ≥ 1.

Taking into account (22) and (23), we deduce for k ≥ 1, s ≥ 1 that

|F(k,0)(z1, z2)|
k!

=
| f (k)1 (z1)|

k!
≤ max

1≤m≤N( f ′1)+1

m| f (m)
1 (z1)|
k ·m!

≤ max
1≤m≤1+N( f ′1)

m|F(m,0)(z1, z2)|
k ·m!

, (25)

F(0,s)(z1, z2)

s!
=
| f (s)2 (z2)|

s!
≤ max

1≤p≤N( f ′2)+1

p| f (p)
2 (z2)|
s · p!

≤ max
1≤p≤1+N( f ′2)

p|F(0,p)(z1, z2)|
s · p!

,

|F(k,s)(z1, z2)|
k!s!

= 0 ≤ max
1≤p+m≤1+max{N( f ′1),N( f ′2)}

|F(m,p)(z1, z2)|
p!m!

.

For k ∈ {1, 2, . . . , 1+ N( f ′1)}, the inequality |F
(k,0)(z1,z2)|

k! ≤ max1≤m≤1+N( f ′1)
|F(m,0)(z1,z2)|

m!
is obvious. At the same time, for k > 1 + N( f ′1) and 1 ≤ m ≤ 1 + N( f ′1) one has m

k < 1.
Then, from (25), it yields for any k ∈ N that

|F(k,0)(z1, z2)|
k!

≤ max
1≤m≤1+N( f ′1)

|F(m,0)(z1, z2)|
m!

.

By analogy, we also establish

|F(0,s)(z1, z2)|
s!

≤ max
1≤p≤1+N( f ′2)

|F(0,p)(z1, z2)|
p!

.

Combining the inequalities for |F(0,s)(z1, z2)|/s!, |F(k,0)(z1, z2)|/k!, and |F(k,s)(z1, z2)|/
(k!s!), we have for k ≥ 0, s ≥ 0

|F(k,s)(z1, z2)|
k!s!

≤ max
0≤p+m≤1+max{N( f ′1),N( f ′2)}

|F(m,p)(z1, z2)|
p!m!

.

It yields that the function F has bounded index in joint variables and its index N(F)
does not exceed the maximum of the indexes of the functions f ′1 and f ′2 increased by one.
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5. Discussion

Note that N( f ) ≤ 1 + N( f ′), j ∈ {1, 2} (see Theorem 3 in [34]). The inequality
N( f ) ≤ 1 + N( f ′) is sharp. To demonstrate it, Shah S. M. [34] proposed such a function
f (z) = ez − ∑n

s=0
zs

s! . Then, f ′(z) = ez − ∑n−1
s=0

zs

s! , f ′′(z) = ez − ∑n−2
s=0

zs

s! , and so on. Then
N( f ) = n + 1, N( f ′) = n. In this case, we obtain the equality N( f ) = 1 + N( f ′). But if we
consider f (z) = cos z, then f ′(z) = − sin z, f ′′(z) = − cos z, and so on. Hence, N( f ) = 1,
N( f ′) = 1. In this case, we obtain the strict inequality N( f ) = 1 < N( f ′) + 1 = 2. More
generally, for the function f (z) = ∑n

k=0 exp(z exp(i · 2πk/n)), we have f (n)(z) = f (z) with
i2 = −1. Therefore, N( f ) = n− 1, N( f ′) = n− 1 and N( f ) < 1 + N( f ′).

In Theorem (5), we state N(F) ≤ 1 + max{N( f ′1), N( f ′2)} for F(z1, z2) = f1(z1) +
f2(z2). We demonstrate it below. In view of the explanations from the previous paragraph,
we choose f1(z1) = ez1 − 1, f2(z2) = ez2 − 1 and F(z1, z2) = ez1 + ez2 − 2. Then, f ′1(z1) = ez1 ,
f ′2(z2) = ez2 . In this case, the corresponding indexes equal N( f ′1) = 0, N( f ′2) = 0, and
N(F) = 1, that is N(F) = 1 + max{N( f ′1), N( f ′2)}. Thus, this is a sharp inequality.

