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Abstract: Among various data analysis methods, classifier ensemble (data classification) and commu-
nity network detection (data clustering) have aroused the interest of many scholars. The maximum
operator, as the fusion function, was always used to fuse the results of the base algorithms in the
classifier ensemble and the membership degree of nodes to classes in the fuzzy community. It is
vital to use generalized fusion functions in ensemble and community applications. Since the Pseudo
overlap function and the Choquet-like integrals are two new fusion functions, they can be combined
as a more generalized fusion function. Along this line, this paper presents new classifier ensemble
and fuzzy community detection methods using a pseudo overlap pair (POP) Choquet-like integral
(expressed as a fraction). First, the pseudo overlap function pair is proposed to replace the product
operator of the Choquet integral. Then, the POP Choquet-like integrals are defined to perform the
combinatorial step of ensembles of classifiers and to generalize the GN modularity for the fuzzy com-
munity network. Finally, two new algorithms are designed for experiments, and some computational
experiments with other algorithms show the importance of POP Choquet-like integrals. All of the
experimental results show that our algorithms are practical.

Keywords: data analysis; pseudo overlap function; Choquet-like integral; classifier ensemble;
community network detection

1. Introduction

A decade ago, data seemed primarily the preserve of researchers and a few professional
managers. It has entered our everyday lexicon with the constant refinement and iteration
of hardware and software, and our digital world generates and consumes vast amounts of
data daily. Data analysis topics include classification, clustering, mining, data association
analysis, etc. This paper mainly studies data classification and clustering algorithms in
data analysis.

1.1. Classifier Ensembles and Choquet Integrals

Data classification is a model that describes and distinguishes data classes based on
existing data sets. Usually, such a model is also called a classifier. The commonly used
classifier algorithms include the Naive Bayes method [1], support vector machine [2],
decision tree [3], artificial neural network [4], k-nearest neighbor [5], etc. At the same time,
in real life, a single classification algorithm can only handle some specific types of data,
which makes the classification work tedious. Therefore, people are eager to implement a
classification algorithm that can deal with various types of data, and classifier ensembles
can do this work well.

An ensemble of classifiers is a mechanism that fuses multiple classifiers, which consists
of two steps: classification and fusion. It combines the benefits of multiple classifiers so that

Fractal Fract. 2023, 7, 588. https://doi.org/10.3390/fractalfract7080588 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7080588
https://doi.org/10.3390/fractalfract7080588
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-0293-9236
https://doi.org/10.3390/fractalfract7080588
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7080588?type=check_update&version=2


Fractal Fract. 2023, 7, 588 2 of 25

any type of data set can be classified well. It also reduces the error generated by a single
classifier, namely overfitting. Recently, in the literature, classifier ensemble has been used
in areas such as disease detection [6], social networks [7] and mood recognition [8]. In these
articles, the authors adopted a classifier ensemble for the current context, which yielded
good results. However, they simply replaced or improved the base classifier algorithm
of classifier ensembles and chose a simple approach to the fusion process, such as voting
and weighting.

Obviously, using the Choquet integral as a fusion operator is more complex, and many
scholars have used this ensemble approach to study in different contexts. In the literature,
the author of [9] used the Choquet integral to fuse multiple classifiers to design credit
score models. The results show that this model improves the accuracy of the classification
algorithm. In [8], the author used the Choquet integral to integrate the segmentation results
of multiple classifiers to obtain a better image segmentation scheme. In [10], the author used
a classifier ensemble based on the Choquet integral to classify malware in smartphones and
experimentally verified that the method is superior to a single classifier, with an accuracy
of 95.08%. Especially, in [11], Batista et al. thought that it was more appropriate to replace
the product operator with the same property in the Choquet integral with a quasi-overlap
function that did not require associativity and continuity, so the Choquet-like integral based
on quasi-overlap functions (CQO integral) was constructed. The author used the CQO
integral to solve the classifier ensemble problem and compared it with other ensemble
algorithms, and proved that it has advantages in solving the classifier ensemble problem.

Inspired by the CQO integral in [11] which is shown as

CO
m(~l) =

n
∑

i=1

(
O(l(i), m(A(i)))−O(l(i−1), m(A(i)))

)
,

we find the following two urgent tasks:

(1) the CQO integral did not map to the [0,1] interval, similarly to many fusion functions,
but rather to the [0,n] interval;

(2) the CQO integral used the same O before and after replacing the product in the
Choquet integral, which may lead to inconspicuous results for different inputs.

Therefore, this paper aims to design a new Choquet-like integral that not only naturally
maps to the [0,1] interval but also replaces the product operator of the Choquet integral with
two different pseudo overlap functions, which we named the pseudo overlap pair (POP)
Choquet-like integral. We face two important questions for that: does the POP Choquet-like
integral meet the boundary conditions and contacting (pre)aggregate functions? Does the
POP Choquet-like integral still play a good role in classifier ensemble?

To solve these problems, we have certain requirements for selecting a pseudo-function
pair, and some theories prove that the POP Choquet-like integral is a pre-aggregate function
under some conditions. Moreover, we will use the POP Choquet-like integral as the fusion
function for the classifiers ensemble and design an algorithm for experimental verification.

1.2. Community Network Detection and Choquet Integrals

Scholar Jain pointed out in [12] that clustering is classifying patterns (observations,
data items, or feature vectors) without supervision. There are many clustering methods,
and the common ones are nearest neighbor clustering [13]; fuzzy clustering [14]; artificial
neural network clustering [15], etc. All of the above clustering methods can be used for
complex network detection.

Complex network detection has been a popular topic in recent years because it involves
a wide and deep range, including but not limited to telecommunications networks [16],
community networks [17], traffic networks [18], and biological networks [19]. Among them,
the nodes of the community networks are usually composed of people, and the connection
between the nodes is dominated by familiarity, emotion, information, and other factors.
Generally speaking, a community in a network is a subgraph characterized by close
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connections between nodes within the subgraph but sparse connections between subgraphs.
The study of community structure is significant in detecting community networks.

Considering the overlapping character of the complex community networks, the fuzzy
community detection (FCD) methods were designed to calculate the membership degree
of nodes in each community network. Many FCD methods previously proposed are only
partially suitable for fuzzy frameworks, such as [20,21]. Specifically, in [22], the author used
the overlap and the grouping functions to aggregate the membership of nodes to classes,
generalized the classical GN modularity, and designed a community network detection
algorithm that is completely suitable for fuzzy frameworks. However, when designing this
algorithm, the author still selected the maximum as a group function; using the maximum
function as an average could limit the results. Using fusion functions with non-average
properties in most applications is more appropriate.

Generalized Choquet integrals are a class of non-average sum vector aggregation
functions with good performance. Therefore, in this paper, the POP Choquet-like integral
is used to replace the maximum operation in the definition of modularity in [22], which
improves the membership processing of nodes after fuzzy clustering and can effectively
detect overlapping communities. Moreover, we replace the overlap function in [22] with a
pseudo overlap function that does not require commutativity, which is more in line with
the actual situation. Then we will design a community network detection algorithm to
prove our FCD method is effective.

1.3. Organizational Structure of This Paper

The rest of this article is framed as follows: Section 2 reviews pseudo overlap functions,
Choquet integral and its generalizations, and preaggregate function. In Section 3, we intro-
duce the pseudo overlap function pair and define the POP Choquet-like integral, discussing
its properties in some cases. In Sections 4 and 5, we design a new ensemble classification
algorithm and a new community network detection algorithm by using the defined POP
Choquet-like integrals and design some experiments to prove their performance. Finally,
Section 6 summarizes the full paper.

2. Preliminaries

This section aims to introduce the basic theories necessary for this article.

Definition 1 ([23]). Let
−→
l = (l1, . . . , ln) be a non-zero real vector of n-dimension. If for any−→u =

(u1, . . . , un) ∈ [0, 1]n and c > 0, −→u + c
−→
l = (u1 + cl1, . . . , un + cln) ∈ [0, 1]n, the function

Z : [0, 1]n → [0, 1] satisfies Z(u1 + cl1, . . . , un + cln) > Z(u1, . . . , un), then Z is
−→
l -increasing.

Definition 2 ([23]). PAF : [0, 1]n → [0, 1] is said to be an n-dimensional pre-aggregate function
if it satisfies the all following conditions.

(PAF1) directionally l-increasing: there exists a non-zero vector
−→
l = (l1, . . . , ln) ∈ [0, 1]n

such that the function PAF is
−→
l increasing;

(PAF2) PAF(0, . . . , 0) = 0;
(PAF3) PAF(1, . . . , 1) = 1.

Definition 3 ([24]). A pseudo overlap function PO : [0, 1]2 → [0, 1] is a binary function that
satisfies all of the following properties:

(PO1) PO(x, y) = 0 if and only if xy = 0;
(PO2) PO(x, y) = 1 if and only if xy = 1;
(PO3) PO is incremental;
(PO4) PO is continuous.

