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Abstract: This paper is concerned with the asymptotic and pinning synchronization of fractional-
order nonidentical complex dynamical networks with uncertain parameters (FONCDNUP). First of
all, some synchronization criteria of FONCDNUP are proposed by using the stability of fractional-
order dynamical systems and inequality theory. Moreover, a novel controller is derived by using the
Lyapunov direct method and the differential inclusion theory. Next, based on the Lyapunov stability
theory and pinning control techniques, a new group of sufficient conditions to assure the synchro-
nization for FONCDNUP are obtained by adding controllers to the sub-nodes of networks. At last,
two numerical simulations are utilized to illustrate the validity and rationality of the acquired results.

Keywords: pinning synchronization; nonidentical networks; uncertain parameters

1. Introduction

As is known to all, complex networks cover almost everywhere and have been rapidly
growing with a wide range of applications. Over the past few decades, several results on
the dynamical behavior of complex dynamical networks have been published, such as
chaos [1], bifurcation [2], stability [3], and dissipativity [4].

Fractional-order derivatives, as a generalization of integer-order derivatives, can de-
scribe natural phenomena more easily. Moreover, fractional-order derivatives have more
advantages than integer-order derivatives in terms of memory and genetic properties. Ad-
ditionally, they have a wide range of promising applications in secure communications [5],
viscoelastic systems [6], power systems [7], robotics [8], and heat conduction [9]. Further-
more, real-world models can be better portrayed by fractional-order derivatives, such as
hydrodynamics [10] and biological models [11]. It is necessary to introduce fractional-order
derivatives in complex networks. Additionally, fractional-order complex networks (FOCN)
can be seen as an important stretch of traditional integer-order complex networks, which
have excellent modeling capabilities and are well suited to assist people in physics, engi-
neering, and interdisciplinary areas to simulate a variety of materials and systems with
longtime memory and genetic properties [12–14]. It is worth noting that dynamical charac-
teristics such as the synchronization of FOCN occupy an important position in applications
and are gradually gaining attention. Therefore, theoretical and applied studies of FOCN
are very important and interesting [15].

Dynamical phenomena in complex networks have been broadly studied, among which
the synchronization is one of the most critical dynamic activities in complex networks. In
reality, synchronization as a kind of basic natural activity has been extensively studied in
different fields. The synchronization of FOCN as an interesting and essential dynamical
behavior has been studied by a large amount of scholars and has a wide range of research
in unmanned ground vehicles [16], cryptography [17], and image encryption [18]. Hence,
there has been a great deal of research on synchronization [19,20]. The synchronization of
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FOCN by specific control strategies is an increasingly important issue in control of FOCN.
Many strategies have been proposed for synchronous control [21,22], and they are widely
applied in different areas. However, because the FOCN is made up of many nodes, these
effective control strategies are difficult and costly to implement as they require moment
by moment control of the entire node. They require constant activation of control inputs,
which can result in wasted energy. Therefore, pinning control is no doubt a more efficient
control method because pinning control synchronizes the network by controlling a small
portion of the nodes instead of all of them [23].

Most of the models studied in the current works have the same parameters. However,
due to the complexity of the real world, the parameters of the drive and response systems
are hardly identical. Therefore, considering that, a nonidentical network with different
parameters for the driving system and the response system is more realistic [24].

In reality, the presence of parameter uncertainty is inevitable. This is why we cannot
always obtain the precise values of the parameters used in modeling the real system.
Additionally, there may be unknown topology and modeling errors. Uncertain parameters
can result in the negative dynamic behavior of the system, such as decreased performance,
prolonged synchronization time, and even the destabilization of the trajectory. Therefore, it
is important to consider the effects of parameter uncertainty on the system. Incorporating
parameter uncertainty into the network model is essential.

