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Abstract: Heartbeat rhythms are related to a complex dynamical system based on electrical activ-
ity of the cardiac cells usually measured by the electrocardiogram (ECG). This paper presents a
mathematical model to describe the electrical activity of the heart that consists of three nonlinear
oscillators coupled by delayed Duffing-type connections. Coupling alterations and external stimuli
are responsible for different cardiac rhythms. The proposed model is employed to build synthetic
ECGs representing a variety of responses including normal and pathological rhythms: ventricular
flutter, torsade de pointes, atrial flutter, atrial fibrillation, ventricular fibrillation, polymorphic ventric-
ular tachycardia and supraventricular extrasystole. Moreover, the sinoatrial rhythm variations are
described by time-dependent frequency, representing transient disturbances. This kind of situation
can represent transitions between different pathological behaviors or between normal and pathologi-
cal physiologies. In this regard, a nonlinear dynamics perspective is employed to describe cardiac
rhythms, being able to represent either normal or pathological behaviors.

Keywords: nonlinear dynamics; chaos; biomechanics; Duffing equation; heart rhythms; cardiac
system; transient disturbance; pacemaker

1. Introduction

The cardiac system has the heart as the essential organ that needs to pump blood
based on the electrical activity stimulus. The heart and the vascular system (Figure 1a)
have the main function of ensuring continuous blood flow to the organs and tissues in
order to satisfy energy needs and cellular renewal. In this regard, the cardiac conduction
system ensures the normal functioning of the heart [1–6], preventing rhythm disorders or
arrhythmias [7–11].
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1. Introduction 
The cardiac system has the heart as the essential organ that needs to pump blood 

based on the electrical activity stimulus. The heart and the vascular system (Figure 1a) 
have the main function of ensuring continuous blood flow to the organs and tissues in 
order to satisfy energy needs and cellular renewal. In this regard, the cardiac conduction 
system ensures the normal functioning of the heart [1–6], preventing rhythm disorders or 
arrhythmias [7–11]. 
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(b) electrocardiogram (ECG) identifying the typical waves P-QRS-T and the RR-interval [2,8].
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The electrical signals produced by the heart result from variations in intra- and extra-
cellular ionic concentrations, which entrain the contraction of the two auricles and the
two ventricles that constitute the heart, providing the blood circulation [12–14]. The
cardiac dynamics have a normal functioning characterized by regular behavior in time and
space. Nevertheless, they can reveal various pathologies such as tachycardia or myocardial
infarction [15,16], characterized by irregular behaviors [17,18].

Electrical activity of the heart starts at the sinoatrial node (SA) propagates to the atri-
oventricular node (AV) and then to the Purkinje bundles and His–Purkinje complex (HP)
Under normal functioning conditions, the sinus node generates the electrical impulse that
propagate to the two atria, causing their contractions. Through the intra-atrial conduction
pathways, it reaches the AV node, which after delaying it, is transmitted to the HP complex,
which in turn directs it through its two branches throughout the myocardium via the Purk-
inje fibers [19,20]. The heart conduction system is the most plausible means of analyzing
cardiac dynamics with careful study for medical interpretations [20–22].

The electrocardiogram (ECG) reflects electrical activity of the heart, which has the
SA node as the natural pacemaker, being the most important clinical tool due to its broad
use for the diagnosis of cardiac pathologies [21–26]. Electrical currents flowing through
cell membranes generate electrical potentials that are responsible for cardiac muscle ac-
tivity. Figure 1 shows the functional diagram of the heart and its normal ECG response
characterized by three important components [2,8]: P wave, QRS complex, and T wave.
The P wave represents the impulse generated by the SA node. The QRS complex is formed
by ventricular contraction. The T wave reflects ventricular repolarization. Heart rate
variability illustrated by the RR interval is also represented.