In Table 1, we give some examples of pseudo overlap functions.
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Table 1. Pseudo overlap functions.

Sequence Number Nomenclature Definition

1 POα POα(x, y) = xy.

2 POβ POβ(x, y) =

{
2xy
x+y , x + y 6= 0,
0, x + y = 0.

3 POχ POχ(x, y) = 2xy
1+xy .

4 POδ POδ(x, y) = max
{

min
{

x, y
2
}

, x + y− 1
}

.
5 POε POε(x, y) = 0 · 1xy2 + 0.9 max{0, x + y− 1}.
6 POφ POφ(x, y) = x2y− 0.5x2y(1− x)(1− y).
7 POϕ POϕ(x, y) = min

{
x2, y2}

8 POγ POγ(x, y) =

{
2xy

0.5x+1.5y , 0.5x + 1.5y 6= 0,
0, others.

9 POη POη(x, y) = 2x2y2

1+x2y2 .

10 POι POι(x, y) =
{ xy

0.5x+0.5y , 0.5x + 0.5y 6= 0,
0, others.

11 POκ POκ(x, y) =

{
3xy

x+2y , x + 2y 6= 0,
0, others.

12 POλ POλ(x, y) = 2x10y10

1+x10y10

13 POµ POµ(x, y) = x2y + x2y(1− x)(1− y)
14 POν POν(x, y) = min

{
x3, y3}

15 POπ POπ(x, y) = xy2

Definition 4 ([25]). Let N = {1, 2, · · · , n}. ∀X ⊆ Y ⊆ N. If the following conditions are met,
the function m : P(N)→ [0, 1] will be called a fuzzy measure.

(m1) m(∅) = 0;
(m2) m(N) = 1;
(m3) Incremental: m(X) ≤ m(Y).

Definition 5 ([25]). Let N = {1, 2, · · · , n}, H ⊆ N. The most classical fuzzy measure is the
uniform fuzzy measure, which is defined as follows:

mU(H) =
|H|
n

.

Some of the functions in Table 1 are of the same family, such as pseudo-overlapping
functions with serial numbers 2 and 8, where the arguments α are 1 and 0.5 for pseudo-
overlapping function family

PO(x, y) =

{
2xy

αx+(2−α)y , αx + (2− α)y 6= 0,
0 , αx + (2− α)y = 0.

α ∈ (0, 2),

respectively. Due to the subsequent need to distinguish the size relationships between
functions, it is necessary to determine the parameters of each family of functions. After
many experiments, the pseudo-overlapping functions of these deterministic parameters in
Table 1 are best fused in the two algorithms in this paper.

Another classical fuzzy measure is the most commonly used one, the gλ fuzzy measure.

Definition 6 ([26]). Let λ ≥ −1, N = {1, 2, · · · , n}. Function m : P(N)→ [0, 1] satisfies the
gλ law that for any disjoint sequence {E1, E2, · · · , En, · · · } in P(N), and their union is also in
P(N), there is

m(
∞⋃

i=1

Ei) =


1
λ

{
∞
∏
i=1

[1 + λm(Ei)]− 1
}

, λ 6= 0,
∞
∑

i=1
m(Ei) , λ = 0.

(1)

Here, the λ coefficient is obtained by solving the following equation:
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λ + 1 = ∏
x∈A

(1 + λm({x})).

The formula (1) is called gλ fuzzy measure. When gλ fuzzy measure is used in our experiment,
each x ∈ Ei initial measure value m({x}) is determined by the membership value in the initial
classification result.

Definition 7 ([25]). Let m : P(N) → [0, 1] be a fuzzy measure. For any~l = (l1, l2, · · · , ln) ∈
[0, 1]n, the discrete Choquet integral Cm : [0, 1]n → [0, 1] is constructed as follows:

Cm(~l) =
n

∑
i=1

((
l(i) ·m(A(i))

)
−
(

l(i−1) ·m(A(i))
))

,

where (l(1), . . . , l(n)) is an increasing permutation of~l, i.e., 0 ≤ l(1) ≤ · · · ≤ l(n), and the initial
value l(0) = 0. A(i) = {(i), · · · , (n)} is the subset of indices corresponding to the n− i + 1 largest
components of~l.

Lucca et al. [23] constructed a series of Choquet-like integrals by replacing the product
operators of Choquet integrals with t-norm, copula, and fusion function pair, which are
proven to have good performance in fuzzy-rule classification systems (FRBCS). In this
paper, Lucca’s recently-constructed Choquet-like integral based on pair of fusion functions
is referred to as C(F1,F2)

m . The definition of C(F1,F2)
m is as follows:

Definition 8 ([23]). Let m : P(N) → [0, 1] be a fuzzy measure, (F1, F2) be a pair of fusion
functions satisfying ∀x, y ∈ [0, 1], F1(x, y) ≥ F2(x, y). For any~l = (l1, l2, · · · , ln) ∈ [0, 1]n,
the integral C(F1,F2)

m : [0, 1]n → [0, 1] is constructed as follows:

C(F1,F2)
m (~l) = min

{
1, l(1) +

n

∑
i=2

(
F1(l(i), m(A(i)))− F2(l(i−1), m(A(i)))

)}
,

where (l(1), . . . , l(n)) is an increasing permutation of~l, i.e., 0 ≤ l(1) ≤ · · · ≤ l(n), and the initial
value l(0) = 0. A(i) = {(i), · · · , (n)} is the subset of indices corresponding to the n− i + 1 largest
components of~l.

To improve the quality of the classifier ensemble, in [11], the CQO integral is used as
the fusion function in an ensemble. The definition of CQO is as follows

Definition 9 ([11]). Let m : P(N) → [0, 1] be a fuzzy measure, O : [0, 1]2 → [0, 1] be a quasi
overlap function. for any~l = (l1, l2, · · · , ln) ∈ [0, 1]n, the CQO integral CO

m : [0, 1]n → [0, n] is
constructed as follows:

CO
m(~l) =

n

∑
i=1

(
O(l(i), m(A(i)))−O(l(i−1), m(A(i)))

)
,

where (l(1), . . . , l(n)) is an increasing permutation of~l, i.e., 0 ≤ l(1) ≤ · · · ≤ l(n), and the initial
value l(0) = 0. A(i) = {(i), · · · , (n)} is the set of index that corresponds to the previous n− i + 1
largest element.

3. POP Choquet-like Integral

Although several Choquet-like integrals have been proposed for various scenarios,
their structures have always been somewhat unnatural. For example, C(F1,F2)

m directly maps
integral values greater than 1 to 1, making it impossible to compare the results. In addition,
the integral CO

m maps the value to [0, n]. However, the codomain of the common fusion
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function is [0, 1], so it needs some restrictions to reduce its range to [0, 1], which makes the
application more difficult.

In addition, since the product operator in the original Choquet integral does not
force commutativity and associativity, the pseudo overlap function is a good substitution
function. Additionally, the non-average function is more competitive than the average
function in many application scenarios. Therefore, in this section, we use pseudo overlap
function pair (PO1, PO2) to generalize the Choquet integral to obtain the POP Choquet-like
integral. The following is its construction procedure.

Definition 10. For given two pseudo overlap functions PO1, PO2 : [0, 1]2 → [0, 1]. (PO1, PO2)
is called a pseudo overlap function pair as long as it satisfies PO1(x, y) ≥ PO2(x, y) for any
x, y ∈ [0, 1].

We compare the size of the 16 functions in Table 1 and list 15 pseudo-overlap function
pairs in Table 2.

Table 2. The size relation of pseudo overlap functions in Table 1.