For instance [25], the authors utilized the comparison theorem and Lyapunov method
to derive conditions for the synchronization of the FOCN with multiple time delays and
parameter uncertainty. Additionally, in the literature [26], they employed the homogeneous
embryonic principle and inequality techniques to establish two criteria—one indepen-
dent of time delay and one dependent on time delay—in order to ensure the accuracy of
the conclusions. Apart from that, in [27], the authors obtained conditions for achieving
projection synchronization by modeling fractional-order T-S fuzzy neural networks with un-
certain parameters and applying system stability theory and matrix inequality techniques.
In the [28], a new sliding-mode surface controller on nonidentical networks was designed.
In Ref. [29], some sufficient conditions were derived to achieve the synchronization of the
global Mittag–Leffler projection of the processing model using the Lyapunov method and
the Razumikhin technique to converge the states to a specified sliding surface for sliding
motion. In Ref. [30], the synchronization of the FOCN with delays under adaptive control
was achieved using inequality theory and the comparison principle of linear fractional
equations with delays. In order to achieve asymptotic synchronization of uncertain FOCN,
an adaptive pinning controller was designed in the paper [31]. In Ref. [32], it was demon-
strated that the uncertain fractional-order T-S fuzzy complex networks were stable under
the designed controller, reducing the impact of coupled time-varying and uncertainty
perturbations on the tracking error. However, there is a scarcity of relevant studies on the
pinning synchronization of FOCN with parameter uncertainty, making it a worthwhile
area for exploration.

Motivated by the above discussions, this paper mainly considers the asymptotic and
pinning synchronization of FONCDNUP. The main contributions are as follows:

(1) By employing stability and the inequality theory of fractional dynamical systems,
a new criterion for the synchronization of FONCDNUP is discovered.

(2) By utilizing the Lyapunov direct method and pinning control theory, a novel
pinning controller is designed.

(3) Since there is limited research on pinning control in FOCN with parameter uncer-
tainty, the previous studies are extended.

The remainder of the paper is organized as follows: Section 2 provides the prelim-
inaries; Section 3 presents some sufficient conditions for the asymptotic and pinning
synchronization of FOCN with uncertain parameters; the effectiveness of the obtained
results is verified through simulations in Section 4; and finally, Section 5 concludes the
paper and offers prospects for future research.
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2. Preliminaries

Definition 1 ([33]). The function ˜̄h(t) with α-order fractional integral is defined as

Iα
t

˜̄h(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1 ˜̄h(s)ds, (1)

where α > 0, t0 is the initial time, and t ≥ t0, Γ(·) is the Euler gamma function.

Definition 2 ([33]). The function ˜̄h(t) with α-order Caputo derivative of fractional is defined as follows:

C
t0

Dα
t

˜̄h(t) =
1

Γ(k̂− α)

∫ t

t0

(t− υ)k̂−α−1 ˜̄h(t)(k̂)(υ)dυ, (2)

where k̂− 1 < α < k̂, k̂ ∈ Z+, and t0 is the initial time. And in particular, when 0 < α < 1,

C
t0

Dα
t

˜̄h(t) =
1

Γ(1− α)

∫ t

t0

(t− υ)−α ˜̄h′(t)(υ)dυ. (3)

Lemma 1 ([34]). For all 0 < α < 1, if ˜̄h(t) ∈ C1([t,+∞),R), then

C
t0

Dα
t | ˜̄h(t)| ≤ sign( ˜̄h(t))C

t0
Dα

t
˜̄h(t), (4)

where t ≥ t0, and t0 is the initial time.

Lemma 2 ([35]). P ∈ Rn×n is a positive-definite matrix, and ∀ vectors v, s ∈ Rn, the below
inequality holds true:

v>s ≤ 1
2

v>Pv +
1
2

s>P−1s. (5)

Assumption 1. The activation functions ˜̄hi(·); for all i = 1, 2, · · ·, n, it satisfies the Lipschitz
conditions if a positive matrix L = diag(l1, l2, · · · , ln) exists such that

| ˜̄hi(t, s)− ˜̄hp(t, v)| ≤ Li|s−v|, (6)

for all v, s ∈ Rn.

3. Main Results

In this section, one can obtain some results on asymptotic and pinning synchronization
of FOCN with uncertain parameters by means of Lyapunov theory and inequality theory,
and some controllers are designed to ensure that synchronization is realizable.

