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Abstract: Modeling financial markets based on empirical data poses challenges in selecting the
most appropriate models. Despite the abundance of empirical data available, researchers often face
difficulties in identifying the best fitting model. Long-range memory and self-similarity estimators,
commonly used for this purpose, can yield inconsistent parameter values, as they are tailored to
specific time series models. In our previous work, we explored order disbalance time series from
the broader perspective of fractional L’evy stable motion, revealing a stable anti-correlation in the
financial market order flow. However, a more detailed analysis of empirical data indicates the
need for a more specific order flow model that incorporates the power-law distribution of limit
order cancellation times. When considering a series in event time, the limit order cancellation times
follow a discrete probability mass function derived from the Tsallis q-exponential distribution. The
combination of power-law distributions for limit order volumes and cancellation times introduces
a novel approach to modeling order disbalance in the financial markets. Moreover, this proposed
model has the potential to serve as an example for modeling opinion dynamics in social systems.
By tailoring the model to incorporate the unique statistical properties of financial market data, we
can improve the accuracy of our predictions and gain deeper insights into the dynamics of these
complex systems.

Keywords: time series and signal analysis; discrete stochastic dynamics; scaling in socio-economic
systems; fractional dynamics; quantitative finance

1. Introduction

In the realm of econometrics and econophysics, researchers have long explored the
intriguing properties of long-range memory in natural and social systems, often charac-
terized by self-similarity and power-law statistical distributions. In financial markets,
the abundance of data related to volatility, trading activity, and order flow has provided
fertile ground for empirical investigations into long-range memory properties [1–5].
Various models with fractional noise have been proposed in econometrics to describe
volatility time series [1,6–11]. However, from the perspective of econophysics, these
models tend to lack sufficient microscopic reasoning and primarily serve as macroscopic
descriptions of complex social systems, often based on assumptions of long-range mem-
ory. As a result, predicting stock price movements, despite the application of advanced
trading algorithms and machine learning techniques, remains an enduring challenge
for researchers [12–14].

To deepen our understanding of long-range memory in social systems, it becomes
essential to compare the macroscopic modeling with empirical analyses. Our previous
review [15] raised the crucial question of whether observed long-range memory in social
systems is a result of genuine long-range memory processes or merely an outcome of the
non-linearity of Markov processes. In our endeavor to explore this question, we have
reduced the macroscopic dynamics of financial markets to a set of stochastic differential
equations (SDEs) and related them to a microscopic agent-based model capable of reproduc-
ing empirical probability density functions (PDFs) and power spectral densities (PSDs) of

Fractal Fract. 2023, 7, 581. https://doi.org/10.3390/fractalfract7080581 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7080581
https://doi.org/10.3390/fractalfract7080581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-1859-1318
https://doi.org/10.3390/fractalfract7080581
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7080581?type=check_update&version=1


Fractal Fract. 2023, 7, 581 2 of 13

absolute returns [16–19]. Moreover, we have employed this model to interpret the scaling
behavior of volatility return intervals [20]. This approach could also find relevance in
other social systems, where non-linear SDEs derived from agent-based models describing
opinion or population dynamics lead to macroscopic descriptions [21,22]. Given these
complexities, selecting the most appropriate model for interpreting empirical time series
poses a significant challenge.

A promising line of inquiry comes from the observation that market-order flows exhibit
long-range persistence, attributed to the order-splitting behavior of individual traders [23].
This finding reinforces the presence of genuine long-range memory in financial systems,
as recently confirmed in a comprehensive investigation [24]. Consequently, we anticipate
the manifestation of persistence in the limit-order flow as well.

In our previous contribution, we explored order disbalance time series in financial
markets from the perspective of fractional Lévy stable motion (FLSM) [25]. Although FLSM
and auto-regressive fractionally integrated moving average (ARFIMA) processes offer
generalized models for self-similar fractional time series [26–28], they require more com-
prehensive approaches to explain the observed statistical properties of order disbalance in
financial markets.

