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Abstract: In this paper, we examined the approximations to the time-fractional Kawahara equation
and modified Kawahara equation, which model the creation of nonlinear water waves in the long
wavelength area and the transmission of signals. We implemented two novel techniques, namely
the homotopy perturbation transform method and the Elzaki transform decomposition method. The
derivative having fractional-order is taken in Caputo sense. The Adomian and He’s polynomials
make it simple to handle the nonlinear terms. To illustrate the adaptability and effectiveness of
derivatives with fractional order to represent the water waves in long wavelength regions, numerical
data have been given graphically. A key component of the Kawahara equation is the symmetry
pattern, and the symmetrical nature of the solution may be observed in the graphs. The importance of
our suggested methods is illustrated by the convergence of analytical solutions to the precise solutions.
The techniques currently in use are straightforward and effective for solving fractional-order issues.
The offered methods reduced computational time is their main advantage. It will be possible to solve
fractional partial differential equations using the study’s findings as a tool.

Keywords: Elzaki transform; Kawahara and modified Kawahara equations; homotopy perturbation
method; Adomian decomposition method; Caputo operator

1. Introduction

A 300-year-old mathematical field known as fractional calculus (FC) was later ad-
vanced by Liouville, Euler, and Abel in 1823 and was first defined by Rieman and Liouville
in the 19th century as “the generalization of the integer derivative to fractional order”.
Researcher interest in FC has increased significantly over the past few decades. It was dis-
covered that fractional derivatives can be used to perfectly model a variety of applications,
particularly interdisciplinary events, for example, signal processing, control theory, vis-
coelasticity, nonlinear earthquake oscillation, robotics, and so on [1–4]. We recommend the
reader to read [5–9] for additional information and applications of FC. Fractional differential
equations (FDEs) have garnered considerable prominence recently, and they are employed
a lot in economics, astronomy, physics, ecology, and a plethora of other domains [10,11]. As
a result, scholars have given FDEs a lot of attention for their ability to interpret real-world
phenomena realistically, and the field of mathematics as a whole has grown in popularity
in areas such as heat conduction [12], probability and statistics [13], circuit systems [14],
disclaimer fluid flow [15], optics and signal processing [16], inviscid fluid [17], and so on.
In the previous works, renowned scholars have presented and developed a number of defi-
nitions for fractional derivatives, including Riemann–Liouville (RL), Atangana–Baleanu,
Weyl, Abel, Caputo, Caputo–Fabrizio, and Riesz. The most well-known, Caputo and RL
fractional derivatives, offer a greater degree of freedom in the explanation and modeling
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of physical processes than regular derivatives. To learn about these fractional derivatives,
see [18–21].

Fractional differential equations have been used by many scientists and engineers
to study diverse biological and physical systems. Scientists from a variety of fields have
shown that solving these equations is an interesting and beneficial research topic. In the
recent areas of applied mathematics and engineering, numerous effective methods for
handling such models have been developed. The iterative Laplace transform method [22],
finite difference method [23], fractional sub-equation method [24], monotone iterative tech-
nique [25], homotopy analysis method [26], wavelets optimization method [27], fractional
Newton method [28], reproducing kernel Hilbert space method [29], (G’/G)-expansion
method [30], variational iteration method [31], modified Adams–Bashforth method [32],
and several others [33–35].

The investigation of traveling wave solutions for nonlinear equations has greatly
advanced modern studies on nonlinear physical phenomena. Nonlinear wave processes
are studied in a wide range of scientific and engineering fields, such as fluid mechanics,
plasma physics, optical fibers, solid-state physics, and geology. The Kawahara equation is
one of the important equations in physics and ocean engineering. The Kawahara equation,
which plays a significant role in explaining the creation of nonlinear water waves in the long
wavelength region, is the most exciting equation since it has weaker dispersion but high
nonlinearity. Physicists and mathematicians both use dispersive wave equations extensively.
The Kawahara equation (KE) and modified Kawahara equation (MKE) have attracted a
lot of attention and have been the subject of active research in recent years [36–38]. In
1972, Kawahara [39] suggested the KE for describing solitary-wave propagation in medium.
Kawahara analyzed this type of equation numerically and observed that it has solitary wave
solutions that are both monotone and oscillatory. Two more crucial aspects of the Kawahara
equation are the symmetry pattern and collection of conservation laws. A generalization
of the Kawahara equation’s symmetry and conservation principles were looked at in [40].
Both shallow water waves with surface tension and plasma magneto–acoustic wave theory
prove the issue. Additionally, the MKE has a wide range of uses in disciplines such as
plasma waves, capillary-gravity water waves, and other ones [37,41–43]. This study aims to
examine the analytical framework and effectiveness of applying the homotopy perturbation
transform method (HPTM) and the Elzaki transform decomposition method (ETDM) to find
the approximate solutions of the time-fractional Kawahara equation (TFKE) and modified
Kawahara equation (TFME) as