Sequence Number Pseudo Overlap Function Pair Expression

1 (POβ, POα) POβ(x, y) ≥ POα(x, y), ∀x, y ∈ [0, 1]
2 (POβ, POχ) POβ(x, y) ≥ POχ(x, y), ∀x, y ∈ [0, 1]
3 (POβ, POδ) POβ(x, y) ≥ POδ(x, y), ∀x, y ∈ [0, 1]
4 (POβ, POε) POβ(x, y) ≥ POε(x, y), ∀x, y ∈ [0, 1]
5 (POβ, POφ) POβ(x, y) ≥ POφ(x, y), ∀x, y ∈ [0, 1]
6 (POχ, POλ) POχ(x, y) ≥ POλ(x, y), ∀x, y ∈ [0, 1]
7 (POϕ, POν) POϕ(x, y) ≥ POν(x, y), ∀x, y ∈ [0, 1]
8 (POα, POϕ) POα(x, y) ≥ POϕ(x, y), ∀x, y ∈ [0, 1]
9 (POα, POν) POα(x, y) ≥ POν(x, y), ∀x, y ∈ [0, 1]

10 (POι, POα) POι(x, y) ≥ POα(x, y), ∀x, y ∈ [0, 1]
11 (POκ , POα) POκ(x, y) ≥ POα(x, y), ∀x, y ∈ [0, 1]
12 (POγ, POα) POγ(x, y) ≥ POα(x, y), ∀x, y ∈ [0, 1]
13 (POγ, POδ) POγ(x, y) ≥ POδ(x, y), ∀x, y ∈ [0, 1]
14 (POγ, POη) POγ(x, y) ≥ POη(x, y), ∀x, y ∈ [0, 1]
15 (POα, POπ) POα(x, y) ≥ POπ(x, y), ∀x, y ∈ [0, 1]

For the n-dimensional incremental vector~l = (l1, l2, · · · , ln) ∈ [0, 1]n, since its com-
ponents may contain duplicates, the order of components of the incremental vector~l can
be controversial in constructing the POP Choquet-like integral afterward. Hence, vector~l
needs to be reduced in dimension to ensure that it has no duplicate components.

Definition 11. For a given~l = (l1, l2, · · · , ln) ∈ [0, 1]n(n ∈ N, n ≥ 2). The dimensionality
reduction function is defined as DR : [0, 1]n → [0, 1] ∪ [0, 1]2 ∪ · · · ∪ [0, 1]n, in the form:

DR(l1, l2, · · · , ln) = ~y = (y1, y2, · · · , yk), (1 ≤ k ≤ n)

which satisfies the following conditions:
(DR1) yi < yi+1, i = 1, 2, · · · , k− 1;
(DR2) ∀yi ∈ ~y, ∃lj, lj+1, · · · , lj+p, 1 ≤ j ≤ n, 0 ≤ p ≤ n− j, s.t.yi = lj = lj+1 = · · · =

lj+p.

After defining the pseudo overlap function pair and dimensionality reduction function,
we can design a POP Choquet-like integral. After that, we will also explore the boundary
conditions for POP Choquet-like integral and the conditions under which the POP Choquet-
like integral is a pre-aggregate function.
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Definition 12. Let N = {1, 2, · · · n} be a finite set, m : P(N) → [0, 1] be a fuzzy mea-
sure, (PO1, PO2) be a pseudo overlap function pair that satisfying ∀x, y ∈ [0, 1], PO1(x, y) ≥
PO2(x, y), DR : [0, 1]n → [0, 1] ∪ [0, 1]2 ∪ · · · ∪ [0, 1]n be a dimensionality reduction function.
For any ~x = (x1, x2, · · · , xn) ∈ [0, 1]n, POP Choquet-like integral C(PO1,PO2)

m : [0, 1]n → [0, 1] is
defined as follows:

C(PO1,PO2)
m (~x) =

k
∑

j=1

(
PO1(y(j), m(A(j)))− PO2(y(j−1), m(A(j)))

)
k

,

of which

~y = (y1, y2, · · · , yk) = DR(x1, x2, · · · , xn),

and (y(1), . . . , y(k)) is an increasing permutation on ~y, that is, 0 ≤ y(1) ≤ . . . ≤ y(k) , where
y(0) = 0 and A(j) = {(j), · · · , (k)} is the subset of indices corresponding to the k− j + 1 largest
components of ~y.

Table 3 lists fifteen POP Choquet-like integrals based on pseudo overlap function pairs.

Remark 1. C(PO1,PO2)
m is well defined for arbitrary pairs of pseudo overlap functions and fuzzy

measures m.
Obtained by Definition 12, for any given ~x = (x1, x2, · · · , xn) ∈ [0, 1]n, dimensionality

reduction function
DR(x1, x2, · · · , xn) = (y1, y2, · · · , yk).

and (y(1), . . . , y(k)) is an increasing permutation on ~y, so

C(PO1,PO2)
m (x1, x2, · · · , xn) =

k
∑

j=1
(PO1(y(j),m(A(j)))−PO2(y(j−1),m(A(j))))

k

≥

k
∑

j=1
(PO1(y(j),m(A(j)))−PO1(y(j−1),m(A(j))))

k
≥ 0.

C(PO1,PO2)
m (x1, x2, · · · , xn) =

k
∑

j=1
(PO1(y(j),m(A(j)))−PO2(y(j−1),m(A(j))))

k

≤

k
∑

j=1
PO1(y(j),m(A(j)))

k
≤ 1.

Proposition 1. Let (PO1, PO2) be a pair of pseudo overlap functions, m be a fuzzy measure, DR be a
dimensionality reduction function. We have C(PO1,PO2)

m (0, 0, · · · , 0) = 0, and C(PO1,PO2)
m (1, 1, · · · ,

1) = 1.

Proof.
C(PO1,PO2)

m (0, 0, · · · , 0) = C(PO1,PO2)
m (0)

= PO1(0, m(A(1)))− 0
= 0.

C(PO1,PO2)
m (1, 1, · · · , 1) = C(PO1,PO2)

m (1)
= PO1(1, m(A(1)))− 0
= PO1(1, 1)
= 1.
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Table 3. Example of POP Choquet-like integrals.

Sequence Number POP Integral Expression

1 C
(POβ ,POα)
m C

(POβ ,POα)
m (~x) =


k
∑

j=1

(
2y(j) ·m(A(j))

y(j)+m(A(j))
−y(j−1) ·m(A(j))

)
k , y(j) + m(A(j)) 6= 0

0 , y(j) + m(A(j)) = 0

2 C
(POβ ,POχ)
m C

(POβ ,POχ)
m (~x) =


k
∑

j=1

(
2y(j) ·m(A(j))

y(j)+m(A(j))
−

2y(j−1) ·m(A(j))

1+y(j−1) ·m(A(j))

)
k , y(j) + m(A(j)) 6= 0

0 , y(j) + m(A(j)) = 0

3 C
(POβ ,POδ)
m C

(POβ ,POδ)
m (~x) =


k
∑

j=1

(
2y(j) ·m(A(j))

y(j)+m(A(j))
−max

{
min

{
y(j−1),

m(A(j))
2

}
,y(j−1)+m(A(j))−1

})
k , y(j) + m(A(j)) 6= 0

0 , y(j) + m(A(j)) = 0

4 C
(POβ ,POε)
m C

(POβ ,POε)
m (~x) =


k
∑

j=1

(
2y(j) ·m(A(j))

y(j)+m(A(j))
−0.1·y(j−1) ·m(A(j))

2+0.9·max{0,y(j−1)+m(A(j))−1}
)

k , y(j) + m(A(j)) 6= 0
0 , y(j) + m(A(j)) = 0

5 C
(POβ ,POφ)
m C

(POβ ,POφ)
m (~x) =


k
∑

j=1

(
2y(j) ·m(A(j))

y(j)+m(A(j))
−y2

(j−1) ·m(A(j))+0.5·y2
(j−1) ·m(A(j))·(1−y(j−1))·(1−m(A(j))

)
k , y(j) + m(A(j)) 6= 0

0 , y(j) + m(A(j)) = 0

6 C(POχ ,POλ)
m C(POχ ,POλ)

m (~x) =

k
∑

j=1

(
2y(j) ·m(A(j))

1+y(j) ·m(A(j))
−

2y10
(j−1) ·m(A(j))

10

1+y10
(j−1) ·m(A(j))

10

)
k

7 C(POα ,POν)
m C(POα ,POν)

m (~x) =

k
∑

j=1

(
y(j) ·m(A(j))−min

{
y3
(j−1),m

3(A(j))
})

k

8 C
(POϕ ,POν)
m C

(POϕ ,POν)
m (~x) =

k
∑

j=1

(
min

{
y2
(j),m

2(A(j))
}
−min

{
y3
(j−1),m

3(A(j))
})

k

9 C
(POα ,POϕ)
m C

(POα ,POϕ)
m (~x) =

k
∑

j=1

(
y(j) ·m(A(j))−min

{
y2
(j−1),m

2(A(j))
})

k

10 C(POι ,POα)
m C(POι ,POα)

m (~x) =


k
∑

j=1

(
y(j) ·m(A(j))

0.5·(y(j)+m(A(j)))
−y(j−1) ·m(A(j))

)
k , y(j) + m(A(j)) 6= 0

0 , y(j) + m(A(j)) = 0

11 C(POκ ,POα)
m C(POκ ,POα)

m (~x) =


k
∑

j=1

(
3·y(j) ·m(A(j))

y(j)+2·m(A(j))
−y(j−1) ·m(A(j))

)
k , y(j) + 2 ·m(A(j)) 6= 0

0 , y(j) + 2 ·m(A(j)) = 0

12 C(POγ ,POα)
m C(POγ ,POα)

m (~x) =


k
∑

j=1

(
2·y(j) ·m(A(j))