In this study, we continue our analysis of limit order flow using LOBSTER data, see techni-
cal description [29] or short description https://lobsterdata.com/info/HowDoesItWork.php
(accessed on 20 July 2023), aiming to demonstrate the possibility of simple, yet specific
modeling of empirical time series. A key innovation of our approach lies in the discovery
of a general statistical distribution governing limit order cancellation times. We propose the
application of Tsallis statistics, a generalization of Boltzmann–Gibbs statistics [30–32], to fit
the histograms of limit order cancellation times. Remarkably, the distribution’s parameters
for various stocks and time periods appear close, suggesting a universal nature of the
observed statistical property.

To augment the identification of the limit order cancellation times’ q-exponential dis-
tribution as a new stylized fact in limit order statistical properties, we further consider
the assumption of limit order flow as fractional Lévy noise (FLN). Empirical data analy-
sis supports the plausibility of such an assumption. Ultimately, we present a relatively
straightforward model with empirical grounding, serving as an artificial model defining
statistical properties of order flow and disbalance in financial markets. This new approach
addresses certain contradictions uncovered in previous investigations from the perspective
of FLSM [25].

The rest of this paper is organized as follows: Section 2 introduces the discrete Tsal-
lis q-exponential distribution; Section 3 defines and investigates the empirical statistical
properties of limit order cancellation times; Section 4 examines a modified version of the
order disbalance time series and its statistical properties; Section 5 studies the statistical
properties of the limit order submission sequence; Section 6 introduces the artificial order
disbalance model, and finally, we conclude the results and summarize our findings.

2. The Discrete Tsallis q-Exponential Distribution

Let us introduce the discrete Tsallis q-exponential distribution to capture the proba-
bility mass function (PMF) for discrete variables k = 1, 2, 3, . . . based on the continuous
Tsallis q-exponential probability density function (PDF) [30], given by:

Pλ,q(x) = (2− q)λ(1− (1− q)xλ)
1

(1−q) , (1)

where (1− (1− q)xλ) > 0. First, we explore an approach using the survival function of
the q-exponential distribution [33]:

SPλ,q(x) = (1 + (q− 1)xλ)
2−q
1−q . (2)

Withthis survival function, we define the PMF of the discrete q-exponential distribution
as:

https://lobsterdata.com/info/HowDoesItWork.php
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P(ds)
λ,q (k) = SPλ,q(k− 1)− SPλ,q(k) = (1 + (q− 1)(k− 1)λ)

2−q
1−q − (1 + (q− 1)kλ)

2−q
1−q . (3)

The PMF (3) is normalized for k = 1, 2, . . . ∞. Interestingly, this power-law PMF
converges to the geometric distribution as q→ 1, which aligns with expectations that we
have one more q-generalization of the geometric distribution [34,35]. We can express this
convergence as:

lim
q→1

P(ds)
λ,q (k) = exp−yλ(expλ−1) = (1− p)k−1 p, (4)

where we denote p = 1− exp−λ. This result confirms the suitability of the PMF (3) as a
Tsallis q-generalization of the geometric distribution, making it a potential candidate for
modeling event waiting times in social and other complex systems.

The PMF for the discrete variable k often is defined as follows, [36]:

P(d)
λ,q (k) =

Pλ,q(k)

∑i=∞
i=1 Pλ,q(i)

. (5)

After substitution of Equation (1) into Equation (5) we obtain a version of the discrete
Tsallis q-exponential distribution as:

P(d)
λ,q (k) =

{1 + (1− q)λk}
1

1−q

((q− 1)λ)
1

1−q HurwitzZeta
[

1
q−1 , 1 + 1

λ(q−1)

] . (6)

The explicit form of the limit of this PMF when q→ 1 is currently unclear; thus, we
will use Equation (3) instead of Equation (6) in this investigation.

3. Cancellation Times of Limit Orders in the Order Flow of Financial Markets

In this section, we analyze the cancellation times of limit orders in the order flow of
financial markets using the LOBSTER data for all NASDAQ-traded stocks [29]. The LOB
data that LOBSTER reconstructs originates from NASDAQ’s Historical TotalView-ITCHfiles
(http://nasdaqtrader.com, accessed on 20 July 2023). Here we construct the daily time
series of order flow from 3 to 31 August 2020, a total of 21 working days. This data
exemplifies an empirical social system appropriate for investigating power-law statistical
properties. The statistical properties of the cancellation times of limit orders are of particular
interest in this study as they play a vital role in understanding order flow and disbalance
dynamics.