Dv
τ U(µ, τ) +U(µ, τ)Uµ(µ, τ) +Uµµµ(µ, τ)−Uµµµµµ(µ, τ) = 0, 0 < v ≤ 1, (1)

with
U(µ, 0) = f (µ),

Dv
τ U(µ, τ) +U(µ, τ)Uµ(µ, τ) + αUµµµ(µ, τ) + βUµµµµµ(µ, τ) = 0, 0 < v ≤ 1, (2)

with
U(µ, 0) = g(µ),

where α > 0, β < 0 are constants that are not zero. U(µ, τ) is a function of space and time
that vanishes at values of µ < 0 and τ < 0. The functions f (µ) and g(µ) are typically
defined on the interval −∞ < µ < ∞ as hyperbolic functions. Dispersive wave equations
are essential in practical physics and math.

Recently, a number of scholars have looked at the TFKE and TFMKE utilizing a
variety of approaches and methods, including the new iterative method [44], the homotopy
analysis method [45], the residual power series method [46], and the Laplace iterative
transform method [47]. To the best of our knowledge, this is the first time to apply
the HPTM and ETDM to examine the Kawahara equations within the Caputo operator.
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This work aims to use HPTM and ETDM to solve the TFKE and TFMKE. The Elzaki
transform (ET), homotopy perturbation method, and Adomian decomposition method are
three powerful methods used in the development of the HPTM and ETDM. It is easier to
calculate the series terms utilizing the suggested methods than the traditional Adomian and
perturbation techniques since they do not involve computing the derivative or integrals of
fractional-order in the recursive formula. Therefore, it is considered that these techniques
can be used to quickly and simply solve particular classes of nonlinear partial differential
equations (PDEs). These techniques provide a solution that can be precise or approximative
using a quick convergence series. As a result, a variety of linear and nonlinear PDEs
are increasingly being solved using the HPTM and ETDM. Numerous physical problems,
including fractional-order problems have been studied using HPTM and ETDM, such as the
fractional partial differential equations [48], approximate analytical view of physical and
biological models in the setting of Caputo operator [49], fractional-order multi-dimensional
telegraph equation [50], family of Fisher’s reaction-diffusion equation [51], and nonlinear
fractional heat-like equations [52].

The following describes the paper’s layout. Section 2 presents the Elzaki transform
(ET) of essential definitions as well as some other results helpful in the research. The
fundamental concepts of HPTM and ETDM are obtained using fractional Caputo derivative
in Sections 3 and 4. Section 5 contains solutions for TFKE and TFMKE using HPTM and
ETDM. In Section 6, we discuss the numerical simulations for present methods. Finally, we
describe our findings in Section 7.

2. Preliminaries

The fractional derivative definition of Caputo and some properties of ET are illustrated
below.

Definition 1. The arbitrary order RL operator is stated as [53–55]

DvU(µ) =
{

dς

dµς U(µ), v = ς,
1

Γ(ς−v)
d

dµς

∫ µ
0 U(µ)(µ− ξ)ς−v−1dξ, ς− 1 < v < ς,

where ς ∈ Z+, v ∈ R+ and

D−vU(µ) = 1
Γ(v)

∫ µ

0
(µ− ξ)v−1U(ξ)dξ, 0 < v ≤ 1.

Definition 2. The arbitrary order RL integral operator is stated as [53–55]

JvU(µ) = 1
Γ(v)

∫ µ

0
(µ− 1)v−1U(τ)dτ, τ > 0, µ > 0,

having the below properties:

Jvµς =
Γ(ς + 1)

Γ(ς + v + 1)
µς+v,

Dvµς =
Γ(ς + 1)

Γ(ς−v + 1)
µς−v.

Definition 3. The arbitrary order Caputo derivative is stated as [53–55]

DvU(µ) =
{

1
Γ(ς−v)

∫ µ
0 Uς(ξ)(µ− ξ)ς−v−1dξ, ς− 1 < v < ς,

dς

dµς U(µ), ς = v.
(3)
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having the below properties:

Jv
µ Dv

µ U(µ) = g(µ)−
ς−1

∑
k=0

gk(0+)
µk

k!
, f or µ > 0, and ς− 1 < v ≤ ς, ς ∈ N.