3.1. Asymptotic Synchronization for FONCDNUP

In this segment, the work synchronizes the system (7) and system (8) by an appropriate
controller. Then, one will consider the below FONCDNUP: the drive system is described as

c
t0

Dα
t vi(t) = A0vi(t) + B0h̄(vi(t)) + c

N

∑
j=1

dijΛvj(t), (7)

and the response system is described as

c
t0

Dα
t si(t) = (E0 + ∆E(t))si(t) + (G0 + ∆G(t))h̄(si(t)) + c

N

∑
j=1

dijΛsj(t) + ui(t), (8)

where 0 < α < 1, i = 1, 2, · · · , n; vi(t) and si(t) are the state of the i-node, A0 and E0 are
constant matrices, h̄(vi(t)), and h̄(si(t)) indicate the continuous nonlinear functions. B0
and G0 stand for the weight matrices. Λ = diag(ε1, ε2, · · · , εn) > 0 is the internal coupling
matrix. (dij)n×n is the outer coupling matrix, and if it has a linkage in the node i to j, dij 6= 0;
otherwise dij = 0. ∆E(t) and ∆G(t) are the parametric uncertainties.
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The vector of synchronization error (sync-error) is defined as

ei(t) = si(t)−vi(t). (9)

Based on (7) and (8), the sync-error system is as follows:

c
t0

Dα
t ei(t) =c

t0
Dα

t si(t)−c
t0

Dα
t vi(t)

=(E0 + ∆E(t))si(t) + (G0 + ∆G(t))h̄(si(t))

−B0h̄(vi(t))− A0vi(t) + c
N

∑
j=1

dijΛei(t) + ui(t),

(10)

where i = 1, 2, · · · , n.
In order to obtain the main results, one makes the following assumption.

Assumption 2. The parametric uncertainties ∆E(t), ∆G(t), ∆D(t), and ∆Q(t) are the following forms:

∆E(t) = MeF(t)He,

∆G(t) = MgF(t)Hg,

∆D(t) = MdF(t)Hd,

∆Q(t) = MqF(t)Hq,

where Me, Mg, He, Hg, Hd, Hq, Md, and Mq are the diagonal matrices with appropriate dimensions.
And the uncertain matrix F(t) can satisfy F>(t)F(t) ≤ I, where I is the identity matrix.

Theorem 1. Under the Assumptions 1 and 2, and scalar 0 < α < 1, FONCDNUP can achieve
asymptotic synchronization, if the following inequalities hold:

(i) Υ̂ < 0,

(ii) ui(t) = −(E0 + ∆E(t)− A0)vi(t)− (G0 + ∆G(t))h̄(vi(t)) + B0h̄(vi(t)− δiei(t),

and Υ̂ = E0 +
1
2 Me M>e + 1

2 H>e He + LG0 + L 1
2 Mg M>g + L 1

2 H>g Hg + ∑N
j=1 dijΛ− δi.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1
|ei(t)|, (11)

then, taking the fractional derivative of V(t) by Lemma 1, we can obtain

c
t0

Dα
t V(t) =c

t0
Dα

t

n

∑
i=1
|ei(t)|

≤
n

∑
i=1

sign>(ei(t))c
t0

Dα
t ei(t)

≤
n

∑
i=1

sign>(ei(t))[(E0 + ∆E(t))si(t)− A0vi(t)− B0h̄(vi(t))

+ (G0 + ∆G(t))h̄(si(t) + c
N

∑
j=1

dijΛei(t) + ui(t)]

≤
n

∑
i=1

sign>(ei(t))[(E0 + ∆E(t))si(t)− A0vi(t)]

+
n

∑
i=1

sign>(ei(t)[(G0 + ∆G(t))h̄(si(t))− B0h̄(vi(t))]

+
n

∑
i=1

sign>(ei(t))c
N

∑
j=1

dijΛei(t) +
n

∑
i=1

sign>(ei(t))ui(t).

(12)
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It follows from Lemma 2 and Assumption 2 that

W1 =
n

∑
i=1

sign>(ei(t)(E0 + ∆E(t))si(t)− A0vi(t)

≤
n

∑
F=1
|(E0 + ∆E(t))si(t) + (E0 + ∆E(t)))vi(t)

− (E0 + ∆E(t))vi(t)− A0vi(t)|

≤
n

∑
i=1
|(E0 + ∆E(t))ei(t) + (E0 − A0 + ∆E(t))vi(t)|

≤
n

∑
i=1
|(E0 + MeF(t)He)ei(t) + (E0 + MeF(t)He − A0)vi(t)|

≤
n

∑
i=1
|(E0 +

1
2

Me M>e +
1
2

H>e He)ei(t)

+ (E0 +
1
2

Me M>e +
1
2

H>e He − A0)vi(t)|.