We retrieve LOBSTER data files: message.csv and orderbook.csv for each selected
trading day and ticker (stock). These files contain the complete list of events causing an
update of LOB up to the ten levels of prices. Any event j changing the LOB state has a
time value tj = j counted in the event space. Thus, we deal with a discrete time scale and
avoid daily seasonality related to the fluctuating activity of traders. Every limit order has
its identification code; therefore, it is straightforward to pair limit order submission and
cancellation events. Let us define the limit order cancellation time as the time difference
between the order cancellation and submission event. Seeking a simplified approach to the
order flow modeling, we consider order cancellation and execution as equivalent events
leading to the complete deletion of the previously submitted limit order. In the LOBSTER
message.csv file, these events are denoted as event types 3 and 4.

We can calculate the list of all cancellation times τi from empirical data or group this
data according to the price levels or the volume of the limit orders. The dependence of
the cancellation time PDF on the level of price is weak. The two sub-figures in Figure 1
illustrate the empirical PDFs of the cancellation times calculated separately for the four
price levels of the two stocks AMZN and MA. It is worth noting that the dependence of the
cancellation time PDF on the price level is weak, with slight differences observed between
the first price level (red) and the subsequent levels (blue, green, and black).

http://nasdaqtrader.com
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Figure 1. Examples of the cancellation time histograms (PDFs) for the AMZN and MA stocks.
Empirical PDFs for the four price levels are calculated for the joint period of 21 trading days. The plots
are red for the first level, blue for the second, green for the third, and black for the fourth.

We group the cancellation times τi into four categories based on the volumes vi of
the limit orders: (1) vi ≤ 3; (2) 3 < vi ≤ 23; (3) 23 < vi ≤ 123; (4) 123 < vi ≤ 623. Each
group provides sufficient τi values from the joint period of 21 trading days, enabling the
calculation of histograms and evaluation of empirical probability density functions (PDFs).
The two sub-figures in Figure 2 illustrate the empirical PDFs of AMZN and MA stock’s
cancellation times calculated separately for the four groups of limit order volumes. Once
again, the empirical distributions show weak dependence on the limit order volumes,
reinforcing our modeling assumption of independence from price and volume.
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Figure 2. Examples of cancellation time histograms (PDFs) for the AMZN and MA stocks. Empirical
PDFs for the four intervals of limit order volumes are calculated for the joint period of 21 trading
days. (red) vi ≤ 3; (blue) 3 < vi ≤ 23; (green) 23 < vi ≤ 123; (black) 123 < vi ≤ 623.

Based on the independence assumption, we fit the empirical histograms of total limit
order cancellation times submitted on the stock market for ten stocks (NVDA, HD, AMZN,
NFLX, MA, LLY, TSLA, ADBE, V, JNJ) using the PMF (3). The fitting is performed using the
Maximum Likelihood Estimator (MLE) method [37]. Data for every stock is joined from
21 trading day of August 2020. Only limit orders up to the ten levels of prices are included
in this MLE calculation. Table 1 provides the calculated λ and q values for each stock from
the joint empirical histograms.

The mean values of parameters for these ten stocks are λ = 0.3 and q = 1.5. Figure 3
demonstrates the close fitting PMFs for all ten stocks. The thin color lines represent PMFs
for individual stocks, while the thick black line represents the PMF with mean values
of parameters.
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Figure 3. Fitted PMFs (3) of the joined one-month cancellation times for the ten stocks NVDA,
HD, AMZN, NFLX, MA, LLY, TSLA, ADBE, V, and JNJ. The thin color lines represent PMFs for
the individual stocks, and the thick black line represents the PMF with mean values of parameters
λ = 0.3 and q = 1.5. Data for each MLE calculation is joined from 21 trading day of August 2020.

Table 1. Parameters of PMF (3) {λ, q} calculated using MLE for the cancellation times of ten stocks
NVDA, HD, AMZN, NFLX, MA, LLY, TSLA, ADBE, V, and JNJ. Data for each MLE calculation is
joined from 21 trading day of August 2020.