Dv
µ Jv

µ U(µ) = g(µ).

(4)

Definition 4. The ET of the given function U(τ) is stated as [56]

E[U(τ)] = M(u) = u
∫ ∞

u
e
−τ
u U(τ)dτ, τ > 0. (5)

Here, u is the transform variable.

Definition 5. The inverse ET is defined by

E−1[E(u)] = U(τ) = 1
2πι

∫ v+ι∞

v−ι∞
T
(

1
u

)
euτudu = Σ residues o f U

(
1
u

)
euτu. (6)

Definition 6. The ET of Caputo arbitrary order derivative is stated as [57]

E[Dv
µ U(µ)] = u−vE[U(µ)]−

ς−1

∑
i=0

u2−v+iU(i)(0), where ς− 1 < v < ς. (7)

Integration by parts can be applied in order to find ET of partial derivatives.

1. E[τn] = n!un+2.

2. E[U′] = M(u)
u
− uU(0).

3. E[U′′] = M(u)
u2 −U(0)− uU′(0).

4. E[Un] =
M(u)

u2 −
n−1

∑
i=0

u2−n+iU(i)(0).

3. Methodology of the Homotopy Perturbation Transform Method

To illustrate the core notion of HPTM, we solve the following general nonlinear
problem of the form:

Dv
τ U(µ, τ) = [M+N ]U(µ, τ), τ > 0, 0 < v ≤ 1, (8)

having initial guess
U(µ, 0) = ϑ(µ).

Here, Dv
τ = ∂v

∂ζv symbolizes the Caputo noninteger derivative, andM, N are linear
and nonlinear differential operators.

By means of Definition 6 at ς = 1, we obtain

1
uv
{M(u)− u2U(µ, 0)} = E[[M+N ]U(µ, τ)], (9)

and after, we have

M(u) = u2U(µ, 0) + uvE[[M+N ]U(µ, τ)], (10)

with M(u)=E[U(µ, τ)].
In terms of inverse ET, we obtain

U(µ, τ) = U(µ, 0) +E−1[uvE[[M+N ]U(µ, τ)]]. (11)
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By applying homotopy perturbation method (HPM) to (11), we have

U(µ, τ) = U(µ, 0) + ε(E−1[uvE[[M+N ]U(µ, τ)]]) (12)

with ε ∈ [0, 1] is the homotopy parameter
The solution is expanded as a result of the homotopy parameter ε as

U(µ, τ) =
∞

∑
m=0

εmUm(µ, τ). (13)

The nonlinear term is determined as

N [U(µ, τ)] =
∞

∑
n=0

εnHn(U), (14)

by means of homotopy polynomial and is illustrated as

Hn(U0,U1, · · · ,Un) =
1
n!

Dn
ε

[
N
(

∞

∑
i=0

εiUi

)]
, n = 0, 1, 2, · · · (15)

with Dn
ε = ∂n

∂εn .
By utilizing (13) and (14) in (12), we obtain

∞

∑
n=0

εnUn(µ, τ) = U(µ, 0) + ε×
[
E−1

[
uvE

{
M
(

∞

∑
n=0

εnUn(µ, τ)

)
+

∞

∑
n=0

εnHn(µ, τ)

}]]
. (16)

On equating both sides’ ε coefficient, we have

ε0 : U0(µ, τ) = U(µ, 0),

ε1 : U1(µ, τ) = E−1[uvE(M(U0(µ, τ)) + H0(µ, τ))
]
,

ε2 : U2(µ, τ) = E−1[uvE(M(U1(µ, τ)) + H1(µ, τ))
]
,

.

.

.

εn : Un(µ, τ) = E−1[uvE(M(Un−1(µ, τ)) + Hn−1(µ, τ))
]
, n > 0, n ∈ N.

(17)

At the end, our approximate solution in terms of series is

U(µ, τ) = U0(µ, τ) +U1(µ, τ) +U2(µ, τ) + · · · (18)

4. Methodology of the Elzaki Transform Decomposition Method

To illustrate the core notion of ETDM, we solve the following general nonlinear
problem of the form:

Dv
τ U(µ, τ) = [M+N ]U(µ, τ), τ > 0, 0 < v ≤ 1, (19)

having initial guess
U(µ, 0) = ϑ(µ).

Here, Dv
τ = ∂v

∂ζv symbolizes the Caputo noninteger derivative, andM, N are linear
and nonlinear differential operators.

