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Abstract: This paper presents a novel approach by introducing a set of operators known as the left
and right generalized tempered fractional integral operators. These operators are utilized to establish
new Hermite–Hadamard inequalities for convex functions as well as the multiplication of two convex
functions. Additionally, this paper gives two useful identities involving the generalized tempered
fractional integral operator for differentiable functions. By leveraging these identities, our results
consist of integral inequalities of the Hermite–Hadamard type, which are specifically designed to
accommodate convex functions. Furthermore, this study encompasses the identification of several
special cases and the recovery of specific known results through comprehensive research. Lastly,
this paper offers a range of applications in areas such as matrices, modified Bessel functions and
q-digamma functions.

Keywords: Hermite–Hadamard inequality; convex functions; ζ-incomplete gamma functions;
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1. Introduction

Convexity theory is a fundamental concept in mathematical analysis that plays a
crucial role in various fields, including optimization, economics, and geometry. It provides
a powerful framework for studying and analyzing functions and their properties. In
particular, convex functions possess significant characteristics that make them exceptionally
useful in many applications.

The Hermite–Hadamard inequality [1] (H–H for short) stands as a fundamental
outcome within the realm of convexity theory that establishes a relationship between the
average value of a convex function and its endpoint values. Named after Charles Hermite
and Jacques Hadamard, this inequality provides a powerful tool for studying the behaviour
of convex functions and their integrals. It has been widely investigated and extended to
various contexts, making it an essential tool in mathematical analysis. Over the years,
researchers have made significant contributions to the development and generalization of
the H–H inequality. These efforts have led to the exploration of various generalizations,
extensions, and refinements of the original inequality, involving different types of functions,
operators, and integral formulations; for example, Bayraktar et al. [2] proved Mercer
versions, Sahoo et al. [3] established H–H inequalities via Atangana–Baleanu fractional
operators, Tariq et al. [4] presented Simpson–Merer-type inequalities with the help of
Atangana–Baleanu fractional operators, and for new versions of H–H results involving
exponential kernels, one can refer to [5] and Bayraktar et al. [6], who employed a modified
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(h,m,s) convex function to establish weighted H–H inequalities. These advancements
have broadened the scope of the H–H inequality and deepened our understanding of
convex functions.

In this research paper, we aim to contribute to the ongoing development of convexity
theory and the H–H inequality. Our focus will be on introducing new operators, namely
the left and right generalized tempered fractional integral operators, and their applications
in establishing novel H–H inequalities. These operators offer a fresh perspective on the
interplay between convex functions and integral inequalities.

Additionally, we will derive two useful identities for differentiable functions that
involve the generalized tempered fractional integral operator. We will explore various
special cases and demonstrate how our general results recover known results. Moreover,
we will showcase the practical relevance and applications of our findings. In particular,
we will delve into applications encompassing matrices, modified Bessel functions, and
q-digamma functions. By examining these applications, we aim to highlight the significance
and versatility of convexity theory and the H–H inequality in solving real-world problems.

Overall, this research paper aims to contribute to the advancement of convexity theory
and the H–H inequality by introducing new operators, establishing novel inequalities,
deriving interesting identities, exploring special cases, and demonstrating practical appli-
cations. Through our work, we hope to deepen our understanding of convex functions
and their properties, paving the way for further advancements in this research area of
mathematical analysis. Let us denote with I an interval that is a subset of the set of real
numbers R.

Definition 1. A function S : I→ R is called convex, if

S(dµ1 + (1− d)µ2) ≤ dS(µ1) + (1− d)S(µ2), (1)

holds for all µ1, µ2 ∈ I and d ∈ [0, 1].

Theorem 1 (H–H inequality). For a convex function S : I→ R and two points µ1, µ2 ∈ I with
µ1 < µ2, the following double inequality is valid:

S
(

µ1 + µ2

2

)
≤ 1

µ2 − µ1

∫ µ2

µ1

S(x)dx ≤ S(µ1) + S(µ2)

2
. (2)

In recent decades, researchers have investigated inequality (2) using newly formulated
definitions motivated by convex functions. For further exploration, interested readers can
refer to the following sources: [7–22].

Definition 2. For any real number α > 0 and x, ζ ≥ 0, the ζ-incomplete gamma function is
defined as

γζ(α, x) :=
∫ x

0
uα−1 e−ζudu.

If ζ = 1, then the above function reduces to the incomplete gamma function

γ(α, x) :=
∫ x

0
uα−1 e−udu.

In the following sections, we will revisit the definition of tempered fractional integral operators.

Definition 3 ([22]). Let S ∈ L[µ1, µ2] (the set of all Lebesgue integrable functions on [µ1, µ2]),
where 0 ≤ µ1 < µ2. Then for ζ ≥ 0, the tempered fractional integral operators µ+

1
Iα,ζS and µ−2

Iα,ζS
of order α > 0 are defined as

µ+
1

Iα,ζS(x) :=
1

Γ(α)

∫ x

µ1

(x− σ)α−1 e−ζ(x−σ)S(σ)dσ, x > µ1 (3)
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and

µ−2
Iα,ζS(x) :=

1
Γ(α)

∫ µ2

x
(σ− x)α−1 e−ζ(σ−x)S(σ)dσ, x < µ2, (4)

respectively.

Taking ζ = 0 in Definition 3, we obtain Riemann–Liouville fractional integral operators
defined by

µ+
1

JαS(x) :=
1

Γ(α)

∫ x

µ1

(x− σ)α−1S(σ)dσ, x > µ1 (5)

and

µ−2
JαS(x) :=

1
Γ(α)

∫ µ2

x
(σ− x)α−1S(σ)dσ, x < µ2. (6)

The function Υ : [0,+∞)→ [0,+∞) was introduced by Sarikaya et al. in [18], charac-
terized by the following conditions:∫ 1

0

Υ(d)
d

dd < +∞, (7)

1
A1
≤ Υ(d1)

Υ(d2)
≤ A1 for

1
2
≤ d1

d2
≤ 2, (8)

Υ(d2)

d2
2
≤ A2

Υ(d1)

d2
1

for d1 ≤ d2, (9)

∣∣∣∣∣Υ(d2)

d2
2
− Υ(d1)

d2
1

∣∣∣∣∣ ≤ A3|d2 − d1|
Υ(d2)

d2
2

for
1
2
≤ d1

d2
≤ 2, (10)

where A1, A2, A3 > 0 are independent of d1, d2 > 0. If there exists a non-negative value of ξ

such that Υ(d2)d
ξ
2 is an increasing function, and there exists a non-negative value of ζ such

that Υ(d2)

d
ζ
2

is a decreasing function, then it can be deduced from [23] that Υ satisfies (7)–(10).

Based on this, the definitions of the left-sided and right-sided generalized integral operators
are given as follows:

µ+
1

IΥS(x) :=
∫ x

µ1

Υ(x− σ)

x− σ
S(σ)dσ, x > µ1, (11)

µ−2
IΥS(x) :=

∫ µ2

x

Υ(σ− x)
σ− x

S(σ)dσ, x < µ2. (12)

A notable feature of generalized integrals is their ability to yield Riemann–Liouville
fractional integrals, Katugampola fractional integrals, and other types as well. These results
can be found in references such as [18,20,23,24].