(13)

Using Assumption 1, one has

W2 =
n

∑
i=1

sign>(ei(t)[(G0 + ∆G(t))h̄(si(t))− B0h̄(vi(t))]

≤
n

∑
i=1
|(G0 + ∆G(t))h̄(si(t))− B0h̄(vi(t))|

≤
n

∑
i=1

(G0 + ∆G(t))h̄(si(t)) + (G0 + ∆G(t))h̄(vi(t)

− (G0 + ∆G(t))h̄(vi(t))− B0h̄(vi(t)

≤
n

∑
i=1
|(G0 + ∆G(t))Lei(t) + (G0 + ∆G(t))h̄(vi(t))− B0h̄(vi(t))

≤
n

∑
i=1
|(G0 + MgF(t)Hg)Lei(t) + (G0 + MgF(t)Hg)h̄(vi(t))− B0h̄(vi(t)

≤
n

∑
i=1
|(G0 +

1
2

Mg M>g +
1
2

H>g Hg)Lei(t)− B0h̄(vi(t)

+ (G0 +
1
2

Mg M>g +
1
2

H>g Hg)h̄(vi(t))|.

(14)

Similarly, one can obtain the following formula:

W3 =
n

∑
i=1

sign>(ei(t))c
N

∑
j=1

dijΛei(t)

≤
n

∑
i=1
|c

N

∑
j=1

dijΛei(t)|

≤ c
n

∑
i=1

N

∑
j=1

dijΛ|ei(t)|.

(15)
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Adding the controller ui(t) to (12), we obtain

W4 =
n

∑
i=1

sign>(ei(t))ui(t)

≤
n

∑
i=1

sign>(ei(t))[−(E0 + ∆E(t)− A0)vi(t)− δiei(t)

− (G0 + ∆G(t))h̄(vi(t)) + B0h̄(vi(t)]

≤
n

∑
i=1
| − (E0 + ∆E(t)− A0)vi(t)− δiei(t)

− (G0 + ∆G(t))h̄(vi(t)) + B0h̄(vi(t)|

≤
n

∑
i=1
| − (E0 +

1
2

Me M>e +
1
2

H>e He)vi(t) + B0h̄(vi(t)

− (G0 +
1
2

Mg M>g +
1
2

H>g Hg)h̄(vi(t))− δiei(t) + A0vi(t)|.

(16)

By adding (13)–(16) to (12), one can obtain

c
t0

Dα
t V(t) ≤W1 + W2 + W3 + W4

≤
n

∑
i=1
|(E0 +

1
2

Me M>e +
1
2

H>e He)ei(t)E0vi(t)− A0vi(t)

+ (
1
2

Me M>e +
1
2

H>e He)vi(t) +
1
2

Mg M>g Lei(t)

+ G0Lei(t) +
1
2

H>g HgLei(t) +
1
2

H>g Hg h̄(vi(t))

+ (G0 +
1
2

Mg M>g )h̄(vi(t))− B0h̄(vi(t)) + A0vi(t)

− (E0 +
1
2

Me M>e +
1
2

H>e He)vi(t) +
N

∑
j=1

dijΛei(t)

− (G0 +
1
2

Mg M>g +
1
2

H>g Hg)h̄(vi(t))− δiei(t) + B0h̄(vi(t)|

≤
n

∑
i=1

[E0 +
1
2

Me M>e +
1
2

H>e He + LG0 + L
1
2

Mg M>g

+ L
1
2

H>g Hg +
N

∑
j=1

dijΛ− δi]|ei(t)|

≤
n

∑
i=1

Υ̂|ei(t)|.

(17)

When Υ̂ < 0, the c
t0

Dα
t V(t) ≤ 0, which means the FONCDNUP can achieve asymptot-

ical synchronization under the controller.