Exp. NVDA HD AMZN NFLX MA LLY TSLA ADBE V JNJ

λ 0.38 0.22 0.41 0.42 0.17 0.15 0.4 0.5 0.19 0.14
q 1.51 1.48 1.52 1.5 1.45 1.46 1.54 1.52 1.5 1.47

4. Live Limit Orders and Order Disbalance

The analysis of limit order cancellation times revealed intriguing empirical properties
with remarkably close values of parameters for different stocks. This suggests the assump-
tion that the observed probability mass function (PMF) might be stable over time, which
can be valuable in constructing simplified order flow and disbalance models. To achieve
this objective, we reconstruct the order disbalance time series from the data in the message
files. We adopt an alternative approach to form disbalance time series to explore more
aspects of potential memory effects in empirical order disbalance time series.

As mentioned in Section 3, the LOBSTER data’s message files contain sufficient in-
formation about limit orders submitted to the exchange, including their prices, volumes,
event times of submission, cancellation, and full execution. With this information, we
can construct a list of live limit orders at any discrete event step. We use the notation
LO{i1, i2, vi1,i2} to denote a limit order, where i1 represents the order submission event
time, i2 is the order cancellation or full execution time, and vi1,i2 is the volume (positive for
buy limit orders and negative for sell limit orders). To simplify the modeling approach, we
ignore the indexing of price levels, as it is not crucial for the investigation of the time series.
We include limit orders up to the tenth level of prices on both the buy and sell sides. Using
this notation, we can rewrite the order disbalance as follows:

X(j) = ∑
i16j<i2

vi1,i2 =
j

∑
i=1

Y(i). (7)

Here, the first sum is over all the live limit orders, including all the limit order volumes
vi1,i2 submitted before event j and waiting for cancellation or execution. A sequence of
limit order submissions of length N generates a series of order disbalance X(j) of length
2N since each submission is paired with a cancellation or execution event.
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This modified definition of order disbalance series provides a slightly simplified
version compared to the previous approach used in [25], which relied on the data from
the orderbook.csv file. By excluding order book events related to the partial execution
of orders, we can focus on exploring the statistical properties of the time series with
a simplified model. The mean squared displacement (MSD) and Hurst exponents are
evaluated for these empirical time series, considering two levels of random (reshuffled)
time series. The first level involves reshuffling only the empirical sequence of volumes
vi1,i2, yielding new series XRv(j) and YRv(j). This reshuffling destroys the correlation
contained in the limit order submission sequence. The second level involves additional
complete reshuffling of all increments YR(j) = Random[Y(i)], leading to the memory-less
time series XR(j), where the anti-correlation arising from the limit order cancellation
events is destroyed as well.

Table 2 presents the MSD and Hurst exponents calculated for the order disbal-
ance X(j) of ten stocks NVDA, HD, AMZN, NFLX, MA, LLY, TSLA, ADBE, V, and JNJ.
The Hurst exponents for different series are listed and evaluated using AVE and Higuchi’s
method. The empirical analysis shows minor changes in scaling parameters compared
to the results in [25].

Table 2. The MSD and Hurst’s exponents calculated using the same equations as in [25] for the order
disbalance X(j), Equation (7), of the ten stocks NVDA, HD, AMZN, NFLX, MA, LLY, TSLA, ADBE,
V, and JNJ. Evaluated exponents are listed in the first column as follows: λMSD is the exponent of
sample MSD; λRv is the exponent for the series XRv(j) with a randomized sequence of volumes; HAV

is H of series X(j) evaluated using AVE; HAVRv is the same for the series XRv(j) with a randomized
sequence of volumes; HAVR is the same for the series XR(j) with a randomized sequence of Y(j);
HHig is H of series X(j) evaluated using Higuchi’s method; HHigRv is the same for the series XRv(j)
with a randomized sequence of volumes; HHigR is the same for the series XR(j) with a randomized
sequence of Y(j).