0.5·y(j)+1.5·m(A(j))
−y(j−1) ·m(A(j))

)
k , 0.5 · y(j) + 1.5 ·m(A(j)) 6= 0

0 , 0.5 · y(j) + 1.5 ·m(A(j)) = 0

13 C(POγ ,POδ)
m C(POγ ,POδ)

m (~x) =


k
∑

j=1

(
2·y(j) ·m(A(j))

0.5·y(j)+1.5·m(A(j))
−max

{
min

{
y(j−1),

m(A(j))
2

}
,y(j−1)+m(A(j))−1

})
k , 0.5 · y(j) + 1.5 ·m(A(j)) 6= 0

0 , 0.5 · y(j) + 1.5 ·m(A(j)) = 0

14 C
(POγ ,POη)
m C

(POγ ,POη)
m (~x) =


k
∑

j=1

(
2·y(j) ·m(A(j))

0.5·y(j)+1.5·m(A(j))
−

2·y2
(j−1) ·m

2(A(j))

1+y2
(j−1) ·m

2(A(j))

)
k , 0.5 · y(j) + 1.5 ·m(A(j)) 6= 0

0 , 0.5 · y(j) + 1.5 ·m(A(j)) = 0

15 C(POα ,POπ)
m C(POα ,POπ)

m (~x) =

k
∑

j=1

(
y(j) ·m(A(j))−y5

(j−1) ·m(A(j))
5
)

k

Proposition 2. Let (PO1, PO2) be a pair of pseudo overlap functions, m be a fuzzy measure,
and DR be a dimensionality reduction function. C(PO1,PO2)

m is idempotent if and only if PO1 has a
neutral element.

Proof. Let l ∈ [0, 1], then

C(PO1,PO2)
m (l, l, · · · , l) = C(PO1,PO2)

m (l)
= PO1(l, m(A(1)))− PO2(0, m(A(1)))

= PO1(l, m(A(1)))

= PO1(l, 1).

So C(PO1,PO2)
m is idempotent if and only if PO1(l, 1) = l.

Example 1. POP Choquet-like integral C(
POα ,POϕ)

m is idempotent because POα(x, y) = xy
satisfies POα(x, 1) = x.
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Proposition 3. Let (PO1, PO2) be a pair of pseudo overlap functions and m be a fuzzy measure.
C(PO1,PO2)

m is a pre-aggregate function if the following conditions are true:

(1) ∂PO1(v,w)
∂v ≥ ∂PO2(u,w)

∂u , ∀u, v, w ∈ [0, 1], u < v;

(2) PO1(ku, v) = kPO1(u, v), PO2(ku, v) = kPO2(u, v), ∀x, y ∈ [0, 1] and k ∈ (0, 1].

Proof. We only need to prove C(PO1,PO2)
m is

−→
1 = (1, . . . , 1)-increasing, that is, for each

u, v, w, c, u + c, v + c ∈ [0, 1] and u < v, PO1(v, w)− PO2(u, w) ≤ PO1(v + c, w)− PO2(u +
c, w) is established.

From condition 1, for each sufficiently small c, we can obtain the following:

PO1(v + c, w)− PO1(v, w)

c
≥ PO2(u + c, w)− PO2(u, w)

c
,

PO1(v + c, w)− PO1(v, w) ≥ PO2(u + c, w)− PO2(u, w),
PO1(v + c, w)− PO2(u + c, w) ≥ PO1(v, w)− PO2(u, w).

From condition 2, for each not sufficiently small c, always exist k ∈ (0, 1] makes
c1 = c/k sufficiently small and greater than 0, then we have

kPO1(v/k + c1, w)− kPO1(v/k, w)

c1
≥ kPO2(u/k + c1, w)− kPO2(u/k, w)

c1
,

PO1(v/k + c1, w)− PO1(v/k, w) ≥ PO2(u/k + c1, w)− PO2(u/k, w),

think of v/k + c1 as v + c, u/k + c1 as u + c, then we have

PO1(v + c, w)− PO1(v, w) ≥ PO2(u + c, w)− PO2(u, w),
PO1(v + c, w)− PO2(u + c, w) ≥ PO1(v, w)− PO2(u, w).

Therefore, for each u, v, w, c, u + c, v + c ∈ [0, 1], and u < v, PO1(v, w)− PO2(u, w) ≤
PO1(v + c, w)− PO2(u + c, w) is established, C(PO1,PO2)

m is a pre-aggregate function.

Remark 2. Condition 2 of Proposition 3 is a special kind of homogeneity, similar to the homogeneity
proposed in [27]. Specifically, according to the definition given in [27], when PO1 and PO2 are
overlap functions, we have

PO1(kx, ky) = kPO1(x, ky)
= kPO1(ky, x)
= k2PO1(y, x)
= k2PO1(x, y).

The same is true for PO2. Therefore, condition 2 of Proposition 3 is a special homogeneity.

Example 2. C(POα ,POπ)
m is a pre-aggregate function because

(1) ∂POα(x,y)
x = y, ∂POπ(x,y)

x = y2 and x, y ∈ [0, 1], so ∂POα(x,y)
x ≥ ∂POπ(x,y)

x .
(2) POα(kx, y) = kxy, POπ(kx, y) = kxy2, satisfying the (2) of Proposition 3.

Similarly, all POP integrals C(PO1,PO2)
m that satisfy PO1 = PO2 are pre-aggregate functions.

To illustrate the advantages of C(PO1,PO2)
m proposed by us, an example is given below

to preliminarily compare it with integral C(F1,F2)
m and integral CO

m. To facilitate calculation,
the uniform fuzzy measure is selected.
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Example 3. Given two randomly increasing arrays −→a = (0.6, 0.7, 0.8, 0.9) and
−→
b = (0.8, 0.8, 0.9, 0.9). We take them as input and calculate them in C(F1,F2)

m , CO
m , and C(PO1,PO2)

m ,
and analyze the results.

First, to make the comparison easier, select integral C(GM,TL)
m in [23], COC

m in [11],

and C(POχ ,POλ)
m defined in Section 3. It is easy to obtain the fuzzy measure value of −→a as (1.0, 0.75,

0.5, 0.25). For input, the three integrals calculation steps are as follows:

C(GM,TL)
m (~a) = min

{
1, GM(0.6, 1.0) + GM(0.7, 0.75)− TL(0.6, 0.75) + GM(0.8, 0.5)
−TL(0.7, 0.5) + GM(0.9, 0.25)− TL(0.8, 0.25)

}
= min{1, 2.01}
= 1.

COC
m (~a) = OC(0.6, 1.0) + OC(0.7, 0.75)−OC(0.6, 0.75) + OC(0.8, 0.5)

−OC(0.7, 0.5) + OC(0.9, 0.25)−OC(0.8, 0.25)
= 0.70.

C(POχ ,POλ)
m (~a) =

POχ(0.6, 1.0) + POχ(0.7, 0.75)− POλ(0.6, 0.75) + POχ(0.8, 0.5)
−POλ(0.7, 0.5) + POχ(0.9, 0.25)− POλ(0.8, 0.25)

4
≈ 0.59.

For input
−→
b , in the integral COC

m , its fuzzy measure value still is (1.0, 0.75, 0.5, 0.25). In the

integral C(GM,TL)
m and the integral C(POχ ,POλ)

m , its fuzzy measure value becomes [1.0, 0.5] because
of the function of dimensionality reduction function. For input

−→
b , the three integrals calculation

steps are as follows:

C(GM,TL)
m (~b) = min{1, GM(0.8, 1.0) + GM(0.9, 0.5)− TL(0.8, 0.5)}

= min{1, 1.265}
= 1.

COC
m (~b) = OC(0.8, 1.0) + OC(0.8, 0.75)−OC(0.8, 0.75) + OC(0.9, 0.5)

−OC(0.8, 0.5) + OC(0.9, 0.25)−OC(0.9, 0.25)
= OC(0.8, 1.0) + OC(0.9, 0.5)−OC(0.8, 0.5)
= 0.78.

C(POχ ,POλ)
m (~b) = POχ(0.8,1.0)+POχ(0.9,0.5)−POλ(0.8,0.5)

2
≈ 0.75.

As you can see, whether we input −→a or
−→
b , the integral C(GM,TL)

m will compute 1, which

is inappropriate. Additionally, it is easier to see the change in integral C(POχ ,POλ)
m large than in

integral COC
m when the input changes.

4. Ensemble Algorithm Based on POP Choquet-like Integrals

A classifier ensemble is a means of fusing multiple classifiers’ classification results. It
can compensate with other classifiers when one classifier classification is not effective.