In recent years, there has been a growing interest in extending the H–H inequality
to the context of fractional calculus. Fractional calculus deals with the generalization
of derivatives and integrals to non-integer orders, and it has emerged as a powerful
mathematical tool for modeling and analyzing complex phenomena in physics, engineering,
and other fields. The fractional H–H inequality explores the behavior of fractional integrals
of convex functions. By considering fractional operators of different orders, such as the
Riemann–Liouville or Caputo fractional operators, the inequality provides a bridge between
the concepts of convexity and fractional calculus. It establishes relationships between
the fractional integral of a convex function and its endpoint values, revealing intriguing
properties and insights into the behavior of these functions. The study of fractional H–H
inequalities has attracted significant attention from researchers in recent years. Many
mathematicians have worked on deriving new inequalities, investigating their properties,
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and exploring their applications in various areas [25,26]. These developments have led to a
deeper understanding of the interplay between convex functions and fractional calculus.

In Section 2, we begin by introducing the left and right generalized tempered fractional
integral operators as novel tools in the study of H–H inequalities. By utilizing these
operators, we establish novel inequalities for convex functions as well as for products of
two convex functions. These results extend the existing literature and provide valuable
insights into the behavior of convex functions.

Moving on to Section 3, we delve into the exploration of two interesting identities
involving the generalized tempered fractional integral operators for differentiable functions.
Through the utilization of these identities, we obtain supplementary integral inequalities
of H–H and midpoint types for convex functions. This further expands the scope and
applicability of our findings.

Section 4 takes a practical turn as we delve into the application of our results. We
discuss their relevance and implications in various domains, such as matrices, modified
Bessel functions and q-digamma functions.

Finally, in Section 5, we wrap up the paper with a concise conclusion summarizing the
key findings and their implications. We also provide future recommendations, suggesting
potential directions for further research.

Through this structured organization, our paper presents a comprehensive analysis
of the introduced operators, establishes new inequalities, explores intriguing identities,
demonstrates practical applications, and offers valuable insights for future research.

2. Generalized Tempered Fractional Hermite–Hadamard-Type Inequalities

At this point, we can present the left and right generalized tempered fractional integral
operators with ζ ≥ 0, where Υ : [0,+∞)→ [0,+∞) satisfies the given conditions (7)–(10).

Throughout this study, let ζ ≥ 0 and 0 ≤ µ1 < µ2. Then, for all d ∈ [0, 1], we define
the following definitions:

Definition 4. The operator that defines the left generalized tempered fractional integral is given by

µ+
1

Tζ
Υ S(x) :=

∫ x

µ1

Υ(x− σ)

x− σ
e−ζ(x−σ)S(σ)dσ, x > µ1. (13)

Analogously, the right generalized tempered fractional integral operator is defined by

µ−2
Tζ

Υ S(x) :=
∫ µ2

x

Υ(σ− x)
σ− x

e−ζ(σ−x)S(σ)dσ, x < µ2. (14)

From Definition 4, we can recapture some known integral operators such as Riemann
integrals, Riemann–Liouville fractional integrals, generalized integral operators, and tem-
pered fractional integral operators, and we can present some new integral operators as well.
Some of them are given explicitly in the following Remark 1. Moreover, the importance
of these new integral operators depends on the choices of the parameter ζ, since it takes
values in the domain [0, ∞). That means that interested readers that will do numerical
computations will see clearly the advantage of this new operator compared with other
known operators for suitably choosing this parameter ζ. For ζ = 0, these operators attains
maximum values. For other values of ζ, their values decrease. We believe that these new
operators will open a new door for investigating various variational problems for different
kinds of convexity functions. In our study, we are not focused on numerical analysis.

Remark 1.

(a) Taking ζ = 0 in Definition 4, we have generalized fractional integral operators given from
(11) and (12). Choosing Υ(d) = dα

Γ(α) in Definition 4, we get Definition 3.
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(b) Choosing Υ(d) = d(µ2 − d)α−1 for α ∈ (0, 1) in Definition 4, we obtain the following
conformable left and right tempered fractional integral operators:

µ+
1

Cα,ζ S(x) :=
∫ x

µ1
(µ2 − x + σ)α−1 e−ζ(x−σ)S(σ)dσ, x > µ1,

µ−2
Cα,ζ S(x) :=

∫ µ2
x (µ2 + x− σ)α−1 e−ζ(σ−x)S(σ)dσ, x < µ2.

Taking Υ(d) = d
α exp(−Ad), where A = 1−α

α for α ∈ (0, 1) in Definition 4, we have the
following exponential left and right tempered fractional integral operators:

µ+
1

Eα,ζ S(x) := 1
α

∫ x
µ1

e−(A+ζ)(x−σ)S(σ)dσ, x > µ1,

µ−2
Eα,ζ S(x) := 1

α

∫ µ2
x e−(A+ζ)(σ−x)S(σ)dσ, x < µ2.

Furthermore, we define the following expressions that will be used in the sequel.

Ω
ζ
Υ(d) :=

∫ d

0

Υ(u(µ2 − µ1))

u
e−ζ(µ2−µ1)u du < +∞, µ1 < µ2, (15)

Σζ
Υ,1(x, d) :=

∫ d

0

Υ(u(x− µ1))

u
e−ζ(µ2−µ1)u du < +∞, x > µ1, (16)

Σζ
Υ,2(x, d) :=

∫ d

0

Υ(u(µ2 − x))
u

e−ζ(µ2−µ1)u du < +∞, x < µ2 (17)

and

Ψζ
Υ :=

∫ 1

0

Υ(u(µ2 − µ1))

u
e−ζ(µ2−µ1)udu =

∫ µ2−µ1

0

Υ(u)
u

e−ζudu. (18)

Let us now represent the generalized tempered fractional H–H-type inequality for
convex functions as follows.

Theorem 2. Consider a function S defined on the interval [µ1, µ2] and S ∈ L[µ1, µ2]. If S
is convex on [µ1, µ2], then the following double inequality holds true for generalized tempered
fractional integral operators:

S
(

µ1 + µ2

2

)
≤ 1

2 Ψζ
Υ

[
µ+

1
Tζ

ΥS(µ2) + µ−2
Tζ

ΥS(µ1)
]
≤ S(µ1) + S(µ2)

2
, (19)

where Ψζ
Υ is defined from (18).

Proof. Let u, v ∈ [µ1, µ2]. Since S is convex on [µ1, µ2], we have

S
(

u + v
2

)
≤ S(u) + S(v)

2
.

Taking u = dµ1 + (1− d)µ2 and v = (1− d)µ1 + dµ2, we get

2S
(

µ1 + µ2

2

)
≤ S(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2). (20)

By multiplying both sides of inequality (20) with the expression
Υ(d(µ2 − µ1))

d
e−ζ(µ2−µ1)d

and integrating the resulting inequality over the interval [0, 1] with respect to d, we derive the
following result

2S
(

µ1+µ2
2

) ∫ 1
0

Υ(d(µ2−µ1))
d e−ζ(µ2−µ1)ddd

≤
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS(dµ1 + (1− d)µ2)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ1 + dµ2)dd.
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So, we have

2 Ψζ
Υ S
(

µ1 + µ2

2

)
≤
[

µ+
1

Tζ
ΥS(µ2) + µ−2

Tζ
ΥS(µ1)

]
. (21)

This implies that the left-hand side of inequality (19) has been established. In order to
prove the right-hand side of inequality (19), we utilize the fact that S is a convex function
on [µ1, µ2]. This allows us to derive the following inequalities:

S(dµ1 + (1− d)µ2) ≤ dS(µ1) + (1− d)S(µ2) (22)

and
S((1− d)µ1 + dµ2) ≤ (1− d)S(µ1) + dS(µ2). (23)

Adding (22) and (23)), we get

S(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2) ≤ S(µ1) + S(µ2). (24)

Multiplying both sides of inequality (24) with
Υ(d(µ2 − µ1))

d
e−ζ(µ2−µ1)d and integrat-

ing the resulting inequality with respect to t over [0, 1], we obtain∫ 1
0

Υ(d(µ2−µ1))
d e−ζ(µ2−µ1)dS(dµ1 + (1− d)µ2)dd

+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ1 + dµ2)dd
≤
[
S(µ1) + S(µ2)

] ∫ 1
0

Υ(d(µ2−µ1))
d e−ζ(µ2−µ1)ddd.