Exp. NVDA HD AMZN NFLX MA LLY TSLA ADBE V JNJ

λMSD 0.82 1.01 0.79 0.86 0.92 1.05 0.89 0.88 1.09 1.10
λRv 0.90 0.93 0.90 0.88 0.99 0.94 0.90 0.86 0.91 0.94
HAV 0.32 0.21 0.19 0.21 0.17 0.2 0.26 0.26 0.30 0.31
HAVRv 0.22 0.16 0.18 0.18 018 0.18 0.22 0.18 0.22 0.21
HAVR 0.54 0.49 0.54 0.51 0.48 0.51 0.50 0.50 0.50 0.49
HHig 0.33 0.22 0.22 0.24 0.2 0.22 0.28 0.28 0.33 0.32
HHigRv 0.22 0.18 0.20 0.18 0.18 0.18 0.22 0.29 0.23 0.21
HHigR 0.54 0.49 0.50 0.51 0.49 0.50 0.51 0.50 0.53 0.49

Our previous exploration of the order flow from the perspective of FLSM or ARFIMA
models [25] has sparked new questions and raised concerns about the applicability of these
models. Notably, while considering the time series X(j) as an accumulated ARFIMA(0,d,0)
process provided valuable insights, it was observed that empirical order disbalance time
series exhibit strict boundedness. This discrepancy indicates the existence of diffusion
reversion mechanisms that fall outside the scope of the ARFIMA model.

Another critical challenge that emerged during our analysis is related to the auto-
codifference of empirical Y(j) time series [38]. The order disbalance increments Y(j)
demonstrate clear auto-dependence, as shown in Figure 4. However, fitting the empirical
auto-codifference with the expected theoretical form ∼ Dtη derived for fractional L’evy
noise [39] presented difficulties. Qualitatively, the asymptotic auto-codifference of the
ARFIMA(0,d,0) process only matched the empirical data for memory parameter values in
the region of d ' 0.375. However, within this region, the accumulated ARFIMA process
exhibited strong unbounded behavior, which is inconsistent with the empirical order
disbalance time series.

To gain a more specific empirical perspective, we investigated the potential application
of the FLSM approach to the order disbalance series, assuming that the distribution of
limit order volumes for the most liquid stocks followed a stable L’evy distribution with
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parameter 2 > α > 1 [25]. However, this assumption turned out to be very approximate
due to the distinctive resonance structure in the PDF of volumes. This observation led us to
reevaluate the limit order flow from a different angle.

One specific issue arising from the FLSM perspective was related to the sample mean
squared displacement (MSD), which has an exponent λMSD = 2d + 1 for large samples
and lags [26]. However, these values of the parameter d defined by the empirical λMSD in
Table 2 range from d = −0.11 for AMZN to d = 0.07 for JNJ. These values contradict the
empirical analysis in [25], which suggested d = HAV − HAVR ' −0.3 for all stocks.

0 100 200 300 400 500
-0.20

-0.15

-0.10

-0.05

0.00
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oC
oD
iff
er
en
ce

AMZN

Figure 4. Auto-codifference, (9), from a single empirical trajectory Y(j) of AMZN stock traded on
3 August 2020, blue line. Black line, the fit of empirical auto-codifference by −0.388t−0.254. Red
line, auto-codifference calculated from a single trajectory of fractional Lévy noise with parameters
d = 0.375 and α = 2.0

To address limitations of the previous approach and gain deeper insights into the
auto-dependence of increments Y(j), we introduced a modified order disbalance definition,
Equation (7). The pairing of limit order increments with opposite signs due to cancellation
times assumed to follow a q-exponential PMF provides a new quantitative model con-
tributing to the observed auto-dependence. This new mechanism of auto-dependence is
fundamentally different from the fractionally integrated increments in the ARFIMA0,d,0
series. Thus, the simplification introduced here is helpful for the more precise interpretation
of memory effects in the order disbalance time series. In Figure 5, we visualize the results
of empirical analysis presented in Table 2.