Classifier ensemble can be viewed as a two-tier pattern recognition structure, as shown
in Figure 1. The first layer selects multiple classifiers as base classifiers, in which all base
classifiers accept input conditions and output separately. This paper will give each base
classifier the same training set as input. The second layer is the fusion method, which
receives the output of multiple base classifiers, fuses them with a given fusion operator,
and finally obtains a clear decision.
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Figure 1. General architecture of classifier ensemble.

This paper uses the POP Choquet-like integral proposed in Section 3 as the fusion
operator. This strategy is described in more detail below.

4.1. Algorithmic Framework

In the experiment of this algorithm, we test the pairs of pseudo-overlap functions by
transforming them to obtain the C(PO1,PO2)

m integral(Using the gλ fuzzy measure) with the
best fusion function. This process is described in detail below, and the overall algorithmic
framework is given.

Let H be a set of a given group of classifiers I1, I2, · · · In, H = {I1, I2, · · · In}. The first
step in the ensemble is to enter the same training set into the classifier I1, I2, · · · In to train
the respective models, then test these models with the same test set and obtain a classifica-
tion membership matrix for each base classifier. Suppose the input ~x = (x1, x2, · · · , xr) is
classified into k classes, let P =

(
P1, · · · , Pj, · · · , Pn

)
, where Pj is the classification member-

ship matrix Ij corresponding to the classifier. The row of Pj represents each element of the
test set, and the column’s index represents the class in which it is located. Each element of
Pj represents the extent to which the test item corresponding to the row belongs to the class
corresponding to the current column.

Next is the most critical step in an ensemble. Take the fused operator C(PO1,PO2)
m

proposed in this article to de-fuse the elements of the coherence of the ranks of each
component matrix of vector P =

(
P1, · · · , Pj, · · · , Pn

)
. Then we obtain a matrix M of size

r × k, where element Mr,k represents the degree to which the r-th data item belongs to
class k. Let F be a matrix of size r × 1, and its element consists of an index of columns
corresponding to the maximum value of each row of M, representing the final classification
result of the r-th data item. The model framework of Algorithm 1 is constructed below to
describe this process more clearly.

Algorithm 1: Pseudo-code for our proposed ensemble model
Input: A pseudo overlap function pair (PO1, PO2), classifier set

H = {I1, I2, · · · , In}.
Output: F.

1 P = (P1, P2, · · · , Pn)← A vector consisting of elements from a classification
membership matrix generated by I1, I2, · · · , In;

2 for i = 0→ r do
3 for j = 0→ k do
4 compute M[i][j] = C(PO1,PO2)

m (P1[i][j], P2[i][j], · · · , Pn[i][j]);

5 F[i] = MaxIndex(M[i]);

6 return F.
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4.2. Experimental Framework

• Step 1. Selection of data sets

This paper will select the data sets in the UCI database (https://archive.ics.uci.e.,du/
ml\/datasets.php (accessed on 11 December 2022)). This algorithm is aimed at multiple
categories of data, so 12 data sets with a classification greater than or equal to 3 will be
selected, with the number of feature items ranging from a few to a few hundred, as shown
in Table 4.

Table 4. Description of the datasets used in our ensemble.

Name of Dataset Instances Number Attributes Number Classes Number

Iris (IR) 150 4 3
Balance Scale (BS) 625 4 3

Winequality-red (WR) 1599 11 6
Waveform (WF) 5000 21 3

Optical recognition (OR) 5620 64 10
Cnae-9 (C9) 1080 857 9

Wireless indoor locatization (WI) 2000 7 4
Splice junction Gene sequences (SG) 2552 61 3

Car evaluation (CE) 1728 6 4
Maternal health risk (MH) 1014 6 6
Winequality-white (WW) 4898 11 7

Page-blocks (PB) 5472 10 5

• Step 2. Experimental preprocessing

(1) Deleting Missing Items
Because some data sets with incomplete data elements make the algorithm fail, delete

the entire row of those data elements.
(2) Ten-fold cross validation
Before the experiment, the data items for each data set category are divided into ten

pieces on average, resulting in ten subsets so that each subset has a different category of
data items. Each time a subset is used as a test set, and the remaining nine are trained as
training sets until each subset is selected once as a test set. There are 15 pseudo-overlap
function pairs selected in this article. Each data set runs at least 150 times to obtain the
final result.

• Step 3. Base algorithms and experiment details

This paper selects four basic classifiers: Naive Bayes, KNN (Euclidean distance,
K = 10), neural network (three layers), and CART. The four base classifiers act as the
four elements of the classifier set in a 1:1:1:1 scale, the step that is conducted through
Python’s scikit-learn library. To better demonstrate the experiment’s results, multiply the
F1-Measure value by 100.

Definition 13. Set the accuracy rate as P, and recall rate as R. The F-Measure is the weighted
harmonic average of P and R, and is defined as:

Fα =
(1 + α2) · P · R

α2 · (P + R)
.

When the parameter α = 1, it is the most common F1-Measure, defined as:

F1 =
2 · P · R
P + R

.

The values of P and R are in the interval [0,1].

https://archive.ics.uci.e.,du/ml\/datasets.php
https://archive.ics.uci.e.,du/ml\/datasets.php
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4.3. Experimental Results and Analysis

This subsection demonstrates the experimental results of the classifier ensemble algo-
rithm of POP Choquet-like integral, and then we compare and analyze this algorithm with
other classification algorithms.

In the first experiment of this algorithm, we test the performance of POP Choquet-
like integrals C(PO1,PO2)

m based on different pseudo-overlap function pairs in the classifier
ensemble. For the POP Choquet-like integrals in Table 5, we use pseudo overlap function
pairs constructed by two identical pseudo overlap functions. In contrast, for the POP
Choquet-like integrals in Table 6, we use pseudo overlap function pairs constructed by
two different pseudo overlap functions. Tables 5 and 6 measure the classifier ensemble’s
performance in this paper. For each data set, the best-performing calculation schemes are
shown in bold.

Table 5. Ensemble algorithm performance of POP Choquet-like integrals that choose pairs with two
identical pseudo overlap functions.

Dataset
Integral IR BS WR WF OR C9 WI SG CE MH WW PB Mean

C(POα ,POα)
m 95.97 85.73 45.52 84.13 95.51 93.92 97.53 99.19 84.35 67.40 42.46 94.62 82.19

C
(POβ ,POβ)
m 95.97 85.73 48.36 84.30 95.19 93.64 97.43 99.00 83.75 70.36 43.96 94.52 82.68

C(POχ ,POχ)
m 95.97 85.73 50.42 84.10 95.15 93.87 97.12 99.38 84.07 72.71 44.11 94.45 83.09

C(POδ ,POδ)
m 96.64 85.73 43.52 84.06 95.31 93.34 97.43 98.97 85.03 67.86 43.08 94.21 82.10

C(POε ,POε)
m 97.31 86.65 44.53 83.23 96.21 94.03 97.51 99.72 88.47 72.00 42.88 94.62 83.10

C
(POφ ,POφ)
m 95.97 86.65 43.16 84.28 96.53 94.04 97.74 99.41 86.25 70.22 42.72 94.74 82.64

C
(POϕ ,POϕ)
m 95.97 86.65 41.21 82.70 95.22 94.14 97.52 99.03 82.88 68.90 41.14 94.40 80.81

C(POγ ,POγ)
m 95.97 85.62 47.55 84.57 95.59 94.01 97.58 99.62 85.69 73.63 43.69 94.43 83.16

C
(POη ,POη)
m 95.97 86.65 40.66 83.98 96.24 93.67 97.74 99.31 85.72 65.61 42.05 94.69 81.86

C(POι ,POι)
m 95.97 85.62 48.36 84.30 95.19 93.54 97.43 99.00 83.75 70.36 43.96 94.52 82.67

C(POκ ,POκ)
m 95.97 85.62 48.21 84.33 95.41 94.10 97.43 99.31 85.46 71.25 43.53 94.40 82.92

C(POλ ,POλ)
m 95.97 85.62 42.31 83.92 95.34 93.58 97.12 99.05 82.98 70.12 42.36 94.42 81.90

C
(POµ ,POµ)
m 95.97 85.62 40.58 83.98 95.18 93.66 97.52 89.72 83.57 71.25 41.54 94.21 81.07

C(POν ,POν)
m 96.64 85.43 43.62 82.70 95.20 93.97 97.43 99.03 83.75 69.36 42.31 94.20 81.97

C(POπ ,POπ)
m 95.97 85.43 42.31 82.65 95.23 93.48 97.53 99.21 84.85 70.24 41.85 94.35 81.93

Table 6. Ensemble algorithm performance of POP Choquet-like integrals that choose pairs with two
different pseudo overlap functions.