Mathematical modeling of the heart has been widely explored for different pur-
poses [27–31]. Hodgkin and Huxley proposed the first model of electrical signal prop-
agation through a wide variety of excitable cells around the 1950s [32] Later, FitzHugh
and Nagumo provided a qualitative description of the Hodgkin–Huxley model, which led
to a better understanding of its behavior [33]. They remarked that the activation of the
sodium current, as well as the membrane potential, are both fast variables compared to the
deactivation of the sodium current and the activation of the potassium current which are
rather slow. Therefore, it simplifies a four-dimensional system to a model that is described
with two variables [34,35].

Fonkou et al. [20] modified the four-equation model of FitzHugh and Nagumo to
model heartbeats. A model representing the behavior of atrial tissue under fibrillation
based on a finite number of hexagonal elements with five different excitability states was
proposed by Moe et al. [36]. Krinsky [37] proposed a mathematical model suggesting
arrhythmic causes by ignoring aspects of reintegration, vulnerability, mechanisms of initi-
ation, development and arrest of fibrillation, “critical mass” of fibrillation, and modes of
action of antiarrhythmic medications.

Many disturbances can affect the cardiac system, including physical activities, ex-
ternal stimuli, or breathing aspects. Several studies have been done investigating these
external factors, including the work of Fonkou et al. [38,39]. It is also important to men-
tion Krstacić et al. [40], Ernst and Bar-Joseph [41], Tobon et al. [42], Shiraishi et al. [43],
Wang et al. [44], Hu et al. [45], Ueno et al. [46] and Costa and Goldberger [47].

The van der Pol (vdP) oscillator is probably the simplest model to describe the natural
pacemaker defined from a reduced-order model that presents limit cycle characteristic
necessary for describing the cardiac rhythm [48,49]. Following the same ideas, other models
are proposed to improve the ability to describe the main aspects of the cardiac system.
In this regard should be pointed out the equation by Grudzinski and Zebrowski [50]
that considers modifications of the original vdP oscillator that allow a more appropriate
description of the natural pacemaker. These models motivated the description of the
cardiovascular system by reduced-order models that become an interesting alternative for
distinct purposes. Gois and Savi [51] proposed a model with three oscillators coupled with
bidirectional and asymmetrical time-delayed connections in order to obtain a representation
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of the ECG. Using the same approach, Cheffer et al. [2] proposed improvements to the
original model by incorporating different connections. A nonlinear dynamics perspective
is able to represent synthetic ECG signals, showing that a great variety of possibilities in
the heart system can be explained by nonlinearities. Besides, a dynamical approach can
facilitate pathology identification.

Since nonlinearities and randomness seem to be responsible for the richness of the
cardiac rhythms, Cheffer and Savi [52] and Cheffer et al. [53] included non-deterministic
aspects represented by random connections. The random effects allow the description of
rhythm changes, explaining the transition between normal and pathological behaviors.

This article investigates the cardiac rhythm from a nonlinear dynamics perspective by
considering a three-oscillator model with delayed Duffing-type connections. This model is
an improvement of the model due to Cheffer et al. [2], incorporating cubic coupling terms
in the governing equations that allow a broader description of pathological rhythms. In
addition, a time-dependent parameter capable of inducing transient changes in cardiac
rhythms is incorporated allowing the description of changes between different rhythms.
In this regard, the proposed reduced-order model is able to capture the main aspects of
ECGs representing normal and pathological rhythms associated with different coupling
terms and transient behaviors. Numerical simulations are carried out, building synthetic
ECG signals to describe the cardiac dynamics. On this basis, this work has two main novel
contributions: the inclusion of delayed Duffing-type connections that allow the description
of different cardiac rhythms; the inclusion of a time-dependent parameter that allows the
description of transient behaviors associated with rhythm changes. Nonlinear dynamics
of the heart rhythm are complex, presenting several possibilities related to pathological
behavior. This complexity can include different patterns as chaotic and fractal dynamics.

After this introduction, Section 2 presents the mathematical modeling of the cardiac
system. Normal synthetic ECG is analyzed in Section 3. Section 4 presents pathological
synthetic ECGs, showing physiological aspects and their effects on the analysis of cardiac
pathologies with and without stimuli. The frequency transition state is discussed in
Section 5. Finally, the conclusions are discussed in Section 6.

