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Abstract: Image enhancement is one of the bases of image processing technology, which can enhance
useful features and suppress useless information of images according to the specified task. In order to
ensure coherent enhancement for images with oriented flow-like structures, we propose a nonlinear
diffusion system model based on time-fractional delay. By combining the nonlinear isotropic diffusion
equation with fractional time-delay regularization, we construct a structure tensor. Meanwhile, the
introduction of source terms enhances the contrast of the image, making it effective for denoising
images with high-level noise. Based on compactness principles, the existence of weak solutions for
the model is proved by using the Galerkin method. In addition, various experimental results verify
the enhancement ability of the proposed model.

Keywords: image enhancement; Caputo-fractional derivative; time-delay regularization; anisotropic
diffusion model

1. Introduction

Image processing technology is widely used in fields such as medical image process-
ing, text recognition and speech recognition, and unmanned driving. As an important
part of image processing technology, image enhancement focuses on enhancing the useful
information in the image and improving the clarity of the image. In recent years, many
enhancement methods for digital images have been proposed, roughly divided into four cat-
egories: spatial domain-based methods [1,2], frequency domain-based methods [3,4], deep
learning-based methods [5,6], and partial differential equations-based method. The spatial
domain-based method has fast computation speed but cannot provide relevant information
between pixels. The frequency domain-based method can provide detailed information
but it requires a large amount of computation. The image enhancement algorithm based
on deep learning can learn the complex transformation of an image, but its training time
is long and it lacks interpretability. The method based on partial differential equations
has always played a significant role in the field of image processing, which was firstly
elaborated by Gabor [7] and Jain [8]. This method is based on strong mathematical theories.
Its basic idea is to evolve the initial image through partial differential equations and obtain
the enhanced image.

In this paper, we focus on the problem of image enhancement with oriented flow-like
structures. These structures usually exist in the fields of fluid mechanics, geology and
biology, texture analysis, computer vision and image processing. In the development of
image processing using partial differential equations, the most classic model is the PM
model proposed by Perona and Malik et al. [9]. Based on the PM model, the integer-
order isotropic diffusion equation was developed rapidly, such as the viscoelastic equation
and wave equation, which further stimulated the emergence of the anisotropic diffusion
equation. Nitzberg [10] and Cottet et al. [11] pioneered the description and analysis of
various anisotropic diffusion methods. Furthermore, Weickert’s work about diffusion
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tensors greatly promoted the research on anisotropic diffusion methods in the field of
image processing. They proposed a multi-scale method that successfully completes the
connection of interruption lines and the enhancement of flow-like structures. In this model,
operators of interest, such as second-order moment matrices and structural tensors, are used
to control nonlinear diffusion filtering. Since then, many scholars have conducted extensive
research about this method [12–18]. For examples, Nnolim et al. [17] described a fuzzy
image contrast enhancement algorithm based on a modified partial differential equation.
The algorithm utilizes multi-scale local global enhancement of logarithmic reflectance and
illumination components. The model successfully avoids the numerous steps required by
standard DCP based methods and produces good visual effects. Gu et al. [18] proposed
a SAR image enhancement method combining the PM nonlinear equation and coherent
enhancement partial differential equation. The mixture model not only avoids noise
enhancement but also enhances image edges.

Along with the development of image processing for integer-order partial differential
equations, fractional-order partial differential equations [19–22] have also been developed
rapidly. For example, Bai et al. [19] proposed a new nonlinear fractional-order anisotropic
diffusion equation using spatial fractional derivatives to obtain more natural images.
Sharma et al. [20] proposed an image enhancement model based on fractional-order partial
differential equations, which can reduce the impact of noise and enhance the contrast
of images nonlinearly. Chandra et al. [21] proposed a new image enhancement method
based on linear fractional-order meshless partial differential equations to improve the
quality of tumor images. The model can maintain fine details of smooth regions while
denoising, and can nonlinearly increase the high-frequency information of the image.
Ben-loghfyry [23], based on anisotropic diffusion and the time-fractional derivative in the
Caputo sense, proposed a new reaction–diffusion equation to restore texture images.

In order to obtain the proposed model in this paper, the four classic models involved
are explained below. Weickert studied anisotropic diffusion filters and derived a coherence-
enhancing diffusion (CED) equation [24]:

∂u
∂t = div(D∇u), (x, t) ∈ Ω× (0, T ]

u(x, 0) = u0(x), x ∈ Ω
∂u
∂~n = 0, (x, t) ∈ ∂Ω× (0, T ]

(1)

where ~n is the unit outer normal vector, u0 is the observed image as the initial data for
the diffusion equation, D := g1(J) is a diffusion tensor, g1 is a nonlinear diffusion filter, J
is a linear structure tensor obtained by the convolution of ∇uσ∇uᵀ

σ and Gaussian kernel
Gρ, specifically, J = Gρ ∗ (∇uσ∇uᵀ

σ). The nonlinear diffusion filter of the CED model is
controlled by a diffusion tensor, which can interrupt lines and enhance oriented flow-
like structures. Wang et al. proposed coupled diffusion equations (CDEs) instead of the
traditional linear method in image restoration [14]:

∂u
∂t = div(g1(J)∇u), (x, t) ∈ Ω× (0, T ]
∂Ji, j
∂t = div(g2(|∇uσ|)∇Ji, j), (x, t) ∈ Ω× (0, T ]

∂u
∂~n = 0, ∂J1,1

∂~n =
∂J2,2
∂~n = 0, (x, t) ∈ ∂Ω× (0, T ]

u(x, 0) = u0(x), Ji, j(x, 0) = (∇u0∇uᵀ
0 )i, j, i, j = 1, 2, x ∈ Ω

(2)

where g2(s) = 1
1+(s/K)2 . The CEDs combine image restoration with singularity detection

and can gradually eliminate the sensitivity of parameters to the image. Diffusion-based
image enhancement methods generally use a spatial regularization, while they cannot use
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enough historical information. To this end, Chen et al. introduced time-delay regularization
and then proposed the following model [25] :

∂u
∂t = div(L(v)∇u)− λ(u− u0), (x, t) ∈ (0, T ]

τ ∂v
∂t + v = ∇uσ, (x, t) ∈ Ω× (0, T ]

u(x, 0) = u0, v(x, 0) = 0, x ∈ Ω
∂u
∂~n = 0, (x, t) ∈ ∂Ω× [0, T ]

where τ > 0, σ ≥ 0. u0 is the initial image, L = λ1L1 + λ2L2, L1 = vvᵀ, L2 = (v⊥)(v⊥)ᵀ,

λ1 = 1
1+k|v|2 , λ2 = α|v|2

1+k|v|2 , k > 0, α > 0, v = ∇ũ, ũ is the time-delay regularization of
u. For images with high levels of noise, they perform the pre-smoothing by combining
spatial regularization at a small scale with time-delay regularization, which is particularly
important for preserving textures and edge structures. This method has successfully been
applied to Cotte and Ayyadi models [26].

The traditional integer-order partial differential equations cannot describe complex phe-
nomena. To this end, countless scholars have studies on fractional calculus [19–22,27–33],
which is an extension of integer calculus and has advantages in modeling complex phenom-
ena with memory and genetics. The image enhancement model based on fractional calculus
has long-term memory and non-locality, which can fully utilize the past information of
the image and describe more complex diffusion progress. For example, Ben-loghfyry et al.
proposed a reaction–diffusion equation based on anisotropic diffusion and Caputo’s time-
fractional derivative to restore texture images [23]:

∂αu
∂t = div(D∇u)− 2λω, (x, t) ∈ Ω× (0, T )

∂βu
∂t = ∆ω− ( f (x)− u), (x, t) ∈ Ω× (0, T )

〈D∇u,~n〉 = ∂ω
∂~n (x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = f (x), ω(x, 0) = ω0(x), x ∈ Ω

where (α, β) ∈ (0, 1)2, Ω ⊂ R2 is a bounded area, the boundary ∂Ω is Lipschitz continuous,
~n is the unit outer normal vector, λ > 0, f ∈ L2(Ω), and D := D(Jρ(∇uσ)) is a diffusion
matrix based on Jρ. The memory potential of the two coupled time-fractional diffusion
equations effectively guarantees the superiority of the model.

In this paper, we propose an image enhancement model coupling a nonlinear anisotropic
diffusion equation, a nonlinear isotropic diffusion equation and a fractional time-delay
equation. Specifically, the spatial direction of the structure tensor is regularized by nonlin-
ear isotropic diffusion, and the temporal direction of the the structure tensor is regularized
by a fractional time-delay equation. Then, the diffusion tensor of the CED is constructed by
using the obtained structure tensor. Additionally, we also introduce a source term which
changes the diffusion process. The proposed model can better enhance the coherence
structure and contrast of images, especially in processing noisy images or low-contrast
areas. It should be noted that due to the introduction of source terms, the proposed model is
more suitable for handling white noise than other existing models. We prove the existence
and uniqueness of weak solutions. The proposed system of image enhancement equations
based on fractional time-delay and the diffusion tensor has the following characteristics:

• The nonlinear isotropic diffusion equation is applied to make use of the spatial infor-
mation in the image. The fractional time-delay equation is applied to make use of the
past information of the image. The diffusion tensor of CED is applied to complete
interrupted lines and enhance flow-like structures.

• The introduced source term is used to make a contrast enhancement between the
image and its background by changing the diffusion type and behavior. In addition,
this term can also reduce the noise in the image.

• Based on the theory of partial differential equations and some properties of fractional
calculus, we prove the existence and uniqueness of weak solutions.
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• The comparative experimental results verify the superiority of the proposed method.
It shows that this model can complete the connection of interrupted lines, enhance the
contrast of images, and deepen the fluidity characteristics of various types of lines.