Dataset
Integral IR BS WR WF OR C9 WI SG CE MH WW PB Mean

C
(POβ ,POα)
m 97.31 82.82 49.50 84.88 95.67 95.89 97.94 98.63 87.99 50.38 45.59 95.08 81.81

C
(POβ ,POχ)
m 97.31 82.77 50.00 85.00 94.49 95.98 97.84 90.44 87.70 44.19 45.23 94.08 80.42

C
(POβ ,POδ)
m 95.92 83.04 49.97 84.74 95.49 95.90 98.04 97.50 87.94 51.29 45.56 95.27 81.72

C
(POβ ,POε)
m 95.26 83.03 49.81 84.56 95.90 96.18 97.94 95.87 88.12 64.28 45.41 95.39 82.65

C
(POβ ,POφ)
m 95.27 82.78 49.88 84.98 95.54 96.09 98.94 98.63 87.72 51.08 45.53 95.00 81.79

C(POχ ,POλ)
m 95.97 86.34 46.94 83.70 96.71 94.98 97.59 98.34 86.85 65.48 41.89 95.25 82.50

C
(POµ ,POφ)
m 95.97 86.35 44.67 84.38 96.74 93.85 97.64 99.37 87.04 72.51 42.27 94.84 82.97

C
(POϕ ,POν)
m 95.97 86.35 41.48 83.75 96.47 93.56 97.64 98.90 86.33 62.81 40.71 94.75 81.56

C
(POα ,POϕ)
m 96.64 81.13 48.60 85.15 96.00 95.47 97.04 99.59 88.03 66.99 42.68 94.46 82.65

C(POι ,POα)
m 93.23 60.78 50.50 81.54 92.48 95.55 98.97 90.46 85.04 35.86 43.67 95.08 76.93

C(POκ ,POα)
m 91.81 60.54 51.60 81.06 92.67 95.83 98.04 91.54 85.34 35.67 46.16 95.14 77.12

C(POγ ,POα)
m 97.31 82.97 49.17 85.36 95.67 95.61 84.04 98.63 87.84 66.02 45.34 95.31 81.94

C(POγ ,POδ)
m 98.66 82.97 49.40 85.23 95.95 95.89 98.04 98.78 87.84 65.82 45.18 95.44 83.27

C
(POγ ,POη)
m 96.64 82.70 49.02 85.34 96.04 95.80 98.04 99.25 87.94 66.42 45.47 94.86 83.13

C(POα ,POπ)
m 95.97 86.34 47.81 84.06 96.69 93.78 97.74 98.59 86.80 64.67 42.08 95.06 82.47
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It can be seen that the results of ensemble classifiers based on pseudo-overlap function
pairs are similar, which indicates the stability of this algorithm. Even if the pseudo overlap
function pair with optimal performance is not selected, the final classification result is still
acceptable. In particular, POP Choquet-like integrals that choose pairs with two different
pseudo-overlap functions perform slightly better in the ensemble than POP Choquet-like
integrals constructed with two identical pseudo-overlap functions. In Table 6, when the
pseudo-overlap function pair (POγ, POδ) is selected, the average F1-Measure value of the
final classification of the 12 data sets is the largest (83.27), and the classification effect is the
best. In the following experiment, the experimental results of POP Choquet-like integral

C(POγ ,POδ)
m are compared with those of other classification algorithms.

To illustrate the advantages of this algorithm in classification applications, Table 7 com-
pares this algorithm with other advanced classifier ensemble algorithms in the literature:
classifier ensemble algorithms based on CO

m (CQO) [11], the generalized mixed function clas-
sifier (GM) [28], random forest trees (RT) [29], XGBoost (XGB) [30], META-DES (META) [31],
lightGBM (LGBM) [32], randomized reference classifier (RRC) [33], and CatBoost (CA) [34].
Note that some of the comparative experiments for eight out of the twelve datasets we
selected can be found in [11], and the details of the other comparative experiments will be
introduced in the next paragraph.

Table 7. Comparison of the results of the ensemble algorithm.

Algorithm
Dataset C(POγ,POδ)

m CQO GM RT XGB META LGBM RRC CAT

IR 98.66 95.31 95.98 96.65 95.98 95.98 94.64 95.31 95.31
BS 82.97 61.08 55.87 45.56 51.61 55.21 48.92 56.00 56.14

WR 49.40 29.07 29.70 25.65 29.74 27.47 29.81 28.39 26.37
WF 85.23 84.93 84.00 81.29 84.86 77.53 84.62 76.93 85.28
OR 95.95 98.53 98.37 95.53 97.48 98.40 97.68 98.37 95.19
C9 95.89 95.08 93.88 90.42 90.82 93.81 84.34 94.19 87.62
WI 98.04 97.54 98.37 95.63 96.89 97.32 94.32 95.47 96.54
SG 98.78 94.84 94.87 91.31 95.37 94.71 95.46 94.53 95.15
CE 87.84 58.43 55.99 52.21 55.05 51.41 59.18 51.75 46.38
MH 65.82 35.99 32.45 30.68 33.57 31.47 37.87 31.29 29.84
WW 45.18 25.71 24.55 23.18 25.45 22.54 25.01 22.43 22.15
PB 95.44 95.21 95.33 94.89 94.54 95.42 95.36 94.07 93.52

Average 83.27 72.64 71.61 68.58 70.59 70.11 70.55 69.89 69.12
Win-loss 9–3 1–11 1–11 0–12 0–12 0–12 0–12 0–12 1–11
p-value - 0.0013 0.014 0.006 0.010 0.009 0.006 0.007 0.008

For CQO, we chose the configuration in [11]: Naive Bayes, classical k-NN with Eu-
clidean distances, multilayer perceptron, and CART with a proportion of 1:3:3:3, and we
compare the results of the best performing overlap function and fuzzy measure in [11] with
the results of our algorithm. For GM, we chose the configuration in [28]: k-NN, decision
trees, MLP, Naive Bayes, SVM with a proportion of 3:3:2:1:1. This article is implemented
with sklearn, the dataset situation determines the number of trees, and other parameters
use the default values of the library for RT. For XGB, using the softmax loss function,
the maximum depth of the tree is set between 3 and 10, and the number of trees is set
between 100 and 500, depending on the size of the data sets. For META and RRC, we
selected the same configuration as our algorithm. For LGBM, the maximum depth of the
tree is set to 10, and the number of leaves is less than 210. For CA, the maximum number of
iterations is set to 3000.

In Table 7, we use the F1 measure, score, and the p value of the t-test to compare our
ensemble algorithm with other algorithms. The two values of the score (win-loss) indicate
the number of data sets whose F1 measure averages are greater than and less than the F1
measure averages of other algorithms, respectively.
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It can be seen from Table 7 that our proposed ensemble algorithm has a better classifi-
cation effect on most data sets(BS, WR, CE, MH, WW) than others. In particular, some data
sets can greatly improve classification accuracy by using our ensemble algorithm in the case
of other ensemble algorithms with general classification effects. Because the classification
qualities of our algorithms on these data sets are much greater than that of other ensemble
algorithms, the results of the sample T-test with them are significantly different.

5. Community Network Detection Algorithm Based on POP Choquet-like Integrals
5.1. Modularity

As the focus of many scholars in recent years, community network has been widely
studied. In previous explorations, scholars have noted that those communities and struc-
tures inherent in a social network are the main goals of understanding the network. A social
network structure is often unclear in a real complex network. There are always overlapping
parts between communities, which adds to the charm of the community network detection
problem and is also why scholars are interested in this problem.

Based on the above questions, the authors of [22] pointed out that social networks fall
into three categories: classical community networks (where there is no overlap at all), crisp
community networks (where there is overlap and each node of the overlap can belong to
more than one community), and fuzzy community networks (where each node belongs to
each community to some extent).

When the three situations of network community are defined, the optimal division
method should be found. Because the number of communities to be divided is unknown,
the problem of community network division is a clustering problem. As for how to
evaluate the quality of the community clustering algorithm, modularity is a commonly
used measurement method. To find the optimal solution, we can judge the quality of the
network community division according to the modularity value.

Modularity, proposed by Girvan and Newman in [35], is used to measure the classical
network community division scheme. In this paper, it is represented by QGN and defined as

QGN =
1

2m ∑
i,j∈V

[
Aij −

kik j

2m

]
δ(cicj),

where G = (V, E) is a given network, C = {c1, . . . , cr} is a partition, m is the number of
edges of the network, ki represents the degree of node i, Aij is the adjacency matrix of the
network before partition, if node i and node j belong to the same community after partition,
δ(cicj) = 1; otherwise, it is 0. Under the premise of an unknown number of community
partitions, the QGN modularity is the most classic and most commonly used measure of
community network partition schemes.

The value range of modularity is [−0.5, 1], and within this interval, the larger the
modularity value, the better the clustering effect will be. In particular, when the value of
modularity is greater than 0.3, the superiority of the current algorithm can be explained.