2. Mathematical Modeling

Heart dynamics is essentially represented by an electrical conduction network that
starts within the sinoatrial node—the natural pacemaker, located in the upper part of the
inner wall of the right atrium. It emits 60 to 100 beats per minute in normal operation, being
influenced by the sympathetic and parasympathetic nervous systems. The propagation
of the electrical impulse from this point extends to both atria and the atrioventricular
node (AV). The AV node receives the electrical signal, filters by slowing down in cases of
rhythm disorders, and then directs it to the ventricles. The atrioventricular node is also
influenced by the sympathetic and parasympathetic systems. The electrical impulse is then
transmitted to the His bundle and Purkinje fibers. The His bundle is in the upper part of
the interventricular septum and its fibers pass through the connective but non-excitable
tissue that electrically separates the atria and ventricles. Finally, the electrical impulse
ends up in the Purkinje network, which imposes a signal delay before leading it to the
ventricular walls. The Purkinje fibers are specialized muscle fibers, allowing good electrical
conduction, which ensures the simultaneous contraction of the ventricular walls. All this
propagation process creates the ECG signal.

Cardiac physiology can be modeled by a reduced-order model using a system of three
nonlinear oscillators with delayed connections [2,12]. External stimuli can also be incor-
porated to represent the space-time stimulus, promoting an increase of the reduced-order
model system dimension. On this basis, any input that differs from normal functioning
characterizes the stimuli, being distinct from the central nervous system activity.

This work proposes a novel model based on the oscillator network due to Cheffer et al. [2],
which is based on the original model by Gois & Savi [51]. Essentially, these models employ a
three-oscillator network representing the essential nodes of the electrical activity of the heart:
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sinoatrial node (SA); atrioventricular node (AV); and the His–Purkinje complex (HP). Each
one of these nodes is represented by the model due to Grudzinski and Zebrowski [50], which
is a modification of the classical van der Pol oscillator [48,49]. This model is used in the
modeling of cardiac functions since its dynamical response presents typical characteristics
of biological systems such as limit cycle, synchronization, and chaos. Mathematically, its
nonlinear dynamics is represented by the following differential equation,

..
x + α

.
x(x− ν1)(x− ν2) +

x(x + d)(x + e)
d e

= F(t) (1)

where x represents the electrical activity and the dot represents the time derivative; α defines
the pulse shape, characterizing the time when the heart receives the stimulus; ν1 and ν2
determine the signal amplitude, and to preserve the self-excitatory nature, ν1ν2 < 0; and
F(t) is an external stimulus.

The oscillator network is built by considering three oscillators coupled by Duffing-
type delayed terms that include cubic nonlinearities. The coupling terms represent the
propagation of the electrical pulses through the heart, being an essential aspect to describe
the cardiac rhythms. A time-dependent frequency transition at the sinus node is considered
in order to represent transient behaviors. In addition, external stimuli are incorporated
within the model to represent other effects different from central nervous system stimuli.
On this basis, the proposed model is represented by the following delayed differential
equations [51]:

.
x1 = x2

.
x1 = FSA(t)− αSAx2(x1 − vSA1 )(x1 − vSA2 )−ω

x1(x1 + dSA)(x1 + eSA)

dSAeSA
− kAV−SA

(
x1 + x3

1
)
− kHP−SA

(
x1 + x3

1
)

+kτ
AV−SA

(
xτAV−SA

3 +
(

xτAV−SA
3

)3
)
+ kτ

HP−SA

(
xτHP−SA

5 +
(

xτHP−SA
5

)3
)

.
x3 = x4

.
x4 = FAV(t)− αAV x4(x3 − vAV1 )(x3 − vAV2 )−

x3(x3 + dAV)(x3 + eAV)

dAVeAV
− kSA−AV

(
x3 + x3

3
)
− kHP−AV

(
x3 + x3

3
)

+kτ
SA−AV

(
xτSA−AV

1 +
(

xτSA−AV
1

)3
)
+ kτ

HP−AV

(
xτHP−AV

5 +
(

xτHP−AV
5

)3
)