3.2. Pinning Synchronization for FOCDNUP

In this subsection, we explore the pinning synchronization of the following fractional-
order complex dynamical networks with uncertain parameters (FOCDNUP): the drive
system is described as

c
t0

Dα
t ṽi(t) = (D + ∆D(t))ṽi(t) + (Q + ∆Q(t))g(ṽi(t)) + c

N

∑
j=1

dijΛṽj(t), (18)
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and the response system is described as

c
t0

Dα
t s̃i(t) = (D + ∆D(t))s̃i(t) + (Q + ∆Q(t))g(s̃i(t)) + c

N

∑
j=1

dijΛs̃j(t) + ũi(t), (19)

where 0 < α < 1, i = 1, 2, · · · , n, ṽi(t) and s̃i(t) are the state of the i-node, D and is the real
constant matrix, and Q indicate the weight matrix. g(ṽi(t)) and g(s̃i(t)) show the continu-
ous nonlinear functions. Λ̃ = diag(ε̃1, ε̃2, · · · , ε̃n) > 0 is the internal coupling matrix of the
networks. (d̃ij)n×n is the outer coupling matrix, and if they have a linkage in the node i to j,
d̃ij 6= 0 ; otherwise, d̃ij = 0. ∆D(t) and ∆Q(t) are the parametric uncertainties.

The sync-error vector is defined as

êi(t) = s̃i(t)− ṽi(t). (20)

Based on (18) and (19), the sync-error system is expressed as

c
t0Dα

t êi(t) = (D + ∆D(t))êi(t) + (Q + ∆Q(t))g(êi(t)) + c̃
N

∑
j=1

d̃ijΛ̃êi(t) + ũi(t). (21)

Then, the pinning controller of FOCDNUP is described as

ũi(t) =
{
−δ̃i êi(t), i = 1, 2, · · · , m
0, i = m + 1, m + 2, · · · , n.

(22)

Synchronizing the FOCDNUP by the pinning controller is the next task.

Theorem 2. Under Assumptions 1 and 2, and scalar 0 < α < 1, the FOCDNUP can achieve
synchronization under the pinning controller, if the following inequalities hold:

D +
1
2

Md M>d +
1
2

H>d Hd + LQ +
1
2

LMq M>q +
1
2

LH>q Hq + c̃
N

∑
j=1

d̃ijΛ̃−
m

∑
i=1

δ̃i < 0.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1
|êi(t)|, (23)

then, taking the fractional derivative of V(t) by Lemma 1, one can obtain

c
t0

Dα
t V(t) =c

t0
Dα

t

n

∑
i=1
|êi(t)|

≤
n

∑
i=1

sign>(êi(t))c
t0

Dα
t êi(t)

≤
n

∑
i=1

sign>(êi(t))[(D + ∆D(t))êi(t) + (Q + ∆Q(t))g(êi(t))

+ c
N

∑
j=1

d̃ijΛ̃êi(t) + ũi(t)]

≤
n

∑
i=1

sign>(êi(t))(D + ∆D(t))êi(t)

+
n

∑
i=1

sign>(êi(t))(Q + ∆Q(t))g(êi(t))

+
n

∑
i=1

sign>(êi(t))(c̃
N

∑
j=1

d̃ijΛ̃êi(t) + ũi(t)).

(24)
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It follows from Lemma 2 and Assumption 2 that

V1 =
n

∑
i=1

sign>(êi(t))(D + ∆D(t))êi(t)

≤
n

∑
i=1
|(D + ∆D(t))êi(t)|

≤
n

∑
i=1
|(D + MdF(t)Hd)êi(t)|

≤
n

∑
i=1
|D +

1
2

Md M>d +
1
2

H>d Hd êi(t)|.

(25)

Using Assumption 1, one obtains

V2 =
n

∑
i=1

sign>(êi(t))(Q + ∆Q(t))g(êi(t))

≤
n

∑
i=1
|Q + ∆Q(t))Lêi(t)|

≤
n

∑
i=1
|(Q + MqF(t)Hq)Lêi(t)|

≤
n

∑
i=1
|(Q +

1
2

Mq M>q +
1
2

H>q Hq)Lêi(t)|.

(26)

Adding the pinning controller ũi(t) to (24), one has

V3 =
n

∑
i=1

sign>(êi(t))(c̃
N

∑
j=1

dijΛ̃êi(t) + ũi(t))

≤
n

∑
i=1
|c̃

N

∑
j=1

d̃ijΛ̃êi(t)| −
m

∑
i=1

δ̃i|êi(t)|.
(27)

By adding (25)–(27) to (24), we have

c
t0

Dα
t V(t) =V1 + V2 + V3

≤
n

∑
i=1
|D +

1
2

Md M>d +
1
2

H>d Hd êi(t) + c̃
N

∑
j=1

d̃ijΛ̃êi(t)− δ̃i êi(t)

+ (Q +
1
2

Mq M>q +
1
2

H>q Hq)Lêi(t)|

≤
n

∑
i=1

[D +
1
2

Md M>d +
1
2

H>d Hd + LQ +
1
2

LMq M>q

+
1
2

LH>q Hq + c̃
N

∑
j=1

d̃ijΛ̃−
m

∑
i=1

δ̃i]|êi(t)|.