Now we show that for some functions the strict inequality is valid, i.e., N(F) <
1 + max{N( f ′1), N( f ′2)}. We choose f1(z1) = ez1 , f2(z2) = z2ez2 and F(z1, z2) = ez1 + z2ez2 .
Then F(s,0)(z1, z2) = ez1 for any integer s ≥ 0, and F(s,m)(z1, z2) = 0 for any integer
s ≥ 1, m ≥ 1. Therefore, N( f ′1) = 0. For any m ≥ 1, one has F(0,m)(z1, z2) = f (m)

2 (z2) =
(z2 + m)ez2 . We will check inequality (1) for derivatives of the F. One should observe that
|F(s,m)(z1,z2)|

s!m! ∈ {0; |e
z1 |
s! } for any s ≥ 1 and m ≥ 0. Then, |F

(s,m)(z1,z2)|
s!m! ≤ |ez1 | = |F(1,0)(z1,z2)|

1! .
We will investigate whether

|F(0,m)(z1, z2)|
m!

≤ max
0≤p≤m−1

|F(0,p)(z1, z2)|
p!

(26)

for all z1, z2 ∈ C. The last inequality is equivalent to

|z2 + m|
m!

· |ez2 | ≤ max
0≤p≤m−1

|z2 + p|
p!

· |ez2 |.

Hence,
|z2 + m|

m!
≤ max

0≤p≤m−1

|z2 + p|
p!

.

Using algebraic transformations, we obtain, with z2 = x + iy, (x, y ∈ R),√
(x + m)2 + y2 ≤ max

0≤p≤m−1

m!
p!

√
(x + p)2 + y2 ⇔

(x + m)2 ≤ max
0≤p≤m−1

m!2

p!2
(x + p)2 + y2(

m!2

p!2
− 1). (27)

The last inequality must be satisfied for all y ∈ R+. Since m!2
p!2 − 1 > 0 for 0 ≤ p ≤

m− 1, the whole expression y2(m!2
p!2 − 1) is non-negative. Therefore, inequality (27) is valid if

(x + m)2 ≤ max
0≤p≤m−1

m!2

p!2
(x + p)2.

Hence, |x + m| ≤ max0≤p≤m−1
m!
p! |x + p| for all x ∈ R. Using elementary methods, it

is not difficult to establish that

1. For m = 1 and m = 2, the inequality does not hold at some points x ∈ R (for example,
it is false for m = 2 and x ∈ (−2/3; 0)).

2. For m = 3, the inequality is fulfilled for all x ∈ R.

Hence, the index of the function F equals three, N(F) = 3.
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Next, the index of the function f ′2(z2) = (z2 + 1)ez2 can be found. We will repeat

all above considerations from (26) for this inequality |( f ′2(z2))
(m) |

m! ≤ max0≤p≤m−1
|( f ′2(z2))

(p) |
p! .

By analogy, the inequality yields |x + m + 1| ≤ max0≤p≤m−1
m!
p! |x + p + 1| for all x ∈ R.

Checking m = 1 and m = 2, we show that the last inequality is false (for example, for m = 2
and x ∈ (−5/3, 1)). For m = 3, we found that |x + 4| ≤ max{6|x + 1|, 6|x + 2|, 3|x + 3|} is
true for all x ∈ R. Therefore, N( f ′2) = 3.

Combining all results, we see N(F) = 3 < 1 + max{N( f ′1), N( f ′2)} = 4. Hence,
we conclude that inequality N(F) ≤ 1 + max{N( f ′1), N( f ′2)} cannot be improved in the
general case.

Theorem 4 leads to the following problem:

Problem 1 (Open Problem). Is it possible to obtain an analog of Theorem 4 if we replace Φ :
Cn → C by (φ1(w1), φ2(w2), . . . , φ(wn))?

Remark 1. We can not deduce analog of Theorem 4 or remove assumption N(G, L) = 0 in
Proposition 1 because under usage of methods from these assertions we obtain that |ϕ′1(w1)/ϕ′2(w2)|
or similar expression must be bounded in w1 and w2.

Another problem in this topic appears if we introduce some operator of fractional
differentiation into (1).

Problem 2. Is it possible to replace ordinary derivatives by the fractional derivatives and deduce
(or improve) all known properties of entire functions of bounded index?

We are currently unable to provide comprehensive answers to these questions.
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