Considering that QGN modularity is more suitable for classical network communities,
the network community required to be measured has no overlap. However, in the real
network, a node often belongs to several division areas simultaneously, so the original
QGN modularity cannot accurately determine the division scheme of these fuzzy networks.
Many scholars are committed to improving the QGN modularity to make it more suitable
for the fuzzy network community.

In [21], Nepusz et al. defined crisp modularity in fuzzy scenarios, represented by QT
in this paper. It is defined as follows:

QT =
1

2m ∑
i,j∈V

[
Aij −

kik j

2m

]
sij.
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The QT modularity improves the classic QGN modularity. The author replaced δ(cicj)
with sij, which represents the sum of the product of membership degrees of node i and
j belonging to the same community, sij = ∑c=1,...,r µCc(i)µCc(j), and satisfies ∀i ∈ V,
∑c=1,...,r µCc(i) = 1. Finally, other symbols are consistent with the QGN modularity.

Although in [21], the author had extended the classical QGN modularity to the fuzzy
scene, it also has some shortcomings. If there is a node membership degree ∑r

c=1 µCc(i) > 1
in the fuzzy network community after partition, then QT modularity is not applicable.

Considering the above shortcomings, Gomez had improved the QGN modularity
in [22] to fully fit the fuzzy framework. In this paper, the modularity proposed by Gomez
is represented by QD, which is defined as follows

QD =
1

2m ∑
i,j∈V

[
Aij −

kik j

2m

]
GG{GO(µCc(i), µCc(j))c ∈ C},

where GO is a two-dimensional overlapping function, GG is an n-dimensional grouping
function, and other symbols have the same meaning as QGN modularity.

Gomez, though, is mindful of the overlap of the web community and used overlap
and group function with good performance to improve QGN modularity. However, in pro-
cessing node membership, the group function continues to use the maximum value to
realize, which is not a non-average mean, which is the shortcoming of the research.

Considering the above deficiency, this paper uses the non-average POP Choquet-like
integral to improve the modularity to obtain new modularity, which is defined as follows:

Q̃ =
1

2m ∑
i,j∈V

[
Aij −

kik j

2m

]
C(PO1,PO2)

m {PO(µCc(i), µCc(j))c ∈ C},

where PO is a two-dimensional pseudo overlap function, and C(PO1,PO2)
m are the Choquet-

like POP integrals constructed in this paper’s third section. The meaning of the remaining
symbols is consistent with the modularity QGN .

Note that our proposed modularity is not just a solution to the fuzzy network commu-
nity problem. When the network community is classic or clear, the modularity and QGN
modularity has the same effect.

Example 4. In [20], the author designed a simple fuzzy graph network, as shown in Figure 2.
In this network, nodes are naturally divided into three communities, with overlaps between the three
communities. Nodes 4 and 8 belong to multiple communities at the same time.

Figure 2. A simple fuzzy graph network for testing.
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In [20], the author gives the degree of membership to each community after soft
clustering of each node, as shown in Table 8. In this paper, the author stated that when the
class number C = 3 , the network modularity in the figure above was the highest (0.326).

Table 8. Soft clustering results of example graphs.

Nodes Soft Clustering Results Crisp C

0 [0.9951, 0.0026, 0.0023] [1, 0, 0]
1 [0.9804, 0.0108, 0.0088] [1, 0, 0]
2 [0.9984, 0.0008, 0.0008] [1, 0, 0]
3 [0.9984, 0.0008, 0.0008] [1, 0, 0]
4 [0.4327, 0.1133, 0.4540] [1, 0, 1]
5 [0.0039, 0.0037, 0.9924] [0, 0, 1]
6 [0.0039, 0.0037, 0.9924] [0, 0, 1]
7 [0.0012, 0.0013, 0.9975] [0, 0, 1]
8 [0.0715, 0.1519, 0.7766] [0, 1, 1]
9 [0.0020, 0.9959, 0.0022] [0, 1, 0]

10 [0.0012, 0.9976, 0.0011] [0, 1, 0]
11 [0.0020, 0.9959, 0.0022] [0, 1, 0]
12 [0.0054, 0.9899, 0.0047] [0, 1, 0]

Bring the soft clustering results given in Table 8 into the modularity we defined for
calculation, select the pseudo overlap function min{x1/2, y1/2}, and randomly select the

POP Choquet-like integral C
(POβ ,POα)
m (Using the gλ fuzzy measure). Finally, when the

partition number C = 3, the network modularity in the example figure is the highest (0.420),
which can preliminarily verify that our modularity is reliable and advanced.

5.2. Experimental Framework

For several different network communities, many scholars have proposed different
detection algorithms. However, few people have proposed non-average network commu-
nity detection algorithms, so on the basis of [20,22], we propose a new community network
detection algorithm based on the new modularity defined in Section 5.1. This process is
explained in detail, and the overall algorithm framework is given below.

Algorithm 2: Pseudo-code for our proposed network community detection model
Input: An upper bound K and an adjacent matrix A = (aij)n×n for the number of

clusters in a given network.
Output: The largest Q̃(Uk) and its corresponding k.

1 for row in A do
2 drow = sum(row)

3 Generate a diagonal matrix D with diagonal element d: D=diag(d);
4 Cholesky decomposition on G matrix: G=Cholesky(d);
5 a = GT(−1);
6 b = G(−1)AG(−1)T ;
7 for k = 2→ K do
8 Calculate the eigenvector of b: e1=eigvec(b);
9 EK = a · e1;

10 Make matrix Ek = [e2, . . . , ek] from matrix EK = [e1, . . . , eK];
11 Use Euclidean distance norm is used to normalize the rows of Ek to unit

lengths;
12 The soft distribution matrix Uk is obtained by clustering the row vectors of Ek

with FCM;
13 Compute the Q̃(Uk).

14 return The largest Q̃(Uk) and its corresponding k and fuzzy partition Uk.
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Fuzzy C-means (FCM) mentioned in the Algorithm 2 is a clustering method commonly
used by scholars. It was proposed by Dunn as early as 1973. Later scholars tried to improve
and put forward different FCM algorithms many times, especially the version proposed
by Bezdek in [36], which has been used until now. FCM can allow each datapoint in the
current cluster to belong to multiple classes simultaneously; a clustering algorithm fully
adapted to the fuzzy framework. The main idea is to minimize the function

Jm =
n

∑
i=1

k

∑
j=1

um
ij ||xi − cj||2,

where xi is an n-dimensional data point to be clustered, and cj is the n-dimensional
clustering center of class j. uij is the degree to which xi belongs to class j and satisfies
∑
j

uij = 1, m ∈ [1, ∞). ‖∗‖ represents any norm of similarity between any data point to be

clustered and any clustering center.
Parameter m needs to be set for the FCM algorithm. An m value that is too large will

lead to a poor clustering effect; an m value that is too small will make the algorithm similar
to HCM and cannot highlight the fuzziness. In [37], the author proved that the best value
range of m is [1.5,2.5]. When the only parameter to be set is confirmed, the FCM algorithm
does not need human intervention in the implementation process.

In matrix theory [38], the generalized and ordinary eigenvalues of the same matrix
are the same, and their eigenvectors are the same after normalization by Euclidean norm.
However, it is a more stable numerical method to calculate the eigenvectors of generalized
eigensystems. In the Algorithm 2 of this paper, the eigenvector of the k-1 dimensional
generalized characteristic system of the diagonal matrix we calculated represents the k-1
dimensional values of the network graph, and these values serve as the numerical form of
the points to be clustered.

5.3. Experimental Results and Analysis

To further test the benefits of our proposed social network detection algorithm, in this
section, we compare it to other classic social network detection algorithms using two
well-known reality networks: the Karate Club network and the Les Miserables network.

We use Python to implement the Algorithm 2 in this paper and select some classic net-
work community detection algorithms and clear network community detection algorithms,
such as GN [35] and D&L [39]. In addition, some advanced fuzzy network community
detection algorithms are also used for comparisons, such as OCD [22] and NeSiFC [40].

In the process of algorithm implementation, we chose the pseudo overlap function
min{x1/2, y1/2}. Since there are too many POP Choquet-like integrals proposed in this
paper, it would be too tedious to carry out experiments on all of them, so we chose four non-
average POP Choquet-like integrals(Using the gλ fuzzy measure) to carry out experiments,

namely: C(POα ,POν)
m , C

(POα ,POϕ)
m , C

(POϕ ,POν)
m , C(POα ,POπ)

m .

(1) Network of Karate Club.

One of the most commonly used test networks for social network detection algorithms
is the Karate Club network [41] (Figure 2), which Zachary observed over two years and
has been mentioned in many articles. Karate Club is a real network with 34 members, each
interacting with another member. The corresponding graph in the network is an undirected
graph with 34 nodes and 78 edges. During these two years, because the relationship
between the administrator and the coach broke down (nodes 0 and 34), the network was
split into two smaller groups in reality, as shown in Figure 3.
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Figure 3. The Karate Club network.