Therefore, we have the following inequality:[
µ+

1
Tζ

ΥS(µ2) + µ−2
Tζ

ΥS(µ1)
]
≤
[
S(µ1) + S(µ2)

]
Ψζ

Υ. (25)

This confirms that the right-hand side of inequality (19) has been established. There-
fore, the proof of Theorem 2 is concluded.

Corollary 1. By taking Υ(d) =
dα

Γ(α)
in Theorem 2, we obtain the following double inequality for

convex functions using tempered fractional integral operators:

S
(

µ1 + µ2

2

)
≤ Γ(α)

2γζ(α, µ2 − µ1)

[
µ+

1
Iα,ζS(µ2) + µ−2

Iα,ζS(µ1)
]
≤ S(µ1) + S(µ2)

2
. (26)

Corollary 2. Choosing α = 1 and ζ = 0 in Corollary 1, we get Theorem 1.

Theorem 3. Let S ,R : [µ1, µ2] → R be two functions and S ,R ∈ L[µ1, µ2]. If S and R are
convex on [µ1, µ2], then the following double inequality for generalized tempered fractional integral
operators holds true:

S
(

µ1+µ2
2

)
R
(

µ1+µ2
2

)
− 1

4 Ψζ
Υ

[
µ+

1
Tζ

ΥS(µ2)R(µ2) + µ−2
Tζ

ΥS(µ1)R(µ1)
]

≤ 1
4 Ψζ

Υ
Θζ

Υ(S ,R)

≤ 1
2 M(µ1, µ2)

∆ζ
Υ

Ψζ
Υ
+ 1

4 N(µ1, µ2)

(
1− 2 ∆ζ

Υ

Ψζ
Υ

)
,

(27)

where
M(µ1, µ2) := S(µ1)R(µ1) + S(µ2)R(µ2),

N(µ1, µ2) := S(µ1)R(µ2) + S(µ2)R(µ1),
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Θζ
Υ(S ,R) :=

∫ µ2−µ1

0

Υ(d)
d

e−ζd
[
R(µ2 − d)S(d− µ1) +R(d− µ1)S(µ2 − d)

]
dd,

∆ζ
Υ :=

1
(µ2 − µ1)2

∫ µ2−µ1

0
Υ(d) e−ζd(µ2 − µ1 − d)dd

and Ψζ
Υ is defined from (18).

Proof. Let u, v ∈ [µ1, µ2]. Since S andR are convex on [µ1, µ2], we have

S
(

u + v
2

)
≤ S(u) + S(v)

2
, R

(
u + v

2

)
≤ R(u) +R(v)

2
.

Taking u = dµ1 + (1− d)µ2 and v = (1− d)µ1 + dµ2, we get

2S
(

µ1 + µ2

2

)
≤ S(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2) (28)

and

2R
(

µ1 + µ2

2

)
≤ R(dµ1 + (1− d)µ2) +R(dµ2 + (1− d)µ1). (29)

By multiplying both sides of inequalities (28) and (29), we obtain

4S
(

µ1+µ2
2

)
R
(

µ1+µ2
2

)
≤ S(dµ1 + (1− d)µ2)R(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2)R(dµ2 + (1− d)µ1)
+S(dµ1 + (1− d)µ2)R(dµ2 + (1− d)µ1) + S((1− d)µ1 + dµ2)R(dµ1 + (1− d)µ2).

(30)

Multiplying both sides of inequality (30) with
Υ(d(µ2 − µ1))

d
e−ζ(µ2−µ1)d and integrat-

ing the resulting inequality with respect to d over [0, 1], we have

4S
(

µ1+µ2
2

)
R
(

µ1+µ2
2

) ∫ 1
0

Υ(d(µ2−µ1))
d e−ζ(µ2−µ1)ddd

≤
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ2 + dµ1)R(dµ1 + (1− d)µ2)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ1 + dµ2)R(dµ2 + (1− d)µ1)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ2 + dµ1)R((1− d)µ1 + dµ2)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ1 + dµ2)R(dµ1 + (1− d)µ2)dd.

So, we get

4 Ψζ
Υ S
(

µ1+µ2
2

)
R
(

µ1+µ2
2

)
≤ µ+

1
Tζ

ΥS(µ2)R(µ2) + µ−2
Tζ

ΥS(µ1)R(µ1)

+
∫ µ2−µ1

0
Υ(d)
d e−ζd

[
S(d− µ1)R(µ2 − d) + S(µ2 − d)R(d− µ1)

]
dd.

(31)

This implies that the left-hand side of inequality (27) has been established. In order
to prove the right-hand side of inequality (27), we utilize the fact that S and R are both
convex functions on [µ1, µ2]. This allows us to derive the following inequalities:

S(dµ1 + (1− d)µ2) ≤ dS(µ1) + (1− d)S(µ2), (32)

S((1− d)µ1 + dµ2) ≤ (1− d)S(µ1) + dS(µ2) (33)

and
R(dµ1 + (1− d)µ2) ≤ dR(µ1) + (1− d)R(µ2), (34)

R((1− d)µ1 + dµ2) ≤ (1− d)R(µ1) + dR(µ2). (35)

Utilizing inequalities (32)–(35), we have
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S(dµ1 + (1− d)µ2)R(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2)R(dµ2 + (1− d)µ1)
+S(dµ1 + (1− d)µ2)R((1− d)µ1 + dµ2) + S((1− d)µ1 + dµ2)R(dµ1 + (1− d)µ2)
≤ S(dµ1 + (1− d)µ2)R(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2)R((1− d)µ1 + dµ2)
+
[
dS(µ1) + (1− d)S(µ2)

]
·
[
(1− d)R(µ1) + dR(µ2)

]
+
[
(1− d)S(µ1) + dS(µ2)

]
·
[
dR(µ1) + (1− d)R(µ2)

]
= S(dµ1 + (1− d)µ2)R(dµ1 + (1− d)µ2) + S((1− d)µ1 + dµ2)R(dµ2 + (1− d)µ1)
+2d(1− d)M(µ1, µ2) +

[
d2 + (1− d)2]N(µ1, µ2).