.
x5 = x6

.
x6 = FHP(t)− αHPx6(x5 − vHP1 )(x5 − vHP2 )−

x5(x5 + dHP)(x5 + eHP)

dHPeHP
− kSA−HP

(
x5 + x3

5
)
− kAV−HP

(
x5 + x3

5
)

+kτ
SA−HP

(
xτSA−HP

1 +
(

xτSA−HP
1

)3
)
+ kτ

AV−HP

(
xτAV−HP

3 +
(

xτAV−HP
3

)3
)

(2)

where τ represents the time delay. By considering that the indices p and q (p 6= q) rep-
resent the SA, AV, or HP nodes, kp−q and kτ

p−q and represent the coupling coefficients

between nodes p and q, respectively, without and with delay; x
τp−q
i = xi

(
t− τp−q

)
and

(x
τp−q
i )3 =

(
xi
(
t− τp−q

))3 are, respectively, the linear and cubic terms with delay, while
xi and x3

i (i = 1, 2, . . ., 6) are, respectively, the linear and cubic terms without delay. The
external excitation is given by Fp(t) = ρpsin

(
ωpt

)
, making the system explicitly time

dependent, which increases the system dimension. Frequency transition at the sinus node
is considered by assuming that the frequency parameter of the sinus node is a function
of time:

ω = ω(t) =
ωa + ωb

2
+

ωa −ωb
2

tanh[γ(t− t0)] (3)

where ωa−ωb
2 is the transition phase between the pulsed state ωb and the pulsed state

ωa and t0 is the transition time. Physiologically, this frequency can represent a physical
activity as well as a disturbance associated with emotional or stress. It may also indicate a
defective state of the sinus node leading to transitions from normal to abnormal rhythm or
transient abnormal rhythms. The dynamical behavior of this frequency is shown in Figure 2
considering three different values of γ. It should be noted that ω = 1 if ωa = ωb = 1.
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The governing equation can be written by considering the general form,

.
x = H(x) + F(t) + K(x) + Kτ(xτ) (4)

where x is the state vector and xτ is the delayed state vector; H(x) represents the system
dynamics; F(t) represents the external stimuli; K(x) represents the coupling terms while
Kτ(xτ) represents the delayed coupling terms.

The mathematical representation of the ECG signal can be built by the combination of
the three oscillator nodes (SA, AV and HP) as follows:

X = ECG = X1 + X3 + X5 (5)

where the following signals to each node are defined

X1 =
c0

3
+ c1x1

X3 =
c0

3
+ c2x3

X5 =
c0

3
+ c3x5

(6)

with c0, c1, c2, and c3 being constant parameters. In addition, it is possible to write:

Y =
d(ECG)

dt
= c1x2 + c2x4 + c3x6 (7)

Since the governing equations are in dimensionless form, the compliance of the di-
mensioning properties is observed by: t[s] : t = cτt, where [cτ ] = s. It can be considered as
the inverse of the ratio between the numerical RR interval RRnum and experimental RR
interval RRexp: 1/ mean(RRnum)

mean(RRexp)
. Besides, the external stimuli are assumed to be harmonic:

FSA(t) = ρSAsin(ωSAt), FAV(t) = ρAVsin(ωAV t), and FHP(t) = ρHPsin(ωHPt). All simu-
lations consider cτ = 1.0 mV, c1 = 2.0 mV, c2 = 0.01 mV, and c3 = 0.15 mV, and the
transition phase is represented by γ = 0.05. Besides, the initial conditions are given by:
x1,3,5 = 0.01 and

.
x1,3,5 = 0.04.

3. Normal Synthetic ECG

The normal ECG can be built by considering the conceptual model with symmetrical
and unidirectional connections (Figure 3). Parameters presented in Table 1 are employed to
build the normal synthetic ECG, being adjusted to match experimental measurements.