By means of Definition 6 at ς = 1, we obtain

1
uv
{M(u)− u2U(µ, 0)} = E[[M+N ]U(µ, τ)], (20)
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and after, we have

M(u) = uU(µ, 0) + uvE[[M+N ]U(µ, τ)], (21)

with M(u) = E[U(µ, τ)].
In terms of inverse ET, we obtain

U(µ, τ) = U(µ, 0) +E−1[uvE[[M+N ]U(µ, τ)]. (22)

In addition, the solution in series form is stated as

U(µ, τ) =
∞

∑
n=0

Un(µ, τ). (23)

The nonlinear term is determined as

N [U(µ, τ)] =
∞

∑
n=0
An. (24)

with

An =
1
n!

[
∂n

∂`n

{
N
(

∞

∑
i=0

`iUi

)}]
`=0

, n = 0, 1, 2, · · · (25)

By utilizing (23) and (24) in (22), we obtain

∞

∑
n=0

Un(µ, τ) = U(µ, 0) +E−1uv

[
E
{
M
(

∞

∑
n=0

Un(µ, τ)

)
+

∞

∑
n=0
An

}]
. (26)

On comparison of both sides,
U0(µ, τ) = U(µ, 0), (27)

U1(µ, τ) = E−1[uvE{M(U0(µ, τ)) +A0}
]
.

At the end, we can write the solution in general for m ≥ 1 as

Um+1(µ, τ) = E−1[uvE{M(Um(µ, τ)) +Am}
]
.

5. Applications

Problem 1. Assume TFKE as given below:

Dv
τ U(µ, τ) +U(µ, τ)Uµ(µ, τ) +Uµµµ(µ, τ)−Uµµµµµ(µ, τ) = 0, 0 < v ≤ 1, (28)

having initial guess

U(µ, 0) =
105
169

sech4

(
µ

2
√

13

)
.

When v = 1, we obtain the exact solution as

U(µ, τ) =
105
169

sech4

(
1

2
√

13

(
µ− 36τ

169

))
. (29)

By means of Definition 6 at ς = 1, we obtain

E
(

∂vU
∂τv

)
= E

[
−U(µ, τ)Uµ(µ, τ)−Uµµµ(µ, τ) +Uµµµµµ(µ, τ)

]
, (30)
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and after, we have

1
uv
{M(u)− u2U(µ, 0)} = E

[
−U(µ, τ)Uµ(µ, τ)−Uµµµ(µ, τ) +Uµµµµµ(µ, τ)

]
, (31)

M(u) = uU(µ, 0) + uvE
[
−U(µ, τ)Uµ(µ, τ)−Uµµµ(µ, τ) +Uµµµµµ(µ, τ)

]
. (32)

In terms of inverse ET, we obtain

U(µ, τ) = U(µ, 0)−E−1

[
uvE

[
U(µ, τ)Uµ(µ, τ) +Uµµµ(µ, τ)−Uµµµµµ(µ, τ)

]]
,

U(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
−E−1

[
uvE

[
U(µ, τ)Uµ(µ, τ) +Uµµµ(µ, τ)−Uµµµµµ(µ, τ)

]]
.

(33)

By utilizing HPM, we have

∞

∑
m=0

εmUm(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
− ε

[
E−1

[
uvE

[(
∞

∑
m=0

εm Hm(U)
)
+

(
∞

∑
m=0

εmUm(µ, τ)

)
µµµ

−

(
∞

∑
m=0

εmUm(µ, τ)

)
µµµµµ

]]]
.

(34)

In addition, the nonlinear terms by means of He’s polynomial Hm(U) is presented as below. Some
nonlinear terms are calculated as follows:

H0(U) = U0(U0)µ,

H1(U) = U1(U0)µ +U0(U1)µ,
...

On equating both sides ε coefficient, we have

ε0 : U0(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
,

ε1 : U1(µ, τ) =

7560
√

13 sinh

(√
13µ
26

)

371, 293 cosh5

(√
13µ
26

) τv

Γ(v + 1)
,

ε2 : U2(µ, τ) =

136, 080

(
2 sinh

(√
13µ
26 − 1

)
2 sinh

(√
13µ
26 + 1

))

62, 748, 517

(
sinh2

(√
13µ
26 + 1

))3
τ2v

Γ(2v + 1)
,

...
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At the end, our approximate solution in terms of series is as

U(µ, τ) = U0(µ, τ) +U1(µ, τ) +U2(µ, τ) + · · ·

U(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
+

7560
√

13 sinh

(√
13µ
26

)

371, 293 cosh5

(√
13µ
26

) τv

Γ(v + 1)
+

136, 080

(
2 sinh

(√
13µ
26 − 1

)
2 sinh

(√
13µ
26 + 1

))