(28)

If D + 1
2 Md M>d + 1

2 H>d Hd + LQ + 1
2 LMq M>q + 1

2 LH>q Hq + c̃ ∑N
j=1 d̃ijΛ̃−∑m

i=1 δ̃i < 0,
the FOCDNUP is pinning synchronization under the controller.

4. Numerical Simulation

In this section, the viability and validity of the approaches are verified by two
numerical instances.
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Example 1. Suppose that the below FONCDNUP is made up of n nodes and it is given in the
following way:

c
t0

Dα
t vi(t) = A0vi(t) + B0h̄(vi(t)) + c

N

∑
j=1

dijΛvj(t), (29)

and

c
t0

Dα
t si(t) = (E0 + ∆E(t))si(t) + (G0 + ∆G(t))h̄(si(t)) + c

N

∑
j=1

dijΛsj(t) + ui(t). (30)

The controller is

ui(t) = −(E0 + ∆E(t)− A0)vi(t)− (G0 + ∆G(t))h̄(vi(t)) + B0h̄(vi(t)− δiei(t). (31)

Considering the 10 nodes of FONCDNUP, where δ = 20, vi(t) = [vi1, vi2, vi3, vi4]
>,

si(t) = [si1, si2, si3, si4]
>, i = 1, 2, · · · , 10, c is the coupling coefficient, which represents

the degree of connection between each node, and c = 0.01, a = 0.25, b = 8.1; and the
nonlinear functions can be expressed h̄(vi(t)) = [a ∗ tanh(vi1(t)), a ∗ tanh(vi2(t)), a ∗
tanh(vi3(t)), a ∗ tanh(vi4(t))]>; h̄(si(t)) = [b ∗ tanh(si1(t)), b ∗ tanh(si2(t)), b ∗ tanh(si3(t)),
b ∗ tanh(si4(t))]>.

The weight matrices and the parametric matrices are

A0 =


−18.058 0 0 0

0 −1.256 0 0
0 0 −10.847 0
0 0 0 −1.865

, B0 =


10.8 0 5.5 0.18

0 −1.55 0.01 0.05
15.3 1 −10 0
2.5 0 0 −2.815

.

E0 =


−20.204 0 0 0

0 −4.15 0 0
0 0 −5.357 0
0 0 0 −1.613

, G0 =


−1.048 0.015 0.05 0.6
−0.01 0.85 0 1.47

0 −1.3 −4.25 −1.45
0.86 0 3 −1.45

.

The internal coupling matrix can be shown as

Λ =


0.25 0 0 0

0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

.

The outer coupling matrix can be indicated by

(dij)n×n =



−2.1 0 1.15 0 2.05 −2 1.02 −1 0.22 −2.15
−2.1 −1.15 0 −0.12 0.21 −0.45 0 1.5 0.1 −3.3

0 −1 −3.1 0 1 −1.5 0 −1.25 −1.15 1.02
2.5 0 1.5 −2.2 1.5 0 −1.5 0 −2.03 0.5
0 −1 0 1 −2.35 −1.25 −1.5 3.01 0.5 −1.1
−1.01 0 2 −2.1 1.05 −1.5 0 0.1 −1 0

0.5 0 −1 2.1 0 1.5 −1.5 −0.5 1.01 1.45
−2.03 0.1 −1.01 1.2 −1.5 0 −1.2 −1.25 2.35 −0.2

1 −2.51 0 1.5 −1 0.2 0.5 1.06 −1.15 −1.25
1.5 −3.13 0.5 −0.5 0 −1.15 3 0 0.2 −1



.
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The parameter uncertainties matrices can be shown in terms of

Me =


0.1 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.3

, He =


0.2 0 0 0
0 0.1 0 0
0 0 0.2 0
0 0 0 0.5

,

Fe(t) =


cos(v1(t)) 0 0 0

0 cos(v2(t)) 0 0
0 0 cos(v3(t)) 0
0 0 0 cos(v4(t))

,

and

Mg =


1 0 0 0
0 0.9 0 0
0 0 1 0
0 0 0 0.3

, Hg =


1 0 0 0
0 0.9 0 0
0 0 0.8 0
0 0 0 1

,

Fg(t) =


0.41 cos(s1(t)) 0 0 0

0 cos(s2(t)) 0 0
0 0 0.3 cos(s3(t)) 0
0 0 0 0.13 cos(s4(t))

.