(36)

Multiplying both sides of inequality (36) with
Υ(d(µ2 − µ1))

d
e−ζ(µ2−µ1)d and integrat-

ing the resulting inequality with respect to d over [0, 1], we obtain∫ 1
0

Υ(d(µ2−µ1))
d e−ζ(µ2−µ1)dS((1− d)µ2 + dµ1)R((1− d)µ2 + dµ1)dd

+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS(dµ2 + (1− d)µ1)R(dµ2 + (1− d)µ1)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ2 + dµ1)R(dµ2 + (1− d)µ1)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS(dµ2 + (1− d)µ1)R((1− d)µ2 + dµ1)dd
≤
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS((1− d)µ2 + dµ1)R((1− d)µ2 + dµ1)dd
+
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)dS(dµ2(1− d)µ1)R(dµ2 + (1− d)µ1)dd
+2M(µ1, µ2)

∫ 1
0

Υ(d(µ2−µ1))
d e−ζ(µ2−µ1)dd(1− d)dd

+N(µ1, µ2)
∫ 1

0
Υ(d(µ2−µ1))

d e−ζ(µ2−µ1)d
[
d2 + (1− d)2]dd.

So, we get [
µ+

1
Tζ

ΥS(µ2)R(µ2) + µ−2
Tζ

ΥS(µ1)R(µ1)
]
+ Θζ

Υ(S ,R)

≤
[

µ+
1

Tζ
ΥS(µ2)R(µ2) + µ−2

Tζ
ΥS(µ1)R(µ1)

]
+ 2M(µ1, µ2)∆

ζ
Υ

+N(µ1, µ2)
(

Ψζ
Υ − 2∆ζ

Υ

)
.

(37)

This implies that the right-hand side of inequality (27) has been established. Therefore,
the proof of Theorem 3 is concluded.

Corollary 3. By substituting S = R into Theorem 3, we obtain the following result:

S2
(

µ1+µ2
2

)
− 1

4 Ψζ
Υ

[
µ+

1
Tζ

ΥS
2(µ2) + µ−2

Tζ
ΥS

2(µ1)
]

≤ 1
2 Ψζ

Υ
Θζ

Υ(S)

≤ 1
2 P(µ1, µ2)

∆ζ
Υ

Ψζ
Υ
+ 1

4 Q(µ1, µ2)

(
1− 2 ∆ζ

Υ

Ψζ
Υ

)
,

(38)

where

Θζ
Υ(S) :=

∫ µ2−µ1

0

Υ(d)
d

e−ζdS(d− µ1)S(µ2 − d)dd

and
P(µ1, µ2) := S2(µ1) + S2(µ2), Q(µ1, µ2) := 2S(µ1)S(µ2).

Corollary 4. By selecting Υ(d) =
dα

Γ(α)
in Theorem 3, we derive the following double inequality

for the product of two convex functions employing tempered fractional integral operators:

S
(

µ1+µ2
2

)
R
(

µ1+µ2
2

)
− Γ(α)

4 γζ (α,µ2−µ1)

[
µ+

1
Iα,ζS(µ2)R(µ2) + µ−2

Iα,ζS(µ1)R(µ1)
]

≤ 1
4 γζ (α,µ2−µ1)

Θα,ζ(S ,R)

≤ 1
2 M(µ1, µ2)

∆α,ζ

γζ (α,µ2−µ1)
+ 1

4 N(µ1, µ2)
(

1− 2 ∆α,ζ

γζ (α,µ2−µ1)

)
,

(39)
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where

Θα,ζ(S ,R) :=
∫ µ2−µ1

0
dα−1 e−ζd

[
S(d− µ1)R(µ2 − d) + S(µ2 − d)R(d− µ1)

]
dd

and
∆α,ζ :=

1
(µ2 − µ1)2

∫ µ2−µ1

0
dα e−ζd(µ2 − µ1 − d)dd.

3. Further Results Related to Generalized Tempered Fractional Integral Operators

To establish the results of this section regarding generalized tempered fractional
integral operators, we commence by proving the following two lemmas.

Lemma 1. Consider a differentiable function S defined on the interval [µ1, µ2]. If S ′ ∈ L[µ1, µ2],
then the following identity holds true for generalized tempered fractional integral operators:

S(µ1)+S(µ2)
2 − 1

2Ψζ
Υ

[
µ+

1
Tζ

ΥS(µ2) + µ−2
Tζ

ΥS(µ1)
]

= (µ2−µ1)

2Ψζ
Υ

∫ 1
0

[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

]
S ′(dµ1 + (1− d)µ2)dd,

(40)

where Ω
ζ
Υ(d) and Ψζ

Υ are defined respectively, from (15) and (18). We denote

IS ,Ωζ
Υ
(µ1, µ2) :=

(µ2 − µ1)

2Ψζ
Υ

∫ 1

0

[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

]
S ′(dµ1 + (1− d)µ2)dd. (41)

Proof. We write (41) in the following form

IS ,Ωζ
Υ
(µ1, µ2) =

(µ2 − µ1)

2Ψζ
Υ

[
I(1)
S ,Ωζ

Υ

(µ1, µ2)− I(2)
S ,Ωζ

Υ

(µ1, µ2)
]
, (42)

where

I(1)
S ,Ωζ

Υ

(µ1, µ2) :=
∫ 1

0
Ω

ζ
Υ(1− d)S ′(dµ1 + (1− d)µ2)dd (43)

and

I(2)
S ,Ωζ

Υ

(µ1, µ2) :=
∫ 1

0
Ω

ζ
Υ(d)S

′(dµ1 + (1− d)µ2)dd. (44)

By performing integration by parts on Equation (43) and making a change of variables
in the integration, we obtain

I(1)
S ,Ωζ

Υ

(µ1, µ2)

= Ω
ζ
Υ(1− d)S(dµ1+(1−d)µ2)

µ1−µ2

∣∣∣∣1
0

+ 1
µ1−µ2

∫ 1
0

Υ((1−d)(µ2−µ1))
1−d e−ζ(µ2−µ1)(1−d)S(dµ1 + (1− d)µ2)dd

= Ψζ
Υ
S(µ2)
µ2−µ1

− 1
µ2−µ1

× µ−2
Tζ

ΥS(µ1).

(45)

Similarly, using (44), we get

I(2)
S ,Ωζ

Υ

(µ1, µ2) = −Ψζ
Υ
S(µ1)

µ2 − µ1
+

1
µ2 − µ1

× µ+
1

Tζ
ΥS(µ2). (46)

Substituting (45) and (46) in (42), we obtain the desired equality (40).

Remark 2. Taking Υ(d) =
dα

Γ(α)
and ζ = 0 in Lemma 1, we get ([19], Lemma 3.1).
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Lemma 2. Suppose S : [µ1, µ2] → R is a differentiable function on the open interval (µ1, µ2).
If S ′ ∈ L[µ1, µ2], then the following identity holds true for generalized tempered fractional inte-
gral operators:

S(x) − 1
2Ψζ

Υ

[
x+Tζ

ΥS(µ2) + x−Tζ
ΥS(µ1)

]
= (x−µ1)

2Ψζ
Υ

∫ 1
0 Σζ

Υ,1(x, d)S ′(dx + (1− d)µ1)dd

− (µ2−x)
2 Ψζ

Υ

∫ 1
0 Σζ

Υ,2(x, d)S ′(dx + (1− d)µ2)dd,

(47)

where Σζ
Υ,1(x, d) and Σζ

Υ,2(x, d) are defined respectively, from (16) and (17). We denote

IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2) := (x−µ1)

2Ψζ
Υ

∫ 1
0 Σζ

Υ,1(x, d)S ′(dx + (1− d)µ1)dd

− (µ2−x)
2Ψζ

Υ

∫ 1
0 Σζ

Υ,2(x, d)S ′(dx + (1− d)µ2)dd.
(48)

Proof. The proof is similar to the proof of Lemma 1.