It should be noted that social relationship networks will lead to fission because people’s
emotions and transmitted information are not equal in society, which is constrained by
interpersonal relationships and poor information, and other aspects. This inequality can
lead to a network being divided into subgroups over time, with smaller subgroups being
more stable. We want to identify potential information nodes where fission is likely to
occur and reasonably predict what will happen next.

Table 9 shows the Karate Club network processing with the Algorithm 2 proposed in
this paper, and the maximum modularity of each algorithm is shown in bold. The results
show that the feedback obtained by the Algorithm 2 under the action of the four POP
Choquet-like integrals is very close, and the differences are negligible. The measurement re-
sults of the Karate Club network show that when the partition number C = 3, the modularity
value is the highest.

Table 9. Our algorithm measures the Karate Club network.

Choquet-like POP Integers
Clasess C(POα ,POν)

m C
(POα ,POϕ)
m C

(POϕ,POν)
m C(POα ,POπ)

m

2 0.387 0.367 0.368 0.376
3 0.462 0.460 0.457 0.448
4 0.461 0.457 0.457 0.446
5 0.417 0.389 0.385 0.402
6 0.147 0.031 0.024 0.074
7 0.100 0.028 0.037 0.070
8 0.104 0.021 0.010 0.061
9 0.122 0.019 0.035 0.065
10 0.100 0.020 0.031 0.060
11 0.107 0.017 0.035 0.066
12 0.091 0.014 0.034 0.056
13 0.073 0.012 0.029 0.051
14 0.051 0.010 0.014 0.048
15 0.044 0.007 0.012 0.026
16 0.042 0.004 0.006 0.008
17 0.007 0.001 0.002 0.004
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To illustrate the practicability of the proposed algorithm, Table 10 compares the
best results obtained in Table 9 with other advanced algorithms. For the Karate Club
network, the GN algorithm has the best partition effect when the partition number C = 5
(modularity value is 0.385). D&L and OCD algorithms perform best when the partition
number C = 4 (modularity value: 0.416,0.437). NeSiFC algorithm is a recently proposed
network community detection algorithm based on neighbor similarity. It does not need
to determine the partition number. In [40], the author used it to calculate the Karate Club
network had a maximum modularity value of 0.372. As you can see, our network algorithm
obtains a higher modularity value than other algorithms.

Table 10. Karate Club network experimental comparison results.

Clasess GN D&L OCD NeSiFC C(POα ,POν)
m

2 0.360 0.315 0.340 0.387
3 0.349 0.385 0.400 0.462
4 0.363 0.416 0.437 0.461
5 0.385 0.413 0.434 0.417
6 0.352 0.406 0.405 0.147
7 0.376 0.398 0.310 Best: 0.372 0.100
8 0.358 0.389 0.215 0.104
9 0.342 0.377 0.213 0.122

10 0.325 0.362 0.318 0.100
11 0.316 0.351 0.230 0.107
12 0.299 0.334 0.120 0.091
13 0.280 0.317 0.221 0.073
14 0.263 0.300 0.251 0.051
15 0.248 0.282 0.346 0.044
16 0.227 0.252 0.208 0.042
17 0.209 0.231 0.172 0.007

Figure 4 shows the node division of the algorithm in this paper. We use yellow,
blue, and green to represent three different partitions to see which community each node
belongs to. The criteria are that a node belongs to the community if its membership to the
current community is greater than 0.25. The nodes in red represent overlapping nodes with
membership greater than 0.25 to several communities simultaneously. Under the current
partition, all three overlapping nodes belong to both yellow and green communities.

Figure 4. The clustering result of the Karate Club network.
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(2) The Les Miserables network

The Les Miserables network comes from the famous novelist Hugo’s novel Les Miser-
ables. The original data can be found at http://www.personal.umich.edu/~mejn/netdata/
(accessed on 12 January 2023). The network has 77 nodes and 254 edges corresponding to
the characters and their relationships in the novel (Figure 5).

Figure 5. The Les Miserables network.

The degree of connection between wired nodes is the same as in the Karate Club
network. That is, the values of its adjacency matrix are only 0 and 1. Unlike the Karate Club
network, the Les Miserables network is much more complex and larger. That is, the value
of the adjacency matrix of the Les Miserables network is not only 0 or 1 but also larger
than 1.

Table 11 shows the measurement results of the Les Miserables network based on four
different POP Choquet-like integrals in this paper. Similarly, it can be observed that the
results of the four algorithms are similar, which shows the stability of our algorithm on
the side. Table 11 shows that when the partition number C = 5, the modularity value is the
highest, which means dividing five communities is the best fit for Les Miserables Network.

In Table 12, we compare the best results obtained in Table 11 with other advanced
algorithms. Notice that for the Les Miserables network, the GN algorithm works best when
C = 11 (modularity value is 0.538); D&L and OCD algorithms performed best when the
partition number C = 7 (the modularity values were 0.556 and 0.564, respectively). In [40],
the highest modularity value of the Les Miserables network calculated by the author using
NeSiFC as 0.573. It can be seen that our proposed network algorithm obtains a higher
modularity value (0.585) than other algorithms.

http://www. personal.umich.edu/~mejn/netdata/
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Table 11. Our algorithm measures the Les Miserables network.

Choquet-like POP Integers
Clasess C(POα ,POν)

m C
(POα ,POϕ)
m C

(POϕ,POν)
m C(POα ,POπ)

m

2 0.374 0.244 0.388 0.324
3 0.493 0.412 0.466 0.417
4 0.534 0.529 0.532 0.517
5 0.585 0.568 0.574 0.561
6 0.178 0.110 0.021 0.104
7 0.175 0.084 0.015 0.087
8 0.132 0.071 0.012 0.074
9 0.120 0.062 0.010 0.066

10 0.109 0.056 0.010 0.060
11 0.094 0.049 0.010 0.051
12 0.087 0.045 0.010 0.047
13 0.074 0.040 0.004 0.041
14 0.067 0.047 0.026 0.036
15 0.033 0.047 0.026 0.130
16 0.030 0.022 0.014 0.004
17 0.011 0.006 0.003 0.001

Table 12. Les Miserables Club network experimental comparison results.

Clasess GN D&L OCD NeSiFC C(POα ,POν)
m

2 0.075 0.372 0.233 0.374
3 0.260 0.464 0.264 0.493
4 0.267 0.511 0.494 0.534
5 0.416 0.552 0.553 0.585
6 0.459 0.554 0.556 0.178
7 0.456 0.556 0.564 0.175
8 0.454 0.556 0.276 Best: 0.573 0.132
9 0.452 0.553 0.260 0.120
10 0.452 0.551 0.113 0.109
11 0.538 0.548 0.233 0.094
12 0.535 0.546 0.174 0.087
13 0.531 0.543 0.115 0.074
14 0.528 0.540 0.061 0.067
15 0.525 0.537 0.041 0.033
16 0.523 0.525 0.026 0.030
17 0.520 0.520 0.041 0.011

Figure 6 shows the partition of the Les Miserables Network by our proposed network
algorithm. The five communities are shown in pink, purple, blue, green, and yellow.
Similarly, the threshold of 0.25 is used to determine whether the node belongs to the
current community. The red nodes represent overlapping nodes. Node Marguerite belongs
to both purple and yellow communities. Node Perpetue belongs to both the pink and
yellow communities.
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Figure 6. Clustering result of Les Miserables network.

6. Conclusions

In this paper, we proposed the POP Choquet-like integrals and applied them to classi-
fier ensemble and fuzzy community detection, which makes good results. The contributions
of this paper are listed as follows:

• The pseudo overlap function pair is introduced to replace products in discrete Choquet

integral. So, the POP Choquet-like integral C(PO1,PO2)
m is obtained.

• Two new algorithms using the POP Choquet-like integral are designed. One is the
ensemble algorithm, a branch of the classification algorithm. We use the defined
C(PO1,PO2)

m as the fusion operator and the classification results of the base algorithms
as inputs into the fusion operator to obtain a clear classification result. Another is the
network community detection algorithm, a typical clustering algorithm. We use the
defined C(PO1,PO2)

m to act on the results after each node’s soft clustering, improving
the classical modularity. Theoretically, our algorithm considers the non-average node
membership degree in fuzzy community networks, which is more practical.

• Many experiments were conducted on multiple datasets, proving the advantages of
the two algorithms.

In future research, the following topics deserve attention: (1) The POP Choquet-like
integrals will be combined with other decision making and aggregation methods, such as
neural networks, decision trees, etc. (2) The integration of the research approach of this
paper with the latest research findings (such as [42–45]).
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