We choose the appropriate initial values. Then, using the MATLAB R2020a, the Ad-
mas–Bashforth–Moulton predictor corrector method is employed for numerical simulation.
If the previous parameter matrix changes, it will extend our control time. Figures 1–4 show
the trajectories of sync−error (9) (ei1, ei2, ei3, ei4) without control, respectively. We can
observe that the (29) and the (30) without control is unsynchronized. Figures 5–8 reflect
the trajectories of sync−error 9 (ei1, ei2, ei3, ei4) under control, respectively. Figure 9 shows
the trajectories of total sync−error systems (9) not under control. Figure 10 shows the
trajectories of total sync−error systems (9) under the control. From the simulation results
and graphs, it can be obtained that the error system is actuated to the point of initial. Clearly,
(29) and (30) can achieve asymptotic synchronization. This shows the effectiveness and
feasibility of Theorem 1.
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Figure 1. Time behaviors of sync−error trajectories ei1(i = 1, 2, · · · , 10) without controller.
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Figure 2. Time behaviors of sync−error trajectories ei2(i = 1, 2, · · · , 10) without controller.
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Figure 3. Time behaviors of sync−error trajectories ei3(i = 1, 2, · · · , 10) without controller.
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Figure 4. Time behaviors of sync−error trajectories ei4(i = 1, 2, · · · , 10) without controller.
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Figure 5. Time behaviors of sync−error trajectories ei1(i = 1, 2, · · · , 10) with controller.
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Figure 6. Time behaviors of sync−error trajectories ei2(i = 1, 2, · · · , 10) with controller.
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Figure 7. Time behaviors of sync−error trajectories ei3(i = 1, 2, · · · , 10) with controller.
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Figure 8. Time behaviors of sync−error trajectories ei4(i = 1, 2, · · · , 10) with controller.
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Figure 9. Time behaviors of sync−error trajectories eij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4) without controller.
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Figure 10. Time behaviors of sync−error trajectories eij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4) with controller.
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Example 2. Supposed that the below FOCDNUP is made up of n nodes and it is given in the
following way:

c
t0

Dα
t ṽi(t) = (D + ∆D(t))ṽi(t) + (Q + ∆B(t))g(ṽi(t)) + c̃

N

∑
j=1

d̃ijΛ̃x̃j(t), (32)

and

c
t0

Dα
t s̃i(t) = (D0 + ∆D(t))s̃i(t) + (Q + ∆Q(t))g(s̃i(t)) + c̃

N

∑
j=1

d̃ijΛ̃ỹj(t) + ũi(t). (33)

The 10 nodes of FOCDNUP are considered, where δ = 15, ṽi(t) = [ṽi1, ṽi2, ṽi3, ṽi4]
>,

s̃i(t) = [s̃i1, s̃i2, s̃i3, s̃i4, ]> i = 1, 2, · · · , 10, c = 5, â = 0.01, b̂ = 0.01; and the nonlinear func-
tions can be expressed as: g(ṽi(t)) = [â ∗ tanh(ṽi1(t)), â ∗ tanh(ṽi2(t)), â ∗ tanh(ṽi3(t)),
â ∗ tanh(ṽi4(t))]>; g(s̃i(t)) = [b̂ ∗ tanh(s̃i1(t)), b̂ ∗ tanh(s̃i2(t)), b̂ ∗ tanh(s̃i3(t)),
b̂ ∗ tanh(s̃i4(t))]>.

The first five nodes are added to the controller, namely,

ũi(t) =
{
−15êi(t), i = 1, 2, 3, 4, 5
0, i = 6, 7, 8, 9, 10.

(34)

The weight matrices and parametric matrices are

D =


−3.54 0 0 0

0 −2.96 0 0
0 0 −5.07 0
0 0 0 −2.93

, Q =


−15.5 0.05 5.1 0

70 0 −15.01 35
60.1 −10.1 −8.25 15.5
−0.1 −0.03 30.01 −0.35

.