Figure 4 presents the normal synthetic ECG generated from numerical simulations
establishing a comparison with the ECG signal from a real recording [54]. Note that the
ECG signal presents the essential waves: P, QRS complex, and T. It should be pointed out
that the synthetic ECG is a combination of each one of the three nodes that are described by
nonlinear oscillators. Figure 5 presents each one of the node behaviors considering both
the time series and the state space.
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4. Pathological Synthetic ECGs

This section is devoted to present cardiac pathologies described from the mathematical
model with different coupling characteristics. In general, irregular dynamics is related
to pathological behaviors, and chaos can be identified in some of them [2]. Initially, the
pathologies do not consider any external stimulus and afterward, pathologies with external
stimuli are discussed. Situations without external stimulus are related to the following
pathological rhythms: ventricular flutter, torsade de pointes, atrial flutter, and atrial fibrilla-
tion. By considering external stimuli, the pathological rhythms captured are the following:
ventricular fibrillation, polymorphic ventricular tachycardia, and supraventricular extrasys-
tole. Table 2 summarizes the employed parameters for numerical simulations, adjusted
from experimental measurements. It should be pointed out that all pathologies discussed
by Cheffer et al. [2] can also be reproduced by the current form of the model.
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Table 2. Heart system parameters for simulation of cardiac pathologies.

SA Oscillator AV Oscillator HP Oscillator External Stimuli Coupling Terms

Ventricular flutter

αSA = 2.0 αAV = 8.0 αHP = 8.5 ρSA = 0.0 kSA−AV = 2.0
vSA1 = 0.6 vAV1 = 0.29 vHP1 = 0.31 ωSA = 0.0 kAV−HP = 0.13

vSA2 = −0.45 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 0.0 kτ
SA−AV = 0.13

dSA = 2.0 dSA = 1.0 dHP = 2.0 ωAV = 0.0 kτ
AV−HP = 8.0

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 0.0 τSA−AV = 0.8
ωHP = 0.0 τAV−HP = 0.1

Torsade de Pointe

αSA = 4.0 αAV = 25.0 αHP = 8.5 ρSA = 0.0 kSA−AV = 5.0
vSA1 = 0.2 vAV1 = 0.29 vHP1 = 0.31 ωSA = 0.0 kAV−HP = 0.13

vSA2 = −0.25 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 0.0 kτ
SA−AV = 0.13

dSA = 2.0 dSA = 1.0 dHP = 2.0 ωAV = 0.0 kτ
AV−HP = 1.5

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 0.0 τSA−AV = 0.8
ωHP = 0.0 τAV−HP = 0.1

Atrial flutter

αSA = 18.0 αAV = 20.0 αHP = 9.8 ρSA = 0.0 kSA−AV = 2.0
vSA1 = 0.6 vAV1 = 0.29 vHP1 = 0.31 ωSA = 0.0 kAV−HP = 3.0

vSA2 = −0.45 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 0.0 kτ
SA−AV = 2.0

dSA = 2.0 dSA = 1.0 dHP = 2.0 ωAV = 0.0 kτ
AV−HP = 3.0

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 0.0 τSA−AV = 0.8
ωHP = 0.0 τAV−HP = 0.1

Atrial fibrillation

αSA = 15.0 αAV = 2.0 αHP = 2.0 ρSA = 0.0 kSA−AV = 1.5
vSA1 = 0.5 vAV1 = 0.29 vHP1 = 0.31 ωSA = 0.0 kAV−HP = 0.005

vSA2 = −0.67 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 0.0 kτ
SA−AV = 0.0

dSA = 2.0 dSA = 1.0 dHP = 2.0 ωAV = 0.0 kτ
AV−HP = 8.0

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 0.0 τSA−AV = 0.8
ωHP = 0.0 τAV−HP = 0.1

Ventricular fibrillation

αSA = 1.0 αAV = 5.0 αHP = 0.9 ρSA = 0.0 kSA−AV = 2.0
vSA1 = 0.05 vAV1 = 0.049 vHP1 = 0.31 ωSA = 0.0 kAV−HP = 20.0

vSA2 = −0.15 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 0.0 kτ
SA−AV = 2.0

dSA = 2.0 dSA = 1.0 dHP = 2.0 ωAV = 0.0 kτ
AV−HP = 80.5

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 20.3 τSA−AV = 0.8
ωHP = 5.733 τAV−HP = 0.1