62, 748, 517

(
sinh2

(√
13µ
26 + 1

))3
τ2v

Γ(2v + 1)
+ · · ·

Solution in terms of ETDM

By means of Definition 6 at ς = 1, we obtain

E
{

∂vU
∂τv

}
= E

[
−U(µ, τ)Uµ(µ, τ)−Uµµµ(µ, τ) +Uµµµµµ(µ, τ)

]
. (35)

After, we have

1
uv
{M(u)− u2U(µ, 0)} = E

[
−U(µ, τ)Uµ(µ, τ)−Uµµµ(µ, τ) +Uµµµµµ(µ, τ)

]
, (36)

M(u) = u2U(µ, 0) + uvE
[
−U(µ, τ)Uµ(µ, τ)−Uµµµ(µ, τ) +Uµµµµµ(µ, τ)

]
. (37)

In terms of inverse ET, we obtain

U(µ, τ) = U(µ, 0)−E−1

[
uvE

[
U(µ, τ)Uµ(µ, τ) +Uµµµ(µ, τ)−Uµµµµµ(µ, τ)

]]
,

U(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
−E−1

[
uvE

[
U(µ, τ)Uµ(µ, τ) +Uµµµ(µ, τ)−Uµµµµµ(µ, τ)

]]
.

(38)

Also, the series form solution is stated as

U(µ, τ) =
∞

∑
m=0

Um(µ, τ). (39)

By putting Equation (39) and the Adomian polynomials for nonlinear term as define in Equation
(24), thus Equation (38) turns into

∞

∑
m=0

Um(τ) = U(µ, 0)−E−1

[
uvE

[
∞

∑
m=0
Am +Uµµµ(µ, τ)−Uµµµµµ(µ, τ)

]]
,

∞

∑
m=0

Um(τ) =
105
169

sech4

(
µ

2
√

13

)
−E−1

[
uvE

[
∞

∑
m=0
Am ++Uµµµ(µ, τ)−Uµµµµµ(µ, τ)

]]
.

(40)
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Some nonlinear terms are presented as follows:

A0 = U0(U0)µ,

A1 = U1(U0)µ +U0(U1)µ,
...

On comparison of both sides

U0(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
.

On m = 0,

U1(µ, τ) =

7560
√

13 sinh

(√
13µ
26

)

371, 293 cosh5

(√
13µ
26

) τv

Γ(v + 1)
.

On m = 1,

U2(µ, τ) =

136, 080

(
2 sinh

(√
13µ
26 − 1

)
2 sinh

(√
13µ
26 + 1

))

62, 748, 517

(
sinh2

(√
13µ
26 + 1

))3
τ2v

Γ(2v + 1)
.

At the end, our approximate solution in terms of series is

U(µ, τ) =
∞

∑
m=0

Um(µ, τ) = U0(µ, τ) +U1(µ, τ) +U2(µ, τ) + · · ·

U(µ, τ) =
105
169

sech4

(
µ

2
√

13

)
+

7560
√

13 sinh

(√
13µ
26

)

371, 293 cosh5

(√
13µ
26

) τv

Γ(v + 1)
+

136, 080

(
2 sinh

(√
13µ
26 − 1

)
2 sinh

(√
13µ
26 + 1

))

62, 748, 517

(
sinh2

(√
13µ
26 + 1

))3
τ2v

Γ(2v + 1)
+ · · ·

Problem 2. Assume TFMKE as given below:

Dv
τ U(µ, τ) +U2(µ, τ)Uµ(µ, τ) + αUµµµ(µ, τ) + βUµµµµµ(µ, τ) = 0, 0 < v ≤ 1, (41)

having initial guess

U(µ, 0) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
.

When v = 1, we obtain the exact solution as

U(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β

(
µ− 25β− 4α2

25β
τ

))
. (42)
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By means of Definition 6 at ς = 1, we obtain

E
(

∂vU
∂τv

)
= E

[
−U2(µ, τ)Uµ(µ, τ)− αUµµµ(µ, τ)− βUµµµµµ(µ, τ)

]
, (43)

after, we have

1
uv
{M(u)− u2U(µ, 0)} = E

[
−U2(µ, τ)Uµ(µ, τ)− αUµµµ(µ, τ)− βUµµµµµ(µ, τ)

]
, (44)

M(u) = uU(µ, 0) + uvE
[
−U2(µ, τ)Uµ(µ, τ)− αUµµµ(µ, τ)− βUµµµµµ(µ, τ)

]
. (45)

In terms of inverse ET, we obtain

U(µ, τ) = U(µ, 0)−E−1

[
uvE

[
U2(µ, τ)Uµ(µ, τ) + αUµµµ(µ, τ) + βUµµµµµ(µ, τ)

]]
,

U(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
−E−1

[
uvE

[
U2(µ, τ)Uµ(µ, τ) + αUµµµ(µ, τ) + βUµµµµµ(µ, τ)

]]
.