Theorem 4. Assume that S is a differentiable function on the interval [µ1, µ2]. If S ′ ∈ L[µ1, µ2]
and |S ′|q is a convex function, then, under the conditions q > 1 and 1

p + 1
q = 1, the following

inequality holds true for generalized tempered fractional integral operators:

∣∣IS ,Ωζ
Υ
(µ1, µ2)

∣∣ ≤ (µ2 − µ1)

2Ψζ
Υ

[
Πζ

Υ(p)
] 1

p

[
|S ′(µ1)|q + |S ′(µ2)|q

2

] 1
q

, (49)

where
Πζ

Υ(p) :=
∫ 1

0

∣∣∣Ωζ
Υ(1− d)−Ω

ζ
Υ(d)

∣∣∣pdd

=
∫ 1

2
0

[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

]p
dd+

∫ 1
1
2

[
Ω

ζ
Υ(d)−Ω

ζ
Υ(1− d)

]p
dd.

(50)

Proof. Based on the properties of modulus, the convexity of |S ′|q and applying Hölder’s
inequality, we can deduce from Lemma 1 the following results:∣∣IS ,Ωζ

Υ
(µ1, µ2)

∣∣ ≤ (µ2−µ1)

2Ψζ
Υ

∫ 1
0

∣∣∣Ωζ
Υ(1− d)−Ω

ζ
Υ(d)

∣∣∣|S ′(dµ1 + (1− d)µ2)|dd

≤ (µ2−µ1)

2Ψζ
Υ

(∫ 1
0

∣∣∣Ωζ
Υ(1− d)−Ω

ζ
Υ(d)

∣∣∣pdd
) 1

p (∫ 1
0 |S

′(dµ1 + (1− d)µ2)|qdd
) 1

q

≤ (µ2−µ1)

2Ψζ
Υ

[
Πζ

Υ(p)
] 1

p
(∫ 1

0

[
d|S ′(µ1)|q + (1− d)|S ′(µ2)|q

]
dd
) 1

q

= (µ2−µ1)

2Ψζ
Υ

[
Πζ

Υ(p)
] 1

p

[
|S ′(µ2)|q+|S ′(µ1)|q

2

] 1
q

.

We have successfully completed the proof of Theorem 4.

Let us highlight a few specific scenarios that arise as special cases of Theorem 4.

Corollary 5. Taking Υ(d) =
dα

Γ(α)
and ζ = 0 in Theorem 4, we get ([19], Corollary 3.3).

Corollary 6. Choosing |S ′| ≤ K in Theorem 4, we obtain

∣∣IS ,Ωζ
Υ
(µ1, µ2)

∣∣ ≤ K
(µ2 − µ1)

2Ψζ
Υ

[
Πζ

Υ(p)
] 1

p . (51)



Fractal Fract. 2023, 7, 579 11 of 19

Theorem 5. Consider a differentiable function S defined on the interval [µ1, µ2]. Suppose
S ′ ∈ L[µ1, µ2] and |S ′|q is a convex function. Then, for q ≥ 1, the following inequality holds true
for generalized tempered fractional integral operators:∣∣IS ,Ωζ

Υ
(µ1, µ2)

∣∣ ≤ (µ2−µ1)

2Ψζ
Υ

×
{[

Aζ
Υ,1

]1− 1
q
[
Aζ

Υ,2|S
′(µ1)|q +

(
Aζ

Υ,1 −Aζ
Υ,2

)
|S ′(µ2)|q

] 1
q

+
[
Bζ

Υ,1

]1− 1
q
[
Bζ

Υ,2|S
′(µ1)|q +

(
Bζ

Υ,1 − Bζ
Υ,2

)
|S ′(µ2)|q

] 1
q

}
,

(52)

where
Aζ

Υ,1 :=
∫ 1

2
0

[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

]
dd,

Aζ
Υ,2 :=

∫ 1
2

0 d
[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

]
dd,

Bζ
Υ,1 :=

∫ 1
1
2

[
Ω

ζ
Υ(d)−Ω

ζ
Υ(1− d)

]
dd,

Bζ
Υ,2 :=

∫ 1
1
2
d
[
Ω

ζ
Υ(d)−Ω

ζ
Υ(1− d)

]
dd

and Ψζ
Υ is defined from (18).

Proof. From Lemma 1, convexity of |S ′|q, power mean inequality and properties of the
modulus, we have∣∣IS ,Ωζ

Υ
(µ1, µ2)

∣∣
≤ (µ2−µ1)

2Ψζ
Υ

∫ 1
0

∣∣∣Ωζ
Υ(1− d)−Ω

ζ
Υ(d)

∣∣∣|S ′(dµ1 + (1− d)µ2)|dd

≤ (µ2−µ1)

2Ψζ
Υ

(∫ 1
0

∣∣∣Ωζ
Υ(1− d)−Ω

ζ
Υ(d)

∣∣∣dd)1− 1
q

×
(∫ 1

0

∣∣∣Ωζ
Υ(1− d)−Ω

ζ
Υ(d)

∣∣∣|S ′(dµ1 + (1− d)µ2)|qdd
) 1

q

≤ (µ2−µ1)

2Ψζ
Υ

{(∫ 1
2

0

[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

]
dd
)1− 1

q

×
(∫ 1

2
0

[
Ω

ζ
Υ(1− d)−Ω

ζ
Υ(d)

][
d|S ′(µ1)|q + (1− d)|S ′(µ2)|q

]
dd
) 1

q

+
(∫ 1

1
2

[
Ω

ζ
Υ(d)−Ω

ζ
Υ(1− d)

]
dd
)1− 1

q

×
(∫ 1

1
2

[
Ω

ζ
Υ(d)−Ω

ζ
Υ(1− d)

][
d|S ′(µ1)|q + (1− d)|S ′(µ2)|q

]
dd
) 1

q

}
= (µ2−µ1)

2Ψζ
Υ

×
{[

φ
ζ
Υ,1

]1− 1
q
[
φ

ζ
Υ,2|S

′(µ1)|q +
(

φ
ζ
Υ,1 − φ

ζ
Υ,2

)
|S ′(µ2)|q

] 1
q

+
[
Bζ

Υ,1

]1− 1
q
[
Bζ

Υ,2|S
′(µ1)|q +

(
Bζ

Υ,1 − Bζ
Υ,2

)
|S ′(µ2)|q

] 1
q

}
.

We have successfully completed the proof of Theorem 5.

Now, let us consider some specific instances that arise as special cases of Theorem 5.

Corollary 7. Taking q = 1 in Theorem 5, we have
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∣∣IS ,Ωζ
Υ
(µ1, µ2)

∣∣ ≤ (µ2−µ1)

2Ψζ
Υ

×
{[

Aζ
Υ,2|S

′(µ1)|+
(

Aζ
Υ,1 −Aζ

Υ,2

)
|S ′(µ2)|

]
+
[
Bζ

Υ,2|S
′(µ1)|+

(
Bζ

Υ,1 − Bζ
Υ,2

)
|S ′(µ2)|

]}
.

(53)

Corollary 8. Choosing Υ(d) =
dα

Γ(α)
and ζ = 0 in Corollary 7, we get ([19], Theorem 1.4).