And the inner coupling matrices can be expressed in terms of

Λ̃ =


0.25 0 0 0

0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

.

The outer coupling matrix can be indicated by

(d̃ij)n×n =



−2 1 0 1 0 0 0 0 0 0
0 −2 1 0 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 0 1 −3 0 0 0 1 0
1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 −2 0 0
1 0 1 0 0 0 0 0 −2 0
0 0 1 0 0 0 0 0 0 −1


.
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The matrices of parameter uncertainties are

Md =


1 0 0 0
0 0.81 0 0
0 0 1 0
0 0 0 1

, Hd =


1 0 0 0
0 1 0 0
0 0 0.8 0
0 0 0 0.3

,

Fd(t) =


0.41 cos(ṽ1(t)) 0 0 0

0 cos(ṽ2(t)) 0 0
0 0 0.3 cos(ṽ3(t)) 0
0 0 0 0.13 cos(ṽ4(t))

,

and

Mq =


0.1 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.15

, Hq =


0.2 0 0 0
0 0.1 0 0
0 0 0.2 0
0 0 0 1

,

Fq(t) =


cos(s̃1(t)) 0 0 0

0 cos(s̃2(t)) 0 0
0 0 cos(s̃3(t)) 0
0 0 0 cos(s̃4(t))

.

We choose the appropriate initial values and use the same MATLAB and methods
as in Example 1. Figures 11–14 show the trajectories of sync−error (20) (êi1, êi2, êi3, êi4)
not under control, respectively. We can observe that (32) and (33) not under control are
unsynchronized. Figures 15–18 reflect the trajectories of sync−error (20) (êi1, êi2, êi3, êi4)
under control, respectively. Figure 19 shows the trajectories of total sync−error systems
(20) not under control. Figure 20 shows the trajectories of total sync−error systems (20)
under the control. From the simulation results and graphs, it can be obtained that the error
system is actuated to the point of initial; it is clear that (32) and (33) can achieve asymptotic
synchronization. This shows the effectiveness and feasibility of Theorem 2.
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Figure 11. Time behaviors of pinning sync−error trajectories êi1(i = 1, 2, · · · , 10) without controller.
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Figure 12. Time behaviors of pinning sync−error trajectories êi2(i = 1, 2, · · · , 10) without controller.
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Figure 13. Time behaviors of pinning sync−error trajectories êi3(i = 1, 2, · · · , 10) without controller.
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Figure 14. Time behaviors of pinning sync−error trajectories êi4(i = 1, 2, · · · , 10) without controller.
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Figure 15. Time behaviors of pinning sync−error trajectories êi1(i = 1, 2, · · · , 10) with controller.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-400

-300

-200

-100

0

100

200

300

400

e
i2

(i
=

1
,2

,
,1

0
)

Figure 16. Time behaviors of pinning sync−error trajectories êi2(i = 1, 2, · · · , 10) with controller.
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Figure 17. Time behaviors of pinning sync−error trajectories êi3(i = 1, 2, · · · , 10) with controller.
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Figure 18. Time behaviors of pinning sync−error trajectories êi4(i = 1, 2, · · · , 10) with controller.
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Figure 19. Time behaviors of pinning sync−error trajectories êij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4)
without controller.
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Figure 20. Time behaviors of pinning sync−error trajectories êij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4)
with controller.
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5. Conclusions

The asymptotic synchronization of FONCDNUP was studied via a novel control.
Several sufficient conditions were derived for ensuring the asymptotic synchronization of
FONCDNUP, utilizing fractional differential theory, differential inclusion theory, and the
Lyapunov method. The pinning synchronization of FOCDNUP was investigated, where
Parameter uncertainties were introduced to the networks. Instead of adding controllers to
all nodes, controllers were only added to the first five nodes, reducing costs and enhancing
efficiency. Finally, two numerical instances were also presented to demonstrate the effec-
tiveness of the proposed approaches. However, this paper does not consider time delays
or extending pinning control to fractional nonidentical complex networks. In the future,
the inclusion of time-varying delays in FONCDNUP will be considered, along with the
exploration of pinning control for non-identical networks, which presents an interesting
and challenging area.
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