Polymorphic ventricular tachycardia

αSA = 25.0 αAV = 0.1 αHP = 0.1 ρSA = 0.0 kSA−AV = 0.99
vSA1 = 0.05 vAV1 = 0.049 vHP1 = 0.31 ωSA = 0.0 kAV−HP = 0.008

vSA2 = −0.15 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 0.0 kτ
SA−AV = 2.0

dSA = 2.1 dSA = 1.0 dHP = 2.0 ωAV = 0.0 kτ
AV−HP = 8.49

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 25.0 τSA−AV = 0.46
ωHP = 5.533 τAV−HP = 0.46

Supraventricular extrasystole

αSA = 2.0 αAV = 10.0 αHP = 1.9 ρSA = 0.5 kSA−AV = 2.0
vSA1 = 0.4 vAV1 = 0.29 vHP1 = 0.31 ωSA = 4.48 kAV−HP = 0.0

vSA2 = −0.65 vAV2 = −0.5521 vHP2 = −2.5 ρAV = 1.0 kτ
SA−AV = 2.5

dSA = 2.0 dSA = 1.0 dHP = 2.0 ωAV = 4.48 kτ
AV−HP = 0.165

eSA = 3.0 eSA = 1.91 eHP = 2.0 ρHP = 4.0 τSA−AV = 0.8
ωHP = 4.48 τAV−HP = 0.1



Fractal Fract. 2023, 7, 592 9 of 19

4.1. Ventricular Flutter

Ventricular flutter is a tachycardia affecting the ventricles with a rate greater than
250–350 beats per minute [55]. The ECG is characterized by a sinusoidal waveform with no
clear definition of QRS complex and T wave. It can stop on its own, being possible to be
related to loss of consciousness without being fatal. Nevertheless, it can be a transitional
stage to either ventricular tachycardia or fibrillation, which are more critical arrythmia.
Ventricular flutter can be associated with genetic heart diseases called channelopathies,
including the “long QT syndrome” or LQTS. Figure 6 presents the synthetic ECG signal
compared with the real ECG one [56]. It is noticeable that the ECG signal has a high number
of beats per minute and good agreement between numerical and real data.
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4.2. Torsade de Pointe (TdP)

Torsade de Pointe (TdP) is a specific form of polymorphic ventricular tachycardia (PVT)
occurring in the context of QT interval prolongation. This arrythmia has a morphology
in which the QRS complex twists around the isoelectric line [58]. The diagnosis of the
TdP is related to the evidence of PVT and QT prolongation. TdP is often short-lived and
self-limiting, being associated with hemodynamic instability and collapse. It may also
degenerate into ventricular fibrillation. Physiologically, a prolonged QT reflects on longer
myocyte repolarization due to ion channel dysfunction, which also gives rise to early
depolarizations (ADEs) that can manifest on the ECG as high U waves; if these reach
a threshold amplitude, they can manifest as premature ventricular contractions (PVCs).
TdP is initiated when a PVC occurs during the preceding T wave, known as the “R on T”
phenomenon. The onset of TdP is often preceded by a sequence of short-long-short RR
intervals, known as “pause-dependent” TDPs, with longer pauses associated with more
rapid executions of TdP. The ECG signal that characterizes the TdP pathology is presented
in Figure 7 [57] together with numerical simulations represented by ECG signal and phase
space. The comparison between numerical and real data shows good agreement.
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4.3. Atrial Flutter

Atrial flutter is a regular rapid rhythm of the atria associated with ECGs with a
sawtooth conduction pattern [59]. The heart rates are around 150 beats per minute, but
sometimes the rates may be slower. This pathology can cause progressive heart failure
(weakness of the heart muscle), so symptoms that may persist include shortness of breath,
chest pain, fatigue, dizziness, and palpitations. This risk is particularly high if the heart rates
in atrial flutter are constantly around 150 bpm. A typical atrial flutter real ECG is presented
in Figure 8 [57] together with synthetic time series and phase space. It is noticeable that
there is qualitative good agreement between the numerical and experimental data.
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4.4. Atrial Fibrillation