(46)

By utilizing HPM, we have
∞

∑
m=0

εmUm(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
− ε

[
E−1

[
uvE

[(
∞

∑
m=0

εm Hm(U)
)
+ α

(
∞

∑
m=0

εmUm(µ, τ)

)
µµµ

+

β

(
∞

∑
m=0

εmUm(µ, τ)

)
µµµµµ

]]]
.

(47)

In addition, the nonlinear terms by means of He’s polynomial Hm(U) is presented as below. Some
nonlinear terms are calculated as follows:

H0(U) = U2
0(U0)µ,

H1(U) = U2
0(U1)µ + 2U0U1(U0)µ,

...

On equating both sides ε coefficient, we have

ε0 : U0(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
,

ε1 : U1(µ, τ) =

6
√

2α3 sinh

(√
5µ
√
− α

β

10

)√
− α

β

125(−β)
3
2 cos

(
√

5
√
−αµ

10
√

β

)3
τv

Γ(v + 1)
,

ε2 : U2(µ, τ) =
6
√

10α
11
2

15625(−β)
7
2 cos

(
√

5
√
−αµ

10
√

β

)8

(
45
√

α sinh2

(
1
2

√
−α

5β
µ

)
− 2
√

α

+ 51
√

α sin2

(√
5
√

αµ

10
√

β

)
− 51
√

α sin4

(√
5
√

αµ

10
√

β

)
+ 2
√

α sin6

(√
5
√

αµ

10
√

β

)
+ 6

√
β sin

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β
− 57

√
β sin3

(√
5
√

αµ

10
√

β

)
×

sinh

(√5µ
√
− α

β

10

)√
− α

β
+ 6
√

β sin5

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β

)
τ2v

Γ(2v + 1)
,

...
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At the end, our approximate solution in terms of series is

U(µ, τ) = U0(µ, τ) +U1(µ, τ) +U2(µ, τ) + · · ·

U(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
+

6
√

2α3 sinh

(√
5µ
√
− α

β

10

)√
− α

β

125(−β)
3
2 cos

(√
5
√
−αµ

10
√

β

)3

τv

Γ(v + 1)
+

6
√

10α
11
2

15625(−β)
7
2 cos

(√
5
√
−αµ

10
√

β

)8

(
45
√

α sinh2

(
1
2

√
−α

5β
µ

)
− 2
√

α

+ 51
√

α sin2

(√
5
√

αµ

10
√

β

)
− 51
√

α sin4

(√
5
√

αµ

10
√

β

)
+ 2
√

α sin6

(√
5
√

αµ

10
√

β

)
+ 6

√
β sin

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β
− 57

√
β sin3

(√
5
√

αµ

10
√

β

)
×

sinh

(√5µ
√
− α

β

10

)√
− α

β
+ 6
√

β sin5

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β

)
τ2v

Γ(2v + 1)
+ · · ·

Solution in terms of ETDM

By means of Definition 6 at ς = 1, we obtain

E
{

∂vU
∂τv

}
= E

[
−U2(µ, τ)Uµ(µ, τ)− αUµµµ(µ, τ)− βUµµµµµ(µ, τ)

]
. (48)

After, we have

1
uv
{M(u)− u2U(µ, 0)} = E

[
−U2(µ, τ)Uµ(µ, τ)− αUµµµ(µ, τ)− βUµµµµµ(µ, τ)

]
, (49)

M(u) = u2U(µ, 0) + uvE
[
−U2(µ, τ)Uµ(µ, τ)− αUµµµ(µ, τ)− βUµµµµµ(µ, τ)

]
. (50)

In terms of inverse ET, we obtain

U(µ, τ) = U(µ, 0)−E−1

[
uvE

[
U2(µ, τ)Uµ(µ, τ) + αUµµµ(µ, τ) + βUµµµµµ(µ, τ)

]]
,

U(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
−E−1

[
uvE

[
U2(µ, τ)Uµ(µ, τ) + αUµµµ(µ, τ) + βUµµµµµ(µ, τ)

]]
.