Corollary 9. By employing the inequality |S ′| ≤ K in Theorem 5, we can derive the following result,

∣∣IS ,Ωζ
Υ
(µ1, µ2)

∣∣ ≤ K
(µ2 − µ1)

2Ψζ
Υ

[
Aζ

Υ,1 + Bζ
Υ,1

]
. (54)

Theorem 6. Consider a differentiable function S defined on the interval [µ1, µ2]. Suppose
S ′ ∈ L[µ1, µ2] and |S ′|q is a convex function. Then, under the conditions q > 1 and 1

p + 1
q = 1,

the following inequality holds true for the generalized tempered fractional integral operators:

∣∣IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2)

∣∣ ≤ (x−µ1)

2Ψζ
Υ

[
Ξζ

Υ,1(x, p)
] 1

p

[
|S ′(x)|q+|S ′(µ1)|q

2

] 1
q

+ (µ2−x)
2Ψζ

Υ

[
Ξζ

Υ,2(x, p)
] 1

p

[
|S ′(x)|q+|S ′(µ2)|q

2

] 1
q

,

(55)

where

Ξζ
Υ,1(x, p) :=

∫ 1

0

[
Σζ

Υ,1(x, d)
]p

dd, Ξζ
Υ,2(x, p) :=

∫ 1

0

[
Σζ

Υ,2(x, d)
]p

dd.

Proof. By utilizing Lemma 2, convexity of |S ′|q, Hölder’s inequality and considering the
properties of the modulus, we can derive the following results:∣∣IS ,Σζ

Υ,1,Σζ
Υ,2
(x; µ1, µ2)

∣∣ ≤ (x−µ1)

2Ψζ
Υ

∫ 1
0 Σζ

Υ,1(x, d)|S ′(dx + (1− d)µ1)|dd

+ (µ2−x)
2Ψζ

Υ

∫ 1
0 Σζ

Υ,2(x, d)|S ′(dx + (1− d)µ2)|dd

≤ (x−µ1)

2Ψζ
Υ

(∫ 1
0

[
Σζ

Υ,1(x, d)
]p

dd
) 1

p (∫ 1
0 |S

′(dx + (1− d)µ1)|qdd
) 1

q

+ (µ2−x)
2Ψζ

Υ

(∫ 1
0

[
Σζ

Υ,2(x, d)
]p

dd
) 1

p (∫ 1
0 |S

′(dx + (1− d)µ2)|qdd
) 1

q

≤ (x−µ1)

2Ψζ
Υ

[
Ξζ

Υ,1(x, p)
] 1

p
(∫ 1

0

[
d|S ′(x)|q + (1− d)|S ′(µ1)|q

]
dd
) 1

q

+ (µ2−x)
2Ψζ

Υ

[
Ξζ

Υ,2(x, p)
] 1

p
(∫ 1

0

[
d|S ′(x)|q + (1− d)|S ′(µ2)|q

]
dd
) 1

q

= (x−µ1)

2Ψζ
Υ

[
Ξζ

Υ,1(x, p)
] 1

p

[
|S ′(x)|q+|S ′(µ1)|q

2

] 1
q

+ (µ2−x)
2Ψζ

Υ

[
Ξζ

Υ,2(x, p)
] 1

p

[
|S ′(x)|q+|S ′(µ2)|q

2

] 1
q

.

The proof of Theorem 6 has been successfully concluded.

Let us highlight certain specific instances of Theorem 6.
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Corollary 10. By substituting x =
µ1 + µ2

2
into Theorem 6, we obtain the following midpoint

inequality using generalized tempered fractional integral operators:∣∣∣∣∣IS ,Σζ
Υ,1,Σζ

Υ,2

(
µ1+µ2

2 ; µ1, µ2

)∣∣∣∣∣ ≤ (µ2−µ1)

22+ 1
q Ψζ

Υ

[
Ξζ

Υ(p)
] 1

p

×
{[
|S ′(µ1)|q +

∣∣∣S ′( µ1+µ2
2

)∣∣∣q] 1
q

+

[∣∣∣S ′( µ1+µ2
2

)∣∣∣q + |S ′(µ2)|q
] 1

q
}

,

(56)

where

Ξζ
Υ(p) :=

∫ 1

0

∫ d

0

Υ
(

u
(

µ2−µ1
2

))
u

e−ζ(µ2−µ1)udu

p

dd.

Corollary 11. Choosing Υ(d) =
dα

Γ(α)
in Theorem 6, we get

∣∣IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2)

∣∣ ≤ 1
2γζ (α,µ2−µ1)

[
dγ(α, p)

] 1
p

×
{
(x− µ1)

α+1

[
|S ′(x)|q+|S ′(µ1)|q

2

] 1
q

+ (µ2 − x)α+1

[
|S ′(x)|q+|S ′(µ2)|q

2

] 1
q
}

,
(57)

where

dγ(α, p) :=
∫ 1

0

[
γζ(µ2−µ1)

(α, d)
]p

dd.

Corollary 12. By substituting |S ′| ≤ K into Theorem 6, we derive the following result:

∣∣IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2)

∣∣ ≤ K

2Ψζ
Υ

{
(x− µ1)

[
Ξζ

Υ,1(x, p)
] 1

p + (µ2 − x)
[
Ξζ

Υ,2(x, p)
] 1

p

}
. (58)

Theorem 7. For a differentiable function S : [µ1, µ2] → R defined on the interval [µ1, µ2], if
S ′ ∈ L[µ1, µ2] and the function |S ′|q is convex, where q ≥ 1, then the following inequality holds
true for the generalized tempered fractional integral operators:∣∣IS ,Σζ

Υ,1,Σζ
Υ,2
(x; µ1, µ2)

∣∣ ≤ (x−µ1)

2Ψζ
Υ

×
[
Mζ

Υ,1(x)
]1− 1

q
[
Mζ

Υ,3(x) |S
′(x)|q +

(
Mζ

Υ,1(x)−Mζ
Υ,3(x)

)
|S ′(µ1)|q

] 1
q

+ (µ2−x)
2Ψζ

Υ

[
Mζ

Υ,2(x)
]1− 1

q
[
Mζ

Υ,4(x) |S
′(x)|q +

(
Mζ

Υ,2(x)−Mζ
Υ,4(x)

)
|S ′(µ2)|q

] 1
q

,

(59)

where
Mζ

Υ,1(x) :=
∫ 1

0 Σζ
Υ,1(x, d)dd,

Mζ
Υ,2(x) :=

∫ 1
0 Σζ

Υ,2(x, d)dd,

Mζ
Υ,3(x) :=

∫ 1
0 dΣζ

Υ,1(x, d)dd,

Mζ
Υ,4(x) :=

∫ 1
0 dΣζ

Υ,2(x, d)dd

and Ψζ
Υ is defined from (18).
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Proof. From Lemma 2, convexity of |S ′|q, power mean inequality and properties of the
modulus, we have∣∣IS ,Σζ

Υ,1,Σζ
Υ,2
(x; µ1, µ2)

∣∣ ≤ (x−µ1)

2Ψζ
Υ

∫ 1
0 Σζ

Υ,1(x, d)|S ′(dx + (1− d)µ1)|dd

+ (µ2−x)
2Ψζ

Υ

∫ 1
0 Σζ

Υ,2(x, d)|S ′(dx + (1− d)µ2)|dd

≤ (x−µ1)