The auto-dependence in the Y(j) series can also have other origins; for example, some
dependence can arise from the original sequence of the limit order volumes vi1,i2. Such
memory effects in market order flow have been investigated in [14,23,40], and competing
interpretations have been provided. To evaluate the possible contribution of the auto-
dependence in the limit order volume sequence, we use the random reshuffling procedure
of the limit order volumes to obtain XRv(j) and YRv(j) series with zero volume correlation.
The evaluated Hurst exponents of the XRv(j) series, see Table 2 and Figure 5, are slightly
shifted to the side of smaller values. Notably, time series XRv(j) remained strictly bounded,
in contrast to the unbounded behavior observed in XR(j), suggesting that the diffusion
of the order disbalance series is self-reverted due to every limit order being canceled or
executed. The observed auto-dependence in Y(j) and its origin from both the cancellation
times and the sequence of limit order volumes raise intriguing questions about the under-
lying mechanisms of market dynamics. Further theoretical consideration and empirical
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studies may help uncover the nature of the long-range memory in order disbalance and
contribute to a more comprehensive understanding of market order flow.

HAVR

HHigR

HHig

HHigRV

HAV

HAVRV

0.2 0.3 0.4 0.5

H

Hurst exponents evaluated

Figure 5. Comparison of exponents calculated for the empirical and randomized time series. All
rows have 10 values corresponding to the stocks investigated in this contribution. Scaling parameters
are labeled as defined in the text and Table 2.

5. Time Series of Limit Order Submissions

It is essential to investigate the statistical properties of time series that comprise only a
sequence of limit order submissions to the market, denoted as XL(j),

XL(j) =
j

∑
i=1

vi =
j

∑
i=1

YL(i), (8)

where vi represents the volume of the submitted limit order, and order cancellation or
execution is not included in the series. In this case, we can confidently consider the series
from the perspective of FLSM, as the order flow remains uninterrupted by cancellation
events. The analysis results are provided in Table 3.

Table 3. Evaluated memory parameter d for the limit order flow time series XL(j), as defined in
Equation (8), for ten stocks: NVDA, HD, AMZN, NFLX, MA, LLY, TSLA, ADBE, V, and JNJ. Three
different methods are used for evaluation, listed in the first column: dMSD is evaluated from the
exponent of sample MSD, λMSD = 2dMSD + 1; dCD is evaluated from the sample auto-codifference,
as defined in Equation (9); dH is evaluated as HAVE − HAVER from the sample series XL(j) and
XLR(j) using AVE. The last line presents the empirical values of the stability parameter α obtained by
fitting the tails of volume histograms with the L’evy stable distribution.

Exp. NVDA HD AMZN NFLX MA LLY TSLA ADBE V JNJ

dMSD 0.30 0.18 0.32 0.29 0.18 0.14 0.28 0.28 0.20 0.20
dCD 0.29 0.23 0.30 0.29 0.19 0.20 0.34 0.30 0.26 0.25
dH 0.32 0.21 0.38 0.32 0.21 0.15 0.35 0.34 0.20 0.19
α 1.80 1.80 1.79 1.80 1.80 1.80 1.80 1.79 1.79 1.79

The first method used to evaluate the parameter d is based on the assumption that the
series XL(j) exhibits FLSM-like behavior, with the memory parameter dMSD derived from
the sample mean squared displacement (MSD) exponent λMSD = 2dMSD + 1, as referenced
in [25,26]. The second method, dCD, involves calculating the sample auto-codifference
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CD(t) with lag t of series YL(j), as defined in Equation (9). It is worth noting that this
method is sensitive to the evaluation of parameter α due to its reliance on the asymptotic
form of auto-codifference for fractional L’evy noise, as given in Equation (10), leading to
the definition dCD = γ/α + 1− 1/α [38].

CD(t) = ln
∑

j=N
j=1+t iYL(j) + ∑

j=N−t
j=1 −iYL(j)

N ∑
j=N
j=1+t i(YL(j)−YL(j− t))

, (9)

where i denotes imaginary units and N is the length of the series. Note that this method is
sensitive to the evaluation of parameter α, as we use the asymptotic form

CD(t) ∼ tγ = tαH−α, (10)

of auto-codifference for the fractional Lévy noise, see [38]. The third method, dH , relies on
the relation used in [25], where dH = HAV − HAVR, assuming that the time series XL(j) is
fractional L’evy stable motion-like.