Atrial fibrillation (AF) is a heart condition that causes an irregular and often abnor-
mally fast heart rhythm, being the most diagnosed arrhythmia [60]. In contrast with the
normal heart rhythm, which stays between 60 and 100 beats per minute at rest, atrial
fibrillation can present a heart rate higher than 140 beats per minute with an irregularity
that often causes poor blood flow in the body. Atrial fibrillation occurs when abnormal
electrical impulses suddenly occur in the atria, replacing the natural pacemaker that can no
longer control the heartbeat, causing irregular pulses. The high-rate rhythm usually makes
the heart muscle unable to relax properly between contractions, reducing the efficiency and
performance of the heart. Figure 9 presents the atrial flutter ECG signal obtained from real
recording [57] and synthetic ECGs. Note the irregular and abnormally fast heart rhythm
and that, once again, it is possible to observe a good agreement between numerical and
experimental data.
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Figure 9. Atrial fibrillation ECG signal. (a) Recorded experimental ECG signal [57]. (b) Synthetic
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4.5. Ventricular Fibrillation

Ventricular fibrillation (VF) is an acute life-threatening, tachycardic arrhythmia of
the heart in which the ventricular rate is greatly increased (over 320 beats per minute).
During ventricular fibrillation, the transmission of electrical impulses from the heart is
disturbed and the muscle fibers contract in a disordered manner, which makes the body’s
blood supply no longer guaranteed [61]. It usually causes a rapid consciousness loss, being
responsible for most sudden deaths during the acute phase of the infarction (over 70%),
and also leading to other arrhythmias (over 80%). Many factors can cause the onset
of ventricular fibrillation such as: coronary disease, myocardial infarction, heart failure,
myocarditis, high blood pressure, and certain congenital heart defects.

Ventricular fibrillation can be represented by considering the conceptual model of the
heart functioning presented in Figure 10, where an external stimulus is of concern. The
dynamical rhythm is presented in Figure 11, showing the experimental ECG [57] together
with synthetic ECG time series and phase space. The good agreement between them should
be pointed out.
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Figure 11. Ventricular fibrillation ECG signal. (a) Recorded experimental ECG signal [57]; (b) Syn-
thetic ECG time series; (c) Synthetic ECG state space.

4.6. Polymorphic Ventricular Tachycardia

Polymorphic ventricular tachycardia (PVT) is a condition that includes a wide range
of other conditions, such as, for instance, torsade de pointes, bidirectional ventricular tachy-
cardia, and other types of ventricular tachycardia with variable morphologies [62]. It can
be induced by catecholamines or stress testing, but some children without apparent heart
disease may also develop it. PVT is part of a myriad of supraventricular and ventricular
arrhythmias occurring sequentially, including various types of polymorphic ventricular
tachycardias, such as bursts of bidirectional ventricular tachycardia. Polymorphic ventricu-
lar tachycardias may show intermediate or atypical morphologies when they develop into
a flutter. Sometimes, QRS morphologies change over time.

The ECG real recording of polymorphic ventricular tachycardia is presented in Fig-
ure 12 together with synthetic ECG presented in the form of time series and phase space.
Once again, a qualitative good agreement is observed.
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4.7. Supraventricular Extrasystole

Supraventricular extrasystoles (SVEs) are premature contractions that originate in the
atrial or junctional tissue (at the atrioventricular junction) [56]. In the basic sinus rhythm,
the SVE appears as a premature P-QRS-T sequence. The P wave presents a morphology that
is often different from that of the sinus P wave and can be positive or negative due to the
fact that the atria are depolarized in an abnormal pathway. Moreover, the P wave can merge
with the T wave of the preceding complex. The QRS complex and T wave are basically
identical to those of sinus sequences (morphology at least 90% similar), except in the case
of early extrasystole on rapid tachycardia (sinus or not), called ventricular aberration.

The supraventricular extrasystole can be represented by the conceptual model pre-
sented in Figure 13, where external stimuli are assumed. ECG real signal and synthetic
ECG are presented in Figure 14, considering time series and phase space. Noticeable are
irregularities related to premature contractions, and a good agreement between real data
and numerical simulations.
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identification of these behaviors. 