(51)

Also, the series form solution is stated as

U(µ, τ) =
∞

∑
m=0

Um(µ, τ). (52)
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By putting Equation (52) and the Adomian polynomials for nonlinear terms as defined in Equation
(24), thus Equation (51) turns into

∞

∑
m=0

Um(τ) = U(µ, 0)−E−1

[
uvE

[
∞

∑
m=0
Am + αUµµµ(µ, τ) + βUµµµµµ(µ, τ)

]]
,

∞

∑
m=0

Um(τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
−E−1

[
uvE

[
∞

∑
m=0
Am + αUµµµ(µ, τ) + βUµµµµµ(µ, τ)

]]
.

(53)

Some nonlinear terms are presented as follows:

A0 = U2
0(U0)µ,

A1 = U2
0(U1)µ + 2U0U1(U0)µ,

...

On comparison of both sides

U0(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
.

On m = 0,

U1(µ, τ) =

6
√

2α3 sinh

(√
5µ
√
− α

β

10

)√
− α

β

125(−β)
3
2 cos

(√
5
√
−αµ

10
√

β

)3
τv

Γ(v + 1)
.

On m = 1,

U2(µ, τ) =
6
√

10α
11
2

15625(−β)
7
2 cos

(√
5
√
−αµ

10
√

β

)8

(
45
√

α sinh2

(
1
2

√
−α

5β
µ

)
− 2
√

α

+ 51
√

α sin2

(√
5
√

αµ

10
√

β

)
− 51
√

α sin4

(√
5
√

αµ

10
√

β

)
+ 2
√

α sin6

(√
5
√

αµ

10
√

β

)
+ 6

√
β sin

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β
− 57

√
β sin3

(√
5
√

αµ

10
√

β

)
×

sinh

(√5µ
√
− α

β

10

)√
− α

β
+ 6
√

β sin5

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β

)
τ2v

Γ(2v + 1)
,

At the end, our approximate solution in terms of series is

U(µ, τ) =
∞

∑
m=0

Um(µ, τ) = U0(µ, τ) +U1(µ, τ) +U2(µ, τ) + · · ·
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U(µ, τ) =
3α√
−10β

sech2

(
1
2

√
−α

5β
µ

)
+

6
√

2α3 sinh

(√
5µ
√
− α

β

10

)√
− α

β

125(−β)
3
2 cos

(√
5
√
−αµ

10
√

β

)3

τv

Γ(v + 1)
+

6
√

10α
11
2

15625(−β)
7
2 cos

(√
5
√
−αµ

10
√

β

)8

(
45
√

α sinh2

(
1
2

√
−α

5β
µ

)
− 2
√

α

+ 51
√

α sin2

(√
5
√

αµ

10
√

β

)
− 51
√

α sin4

(√
5
√

αµ

10
√

β

)
+ 2
√

α sin6

(√
5
√

αµ

10
√

β

)
+ 6

√
β sin

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β
− 57

√
β sin3

(√
5
√

αµ

10
√

β

)
×

sinh

(√5µ
√
− α

β

10

)√
− α

β
+ 6
√

β sin5

(√
5
√

αµ

10
√

β

)
sinh

(√5µ
√
− α

β

10

)√
− α

β

)
τ2v

Γ(2v + 1)
+ · · ·

6. Numerical Simulation Studies

This part of the work deals with the numerical behavior of nonlinear FDEs using the
HPTM and the ETDM. By utilizing Maple, the aforementioned issues can be analyzed
through tables and graphs. The graphs in Figure 1a illustrate the nature of the precise
solution, and Figure 1b illustrates the nature of the proposed approaches solution at v = 1.
Figure 2a,b show the outcomes of suggested techniques at different orders of v = 0.80, 0.60.
The nature in terms of absolute error for the derived equation obtained by both procedures
at 0 < τ ≤ 0.01 is shown in Figure 3. The absolute error is calculated by the difference of
exact and our method’s solution. Table 1 displays the estimated and accurate values of the
equation U(µ, τ) at various values of v of problem 1. The graphs in Figure 4a,b illustrate
the nature of the precise and proposed approaches solution at α = 0.001, β = −1 and v = 1.
Figure 5a,b show the outcomes of suggested techniques at different orders of v = 0.80, 0.60.
The nature in terms of absolute error for the derived equation obtained by both procedures
at 0 < τ ≤ 0.01 is shown in Figure 6. The absolute error is calculated by the difference of
exact and our method’s solution. Table 2 displays the estimated and accurate values of the
equation U(µ, τ) at various values of v of problem 2. Since the HPTM and ETDM gave the
same solution, we draw a single solution graph for both methods. It must be renowned
that we utilized third-order approximation during the computations and that we generated
a virtuous estimate with the precise solution of the given problems. The graphical nature
also illustrates that the precise solution and the proposed approaches have a strong rate of
agreement. It has been proven that the suggested approaches are the most effective means
of resolving FPDEs.
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Figure 1. Plot (a) illustrating the exact solution, (b) illustrating the HPTM and ETDM solution for
Problem 1.