Evaluation of memory parameter d using three different methods and results in the
Table 3 support the idea that the limit order series XL(j) is FLSM-like. Fluctuations of
memory parameters between methods are considerably smaller than fluctuations between
different stocks. The major problem in this consideration remains the assumption of the
limit order volume distribution according to the Lévy stable distribution. We fit the α
parameter of this distribution to only the tail part vi > 35 of the empirical histogram.
Results provided in the Table 3 show very stable values for all stocks α ' 1.8.

6. Artificial Order Disbalance Time Series

We propose an artificial order disbalance time series model that captures the main
observations of this study. The model involves two random sequences: (a) A sequence
of limit order volumes generated as ARFIMA{0,d,0}{α, N, vmax}, where d is the memory
parameter, α is the stability index, N is the length of the sequence, and vmax defines the
maximum possible absolute value of the volume, selected from the observed empirical
data. (b) A corresponding sequence of limit order cancellation times with the same length
N generated using the probability mass function (PMF) P(ds)

λ,q (k) defined by Equation (3).
With these two independent sequences, we can calculate the model sequence of events

XM(j) = ∑
i=j
i=1 YM(i) defined by vmod

i1,i2, which includes cancellation and execution events.
This generated random sequence represents the artificial analog of order disbalance time
series introduced in Equation (7), and it is used for the empirical analysis. We choose the
artificial model parameters aiming to reproduce the empirical data: α = 1.8; N = 200000;
vmax = 1000; λ = 0.42; q = 1.5.

We compare results generated by the artificial series YM(i) and XM(j) with those from
the empirical series. In Table 4, we present the MSD and Hurst exponents, together with the
memory parameter dCD, for the artificially generated series and empirical series of stocks
MA, NFLX, and TSLA.

The results in the Table 4 are averaged over five realizations of artificial series and five
daily empirical series. The model results with d = 0.2 closely match the series of stock MA,
while the model results with d = 0.3 are similar to the empirical series of NFLX and TSLA.
Thus, we conclude that the empirically established q-exponential nature of the limit order
cancellation times helps to reconstruct the properties of the order disbalance time series
X(j). Such reconstructions are crucial for interpreting order disbalance time series from the
perspective of FLSM.
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Table 4. Sample series evaluated MSD and Hurst exponents, along with memory parameter dCD,
for the artificially generated series and the empirical series of stocks MA, NFLX, and TSLA. λ(X)

represents the sample MSD exponent evaluated for the series X(j); λ(XL) is the same for the series
of limit volumes; H(X) is the Hurst exponent evaluated using AVE for the series X(j); H(XR) is
the same for the reshuffled series XR(J); H(XL) is the same for the series of limit volumes XL(j);
H(XLR) is the same for the reshuffled limit volume series XLR(j); and dCD is the memory parameter
evaluated from the sample auto-codifference of series Y(i).

Series λ(X) λ(Xv) H(X) H(XR) H(Xv) H(XLR) dCD

Model d = 0.2 0.97 1.36 0.20 0.55 0.72 0.54 0.18
MA 0.92 1.37 0.17 0.48 0.71 0.50 0.19

Model d = 0.3 1.00 1.60 0.24 0.54 0.83 0.55 0.22
NFLX 0.86 1.58 0.21 0.51 0.83 0.51 0.29
TSLA 0.89 1.56 0.26 0.50 0.87 0.52 0.34

In Figure 6, we demonstrate the application of sample auto-codifference [38], as de-
fined in Equation (9), for the empirical and artificial model time series. The left sub-
figure shows the NFLX auto-codifference of the limit order flow YL(i) for the first five
trading days of August 2020, along with the best fit by the asymptotic curve from Equa-
tion (10). The fluctuations in defined parameters γ = {0.30, 0.25, 0.33, 0.18, 0.30} and
dCD = {0.28, 0.31, 0.26, 0.34, 0.28} are considerable for the daily series, but the average d is
close to 0.3. The right sub-figure compares three auto-codifference curves, averaged over
five sample series related to NFLX data. The red curve represents the auto-codifference of
the empirical order disbalance increment series Y(j), the black curve of the corresponding
order disbalance artificial model series with d = 0.3, and the green curve of the arti-
ficial limit order flow series YL(i). The similar behavior of all three curves and good
correspondence between the empirical and synthetic series indicate the usefulness of
auto-codifference in the research of persistence in financial and other social systems.
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Figure 6. Sample auto-codifference of the NFLX time series, Equation (9). In the left sub-figure
auto-codifference of the empirical time series YL(i), the collar curves represent five daily series,
and th eblack lines are the best fit by Cτγ. In the right sub-figure: red represents the auto-codifference
averaged over five daily empirical NFLX time series Y(i); black represents the auto-codifference
averaged over five realizations of model series Y(i); and green represents the auto-codifference
averaged over five realizations of model limit volume series YL(i).