Figure 14. Supraventricular extrasystole ECG signal. (a) Recorded experimental ECG signal [57].
(b) Synthetic ECG time series. (c) Synthetic ECG state space.

5. Frequency Transition State

The SA node is the natural pacemaker and disturbances in its functioning induces
changes in the cardiac rhythm. In this regard, the parameter ω = ω(t) can represent
these changes, describing transient effects responsible for the variations between different
rhythms. This section treats some situations that illustrate the ability of this parameter to
represent transition regimes. Table 3 illustrates parameters that are employed to represent
four different situations: transition between normal rhythm and atrial flutter; transition
between normal rhythm and ventricular flutter; transition between ventricular fibrillation
and normal rhythm; transition between ventricular tachycardia and normal rhythm. These
results point to the transient behavior of the SA node generating transient behaviors that
appear in ECG signals.

Table 3. Transient behaviors based on the signal parameters ω(t).

Behavior of the
Cardiac System
ω(t)

[
rad s−1]

Transition from
Normal Rhythm
to Atrial Flutter

Transition from
Normal Rhythm

to Ventricular
Flutter

Transition from
Ventricular

Fibrillation to
Normal Rhythm

Transition from
Ventricular

Tachycardia to
Normal Rhythm

ωb 1.0 1.0 6.0 7.8
ωa 0.4 35.0 0.95 0.85

Initially, the transition from normal rhythm to atrial flutter is of concern. Figure 15
shows ECGs represented by time series and state space. Both behaviors are highlighted
in the zoomed-in details, and noticeable is an alternation between different dynamical
patterns describing the behavior of atrial flutter (as presented in Figure 8) and dynam-
ics characterizing the behavior of a normal ECG. Details depicted in Figure 15 help the
identification of these behaviors.

The transition from normal rhythm to ventricular flutter is now in focus and Figure 16
presents these transitions in the form of time series and phase space. Once again, it is
possible to identify different transition regimes, now changing from normal to ventricular
flutter rhythms.
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Figure 17 shows the analysis of the transition from ventricular fibrillation to normal
rhythm. The observation of this case is different from those observed in the previous
situations because the transition starts from a pathological rhythm, changing to a normal
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rhythm. On the other hand, Figure 18 presents a transition from ventricular tachycardia,
characterized by rapid heartbeat, to normal rhythm. Based on these results, it is possible
to conclude that transition regimes can be properly described by the sinoatrial node time
dependent parameter.
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6. Conclusions

This work deals with cardiac rhythms analyzed from a nonlinear dynamics perspective
considering a three-oscillator model with Duffing-type delayed connections. In addition,
transient behavior is represented by a sinoatrial node time-dependent parameter. The
model is capable of representing a wide variety of responses, including normal and patho-
logical rhythms characterized by ECG signals. Numerical simulations show the following
rhythms: normal rhythm, ventricular flutter, torsade de pointe, atrial flutter, atrial fibrilla-
tion, ventricular fibrillation, polymorphic ventricular tachycardia, and supraventricular
extrasystole. In addition, although it is not presented in this paper, all the pathologies
discussed in Cheffer et al. [2] have been represented. The transient behavior of the sinoatrial
node shows that transitions from normal to pathological rhythms are properly represented.
In this regard, the following transient behaviors are identified: transition from normal
rhythm to atrial flutter; transition from normal rhythm to ventricular flutter; transition
from ventricular fibrillation to normal rhythm; transition from ventricular tachycardia
to normal rhythm. On this basis, a Duffing-type connection seems to be an interesting
approach to enhance the cardiac description and time-dependent parameters, allowing
a proper description of transient behaviors among different heart rhythms. The broad
variety of rhythms described by the reduced-order mathematical model encourages its
use in different situations such as rhythm identification, artificial pacemakers, and con-
troller design. Besides, the nonlinear dynamics perspective seems to be essential for the
correct comprehension of the cardiac system behavior, being useful to classify and identify
pathological behavior.
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