2Ψζ
Υ

(∫ 1
0 Σζ

Υ,1(x, d)dd
)1− 1

q
(∫ 1

0 Σζ
Υ,1(x, d)|S ′(dx + (1− d)µ1)|qdd

) 1
q

+ (µ2−x)
2Ψζ

Υ

(∫ 1
0 Σζ

Υ,2(x, d)dd
)1− 1

q
(∫ 1

0 Σζ
Υ,2(x, d)|S ′(dx + (1− d)µ2)|qdd

) 1
q

≤ (x−µ1)

2Ψζ
Υ

[
Mζ

Υ,1(x)
]1− 1

q
(∫ 1

0 Σζ
Υ,1(x, d)

[
d|S ′(x)|q + (1− d)|S ′(µ1)|q

]
dd
) 1

q

+ (µ2−x)
2Ψζ

Υ

[
Mζ

Υ,2(x)
]1− 1

q
(∫ 1

0 Σζ
Υ,2(x, d)

[
d|S ′(x)|q + (1− d)|S ′(µ2)|q

]
dd
) 1

q

= (x−µ1)

2Ψζ
Υ

[
Mζ

Υ,1(x)
]1− 1

q
[
Mζ

Υ,3(x) |S
′(x)|q +

(
Mζ

Υ,1(x)−Mζ
Υ,3(x)

)
|S ′(µ1)|q

] 1
q

+ (µ2−x)
2Ψζ

Υ

[
Mζ

Υ,2(x)
]1− 1

q
[
Mζ

Υ,4(x) |S
′(x)|q +

(
Mζ

Υ,2(x)−Mζ
Υ,4(x)

)
|S ′(µ2)|q

] 1
q

.

The proof of Theorem 7 is completed.

We point out some special cases of Theorem 7.

Corollary 13. Taking q = 1 in Theorem 7, we have∣∣IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2)

∣∣ ≤ (x−µ1)

2Ψζ
Υ

×
[
Mζ

Υ,3(x) |S
′(x)|+

(
Mζ

Υ,1(x)−Mζ
Υ,3(x)

)
|S ′(µ1)|

]
+ (µ2−x)

2Ψζ
Υ

[
Mζ

Υ,4(x) |S
′(x)|+

(
Mζ

Υ,2(x)−Mζ
Υ,4(x)

)
|S ′(µ2)|

]
.

(60)

Corollary 14. Choosing x =
µ1 + µ2

2
in Theorem 7 and utilizing the generalized tempered frac-

tional integral operators, we obtain the following midpoint inequality:∣∣∣∣∣IS ,Σζ
Υ,1,Σζ

Υ,2

(
µ1+µ2

2 ; µ1, µ2

)∣∣∣∣∣ ≤ (µ2−µ1)

4Ψζ
Υ

[
Mζ

Υ

]1− 1
q

×
{[

Nζ
Υ

∣∣∣S ′( µ1+µ2
2

)∣∣∣q + (Mζ
Υ −Nζ

Υ

)
|S ′(µ1)|q

] 1
q

+

[
Nζ

Υ

∣∣∣S ′( µ1+µ2
2

)∣∣∣q + (Mζ
Υ −Nζ

Υ

)
|S ′(µ2)|q

] 1
q
}

,

(61)

where

Mζ
Υ :=

∫ 1
0

(∫ d
0

Υ
(

u
(

µ2−µ1
2

))
u e−ζ(µ2−µ1)udu

)
dd,

Nζ
Υ :=

∫ 1
0 d

(∫ d
0

Υ
(

u
(

µ2−µ1
2

))
u e−ζ(µ2−µ1)udu

)
dd.
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Corollary 15. Taking Υ(d) =
dα

Γ(α)
in Theorem 7, we obtain

∣∣IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2)

∣∣ ≤ 1
2γζ (α,µ2−µ1)

[
dγ(α)

]1− 1
q

×
{
(x− µ1)

α+1
[
dγ,1(α) |S ′(x)|q +

(
dγ(α)− dγ,1(α)

)
|S ′(µ1)|q

] 1
q

+(µ2 − x)α+1
[
dγ,1(α) |S ′(x)|q +

(
dγ(α)− dγ,1(α)

)
|S ′(µ2)|q

] 1
q
}

,

(62)

where
dγ(α) :=

∫ 1
0 γζ(µ2−µ1)

(α, d)dd,
dγ,1(α) :=

∫ 1
0 dγζ(µ2−µ1)

(α, d)dd.

Corollary 16. Choosing |S ′| ≤ K in Theorem 7, we have

∣∣IS ,Σζ
Υ,1,Σζ

Υ,2
(x; µ1, µ2)

∣∣ ≤ K

2Ψζ
Υ

{
(x− µ1)M

ζ
Υ,1(x) + (µ2 − x)Mζ

Υ,2(x)
}

. (63)

Remark 3. Applying our results for suitable choices of function Υ(d) = d(µ2 − d)α−1 and
Υ(d) = d

α exp(−Ad), where A := 1−α
α for α ∈ (0, 1) such that |S ′|q to be convex function, we

can construct some new tempered fractional integral type inequalities. We omit their proofs and the
details are left to the interested readers.

4. Applications

In the final section, we provide several examples that illustrate the results we have
established in relation to matrices, modified Bessel functions and q-digamma function.

4.1. Matrices

Example 1. In this context, the set of n×n complex matrices is denoted by Cn. Similarly, Mn represents
the algebra of n× n complex matrices and M+

n refers to the subset of strictly positive matrices within
Mn. Consequently, for a matrix A ∈ M+

n , it holds that 〈Au, u〉 > 0 for all nonzero u ∈ Cn.
Incorporating the concepts of matrices and convexity, Sababheh [27] introduced the function

S(d) := ‖AdXB1−d + A1−dXBd‖, where A, B ∈ M+
n , and X ∈ Mn. It was shown that this

function is convex for all d ∈ [0, 1]. Consequently, by utilizing Theorem 2 for any 0 ≤ µ1 < µ2 ≤ 1,
we obtain

‖A
µ1+µ2

2 XB1− µ1+µ2
2 + A1− µ1+µ2

2 XB
µ1+µ2

2 ‖
≤ 1

2 Ψζ
Υ

[
µ+

1
Tζ

Υ‖A
µ2XB1−µ2 + A1−µ2XBµ2‖ + µ−2

Tζ
Υ‖A

µ1XB1−µ1 + A1−µ1XBµ1‖
]

≤ ‖A
µ1 XB1−µ1+A1−µ1 XBµ1‖+‖Aµ2 XB1−µ2+A1−µ2 XBµ2‖

2 .