An intriguing result is that the auto-codifference of two very different processes in
terms of self-similarity exhibits the expected behavior. Positively correlated fractional
L’evy noise-like series YL(i) display a similar auto-codifference as series Y(i) that exhibit
anti-persistence from a self-similarity perspective (H << 0.5). For example, our prelimi-
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nary investigation of empirical series based only on the limit order signs shows that the
persistence of limit order flow disappears when cancellation and execution of orders are
included in the series.

In conclusion, the artificial order disbalance time series model provides valuable
insights into the persistence and memory properties of the series. The comparison with
empirical data demonstrates the usefulness of the model and supports the conclusion
that the q-exponential nature of limit order cancellation times contributes to the observed
persistence in order disbalance time series. The application of auto-codifference further
enhances our understanding of the self-similarity behavior in these financial systems,
opening up new avenues for research in this domain.

7. Discussion and Conclusions

In this study, we have delved into the statistical properties of limit order cancella-
tion times in financial markets to better understand the peculiarities of order disbalance
time series from the perspective of fractional L’evy stable motion (FLSM). Our previous
investigation of order disbalance time series within the framework of FLSM yielded
contradictory conclusions [25]. However, empirical time series often exhibit specific
characteristics that necessitate careful consideration during empirical analysis. To ad-
dress the question of why order disbalance time series in financial markets are strictly
bounded, we have focused on the statistical properties of limit order cancellation times,
treating them as discrete events.

To this end, we have introduced the concept of a discrete q-exponential distribu-
tion, presented in Equation (3), as a q-extension of the geometric distribution, based
on the theoretical foundations of generalized Tsallis statistics [41]. This distribution
allows for a better fit of empirical limit order cancellation times, revealing their weak
sensitivity to order sizes and price levels. Remarkably, the parameters of the fitted dis-
crete q-exponential PMF, λ = 0.3, and q = 1.5, have proven consistent across ten stocks
and trading days analyzed. Building on this unique statistical property of cancellation
times, we model and empirically investigate limit order flow and order disbalance
time series.

The clear distinction between the series of limit order flow XL(j) and the series of
order disbalance X(j), which includes order cancellations, is essential in this research.
Limit order flow series display persistence and remain unbounded, making them FLSM-
like. On the other hand, order disbalance series, which includes order cancellations and
executions, is bounded and exhibits anti-persistence. It is important to acknowledge
that limit order flow in financial markets serves as a prime example of time series
requiring thorough empirical analysis to validate the use of econometric methods for
time series analysis.

By combining fractional L’evy stable limit order flow with the q-exponential can-
cellation time distribution, we propose a relatively straightforward model of order
disbalance in financial markets. This model also serves as an illustrative example of the
broader approach to modeling opinion dynamics in various social systems. Our research
highlights the significance of social system modeling to ensure the proper utilization of
formal mathematical methods.

In summary, our study contributes to a better understanding of order disbalance
time series and their memory effects in financial markets. The incorporation of the
discrete q-exponential distribution for modeling cancellation times provides valuable
insights into the persistence of the order disbalance time series and helps address the
question of their boundedness. Furthermore, the combination of FLSM and the q-
exponential distribution proves to be a promising approach for modeling social systems,
which can be explored further in future research.

In conclusion, the statistical properties of limit order cancellation times and their
impact on order disbalance time series have shed light on the dynamics of financial
markets. This study not only enhances our understanding of complex financial systems
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but also highlights the importance of empirical analysis when applying mathematical
methods to social system modeling. By bridging the gap between theory and empirical
observations, we contribute to the development of more accurate models and deeper
insights into the behavior of financial markets and social systems as a whole.
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