Figure 2. Plot (a) illustrating the HPTM and ETDM solution at v = 0.80, (b) illustrating the HPTM
and ETDM solution at v = 0.60 for Problem 1.

Figure 3. Plot illustrating the HPTM and ETDM solution in terms of absolute error for Problem 1.
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Table 1. Approximate solution of our techniques at different values of v with respect to the accurate
solution for Problem 1.

τ v = 0.85 v = 0.90 v = 0.95 v = 1 (appro) v = 1 (exact)

00.0 00.62130177 00.62130177 00.62130177 00.62130177 00.62130166

00.1 00.62108433 00.62107963 00.62107594 00.62107304 00.62107293

00.2 00.62038966 00.62038027 00.62037289 00.62036710 00.62036700

00.3 00.61921963 00.61920557 00.61919453 00.61918586 00.61918576

00.4 00.61757737 00.61755869 00.61754401 00.61753249 00.61753239

00.5 00.61546729 00.61544403 00.61542575 00.61541141 00.61541131

00.6 00.61289501 00.61286723 00.61284541 00.61282829 00.61282819

00.7 00.60986737 00.60983516 00.60980984 00.60978999 00.60978988

00.8 00.60639239 00.60635581 00.60632707 00.60630454 00.60630444

00.9 00.60247919 00.60243835 00.60240627 00.60238110 00.60238101

01.0 00.59813800 00.59809301 00.59805766 00.59802994 00.59802984

Figure 4. Plot (a) illustrating the exact solution, (b) illustrating the HPTM and ETDM solution for
Problem 2.

Figure 5. Plot (a) illustrating the HPTM and ETDM solution at v = 0.80, (b) illustrating the HPTM
and ETDM solution at v = 0.60 for Problem 2.
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Figure 6. Plot illustrating the HPTM and ETDM solution in terms of absolute error for Problem 2.

Table 2. Approximate solution of our techniques at different values of v with respect to the accurate
solution for Problem 2.

τ v = 0.25 v = 0.50 v = 0.75 v = 1 (appro) v = 1 (exact)

00.0 00.009486832980 00.009486832980 00.009486832980 00.009486832980 00.009486785543

00.1 00.009486785555 00.009486785551 00.009486785549 00.009486785548 00.009486832980

00.2 00.009486643266 00.009486643258 00.009486643253 00.009486643250 00.009486785549

00.3 00.009486406113 00.009486406101 00.009486406094 00.009486406090 00.009486643250

00.4 00.009486074112 00.009486074096 00.009486074086 00.009486074080 00.009486406091

00.5 00.009485647274 00.009485647254 00.009485647242 00.009485647235 00.009486074081

00.6 00.009485125608 00.009485125584 00.009485125570 00.009485125561 00.009485647233

00.7 00.009484509151 00.009484509123 00.009484509106 00.009484509096 00.009485125565

00.8 00.009483797917 00.009483797885 00.009483797865 00.009483797854 00.009484509098

00.9 00.009482991935 00.009482991899 00.009482991876 00.009482991864 00.009483797854

01.0 00.009482091239 00.009482091199 00.009482091174 00.009482091160 00.009482991863

7. Conclusions

In this study, we used HPTM and ETDM to analyze the approximations of TFKE and
TFMKE solutions based on the Caputo fractional derivative operator. The suggested ap-
proaches overcome the majority of the restrictions by combining three effective techniques.
The numerical simulation is displayed to show that the fractional order goes to classical or-
der and to confirm the accuracy of the results. The fact that the derived solutions converge
at the actual solutions quite quickly shows how close approximations are to exact results.
For different fractional orders, the characteristics of the generated series solution have been
depicted in the form of 3D representations. These figures reveal that the proposed methods
solutions are highly effective and conforming, utilizing simulation studies, as seen in the
tables. We furthermore assure you that the generated implementations will converge to the
precise result as the order of the result rises. The numerical outcomes imply that the current
methods are simple, efficient, and precise. The effect of all relevant variables was addressed
and shown using graphs and tables. The modified Korteweg–De Vries equation, as well as
fuzzy partial differential equations, can all be approximated using these reliable, accessible,
and efficient approaches. These fractional physical models are common in engineering
and science.
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