(64)

4.2. Modified Bessel Functions

The modified Bessel function of the first kind, denoted as dρ(a), is a mathematical
function defined as the following infinite sum:

dρ(a) = ∑
n≥0

(
a
2
)ρ+2n

n!Γ(n + ρ + 1)
,

where a > 0 is a real number and ρ > −1.
The modified Bessel function of the second kind, denoted as Bρ(a), is defined in terms

of dρ(a) as follows:

Bρ(a) :=
π

2
d−ρ(a)− dρ(a)

sin ρπ
.
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Another function, Jρ(a), can be defined as:

Jρ(a) := 2ρΓ(ρ + 1)a−ρBρ(a),

where Γ(·) represents the gamma function.
In the cited reference [28], two derivative formulas for Jρ(a) are given. The first

derivative is expressed as:

J′ρ(a) =
a

2(ρ + 1)
Jρ+1(a). (65)

The second derivative is given by:

J′′ρ (a) =
a2Jρ+2(a)

4(ρ + 1)(ρ + 2)
+

Jρ+1(a)

2(ρ + 1)
. (66)

Example 2. Applying Corollary 7 and using expressions (65) and (66), we have∣∣∣∣µ1Jρ+1(µ1) + µ2Jρ+1(µ2) − 1
Ψζ

Υ

[
µ2 · µ+

1
Tζ

ΥJρ+1(µ2) + µ1 · µ−2
Tζ

ΥJρ+1(µ1)
]∣∣∣∣ ≤ (µ2−µ1)

2Ψζ
Υ

×
{[

Aζ
Υ,2

∣∣∣∣ µ2
1

ρ+2 Jρ+2(µ1) + 2Jρ+1(µ1)

∣∣∣∣+ (Aζ
Υ,1 −Aζ

Υ,2

)∣∣∣∣ µ2
2

ρ+2 Jρ+2(µ2) + 2Jρ+1(µ2)

∣∣∣∣]
+

[
Bζ

Υ,2

∣∣∣∣ µ2
1

ρ+2 Jρ+2(µ1) + 2Jρ+1(µ1)

∣∣∣∣+ (Bζ
Υ,1 − Bζ

Υ,2

)∣∣∣∣ µ2
2

ρ+2 Jρ+2(µ2) + 2Jρ+1(µ2)

∣∣∣∣]
}

.

Proof. By utilizing Corollary 7 and incorporating Equations (65) and (66) where the func-
tion S(a) := J′ρ(a) with a > 0, we can derive the final result, thus completing the proof.

Example 3. Using Corollary 13 and applying expressions (65) and (66), we get∣∣∣∣2xJρ+1(x) − 1
Ψζ

Υ

[
µ2 · x+Tζ

ΥJρ+1(µ2) + µ1 · x−Tζ
ΥJρ+1(µ1)

]∣∣∣∣
≤ (x−µ1)

2Ψζ
Υ

[
Mζ

Υ,3(x)
∣∣∣ x2

ρ+2 Jρ+2(x) + 2Jρ+1(x)
∣∣∣

+
(

Mζ
Υ,1(x)−Mζ

Υ,3(x)
) ∣∣∣∣ µ2

1
ρ+2 Jρ+2(µ1) + 2Jρ+1(µ1)

∣∣∣∣
]

+ (µ2−x)
2Ψζ

Υ

[
Mζ

Υ,4(x)
∣∣∣ x2

ρ+2 Jρ+2(x) + 2Jρ+1(x)
∣∣∣

+
(

Mζ
Υ,2(x)−Mζ

Υ,4(x)
) ∣∣∣∣ µ2

2
ρ+2 Jρ+2(µ2) + 2Jρ+1(µ2)

∣∣∣∣
]

.

Proof. By employing Corollary 13 and incorporating Equations (65) and (66), where the function
S(a) := J′ρ(a) with a > 0, we can deduce the outcome, thereby concluding the proof.

4.3. q-Digamma Function

The q-digamma function, denoted as $q, is a function that serves as the q-analogue
of the digamma function $. The formula for $q is provided in the references [28,29] and is
given as follows:

$q(γ) = − ln(1− q) + ln q
∞

∑
k=0

qk+γ

1− qk+γ

or alternatively,
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$q(γ) = − ln(1− q) + ln q
∞

∑
k=0

qkγ

1− qkγ
.

This expression holds true when q > 1 and γ > 0. The q-digamma function $q can
also be expressed in the following form:

$q(γ) = − ln(q− 1) + ln q

[
γ− 1

2
−

∞

∑
k=0

q−(k+γ)

1− q−(k+γ)

]
or alternatively,

$q(γ) = − ln(q− 1) + ln q

[
γ− 1

2
−

∞

∑
k=0

q−kγ

1− q−kγ

]
.

Example 4. Applying Corollary 7, we have∣∣∣∣ $′q(µ1)+$′q(µ2)
2 − 1

2Ψζ
Υ

[
µ+

1
Tζ

Υ$′q(µ2) + µ−2
Tζ

Υ$′q(µ1)
]∣∣∣∣ ≤ (µ2−µ1)

2Ψζ
Υ

×
{[

Aζ
Υ,2|$

′′
q(µ1)|+

(
Aζ

Υ,1 −Aζ
Υ,2

)
|$′′q(µ2)|

]
+
[
Bζ

Υ,2|$
′′
q(µ1)|+

(
Bζ

Υ,1 − Bζ
Υ,2

)
|$′′q(µ2)|

]}
.

Proof. The statement can be readily derived by utilizing Corollary 7, where S(a)→ $q(a)
represents a completely monotone function on the interval (0, ∞) for all a > 0. As a result,
S(a) := $′q(a) is a convex function.

Example 5. Using Corollary 13, we get∣∣∣∣$′q(x) − 1
2Ψζ

Υ

[
x+Tζ

Υ$′q(µ2) + x−Tζ
Υ$′q(µ1)

]∣∣∣∣
≤ (x−µ1)

2Ψζ
Υ

[
Mζ

Υ,3(x)
∣∣$′′q(x)∣∣+ (Mζ

Υ,1(x)−Mζ
Υ,3(x)

) ∣∣$′′q(µ1)
∣∣]

+ (µ2−x)
2Ψζ

Υ

[
Mζ

Υ,4(x)
∣∣$′′q(x)∣∣+ (Mζ

Υ,2(x)−Mζ
Υ,4(x)

) ∣∣$′′q(µ2)
∣∣].

Proof. The assertion can be immediately derived by utilizing Corollary 13, where S(a)→
$q(a) represents a completely monotone function on the interval (0, ∞) for all a > 0.
Consequently, S(a) := $′q(a) is a convex function.

5. Conclusions

Overall, this paper aimed to contribute to the expanding field of fractional H–H
inequalities by presenting new results, exploring their properties, investigating their con-
nections with fractional calculus, and demonstrating their applications. Through our work,
we sought to advance the theoretical foundations of fractional calculus, enhance our un-
derstanding of convex functions in the fractional calculus framework, and inspire further
research in this exciting and evolving area of mathematics.

This research paper introduces novel concepts of left and right generalized tempered
fractional integral operators and establishes fresh H–H inequalities for convex functions
and their products. Additionally, it derives two useful identities for differentiable functions
that involve the generalized tempered fractional integral operator. These identities are
then utilized to establish H–H and midpoint-type integral inequalities for convex functions.
The paper also explores various special cases and demonstrates how the general findings
recover known results. Furthermore, the paper presents compelling applications related to
matrices, modified Bessel functions and q-digamma functions. By employing the newly
introduced generalized tempered fractional integral operators, along with well-known
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inequalities such as Hölder–İşcan’s inequality, Improved-Power-mean’s inequality, Young’s
inequality, Minkowski’s inequality, and Chebyshev’s inequality, this paper establishes
novel bounds for differentiable convex functions. Finally, the importance of these new
integral operators depends on the choices of the parameter ζ, since it takes values in the
domain [0, ∞). In other words, interested readers that will do numerical computations
will immediately see the advantage of this new operator compared with other known
integral operators in terms of the suitable choices of parameter ζ. We believe that these
new operators will be important tools for investigating various variational problems for
different types of convexities.
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