The paper is organized as follows. In Section 2 , we establish an image enhancement
model with fractional time-delay regularization and diffusion tensors, and provide a
detailed explanation of the model. Section 2.3 deduces the theoretical part of the model,
defines the Galerkin estimation of the model and the form of weak solutions, and proves
the existence and uniqueness of weak solutions. Section 3 mainly designs a stable and
efficient numerical format for the proposed model and conducts numerical experiments on
different images. Section 4 summarizes the results.

2. The Proposed Model and Its Theoretical Analysis
2.1. Preliminary Knowledge

Definition 1 ([34,35]). Assume that γ is a positive rational number, γ ∈ R+, n− 1 < γ ≤ n,
and n − 1 is a positive integer. u(t) is an integrable function on the interval (0, T ), then the
Caputo-type fractional derivative of u with order γ is

Dγ
c u(t) =

1
Γ(n− γ)

∫ t

0

u(n)(s)
(t− s)γ−n+1 ds, t > 0

where Γ(·) is a gamma function. When γ = n, the Caputo-type fractional order of order γ is a
common integer-order derivative of order n, Dγ

c u(t) = u(n)(t).

Generally, the sign of a Caputo-type fractional derivative contains information about
the boundary point of the integral interval, but only the interval (0, T ) is involved in this
paper, so the sign is simplified to Dγ

c u(t), which represents the right limit of uat t = 0,
which is the derivative of u(0+) when it exists.

Theorem 1 ([36]). Assume that γ ∈ (0, 1),H is a Hilbert space and ω : [0, T ] → H such that
‖ω(t)‖2

H is absolutely continuous. Then

Dγ
c ‖ω(t)‖2

H ≤ 2
(
ω(t), Dγ

c ω(t)
)
H

for each a.e. t ∈ (0, T ].

Proposition 1 ([37]). Suppose that u(t) and g(t) are integrable functions defined on the interval
(0, T ), then

∫ T

0
g(t)Dγ

c u(t)dt =
∫ T

0
u(t)Dγ

(t, T)g(t)dt +
n−1

∑
j=0

Dγ+j−n
(t, T )

g(t)Dn−1−ju(t)|T0

where Dγ
(t, T )

g(t) = 1
Γ(n−γ)

( d
dt )

n ∫ T
t (t− s)n−γ−1g(s)ds is a Riemann–Liouville fractional derivative.

2.2. The Proposed Model

In this subsection, we propose a new image enhancement model based on fractional
time-delay regularization and diffusion tensor. Assuming that Ω ⊂ Rn is a bounded
region, ∂Ω is a Lipschitz continuous boundary, and the mapping u : Ω→ R represents a
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positive real-valued function of the gray image u(x), then we establish the following image
enhancement model:

∂u
∂t = div(g1(J)∇u) + λ(u− ũ), (x, t) ∈ Ω× (0, T ]

τDγ
c Ji, j + Ji, j = vi, j, (x, t) ∈ Ω× (0, T ]

∂vi, j
∂t = div(g2(|∇uσ|)∇vi, j), (x, t) ∈ Ω× (0, T ]

〈g1(J)∇u,~n〉 = 0, ∂v1,1
∂~n =

∂v2,2
∂~n = 0, ∂v1,2

∂~n =
∂v2,1
∂~n = 0, (x, t) ∈ ∂Ω× (0, T ]

u(x, 0) = u0(x), Ji, j(x, 0) = 0, vi, j(x, 0) = (∇u0∇uᵀ
0 )i, j, i, j = 1, 2, x ∈ Ω

(3)

where λ > 0 is an adaptive adjustment parameter, ũ is the average value of the image,
τ > 0 is the time-delay regularization parameter, γ ∈ (0, 1) is the fractional parameter,
uσ = Gσ ∗ u0 is the image with Gaussian convolution, J = (Ji, j)i, j=1,2 is the structural
tensor, ~n is the unit outer normal vector of ∂Ω, g1 is the diffusion matrix, and g2 is the
diffusion function. Dγ

c is the Caputo time-fractional derivative, see Definition 1. In the
model, the nonlinear isotropic diffusion equation is used to spatially regularize the structure
tensor, the fractional time-delay equation is used to temporally regularize the structure
tensor, and the coherent enhanced diffusion tensor based on the structure tensor is used to
perform anisotropic diffusion.

The interpretation of the terms of our model is as follows:

• The first equation is an anisotropic diffusion equation, which can enhance flow-like
structures and connect interrupted lines. Since the eigenvalues µi(i = 1, 2) in J
imply the coherent structure, we select κ = (µ1 − µ2)

2 as the measure of coherence.
More related details can be found in reference [24]. Specifically, the eigenvectors of
structural tensors provide optimal choices for local directions, while the corresponding
eigenvalues represent local contrast along these directions. By constructing diffusion
tensor D with the same eigenvector as J and selecting appropriate eigenvalues for
smoothing, it can be ensured that the model can complete the connection of interrupted
lines and enhance similar flow structures. The source term in the first equation is
used to change the diffusion type and behavior so as to make a contrast enhancement
between the target image and the background and enhance the texture structure; more
details are referred to in [38].

• The second equation performs as a fractional time-delay regularization, which consid-
ers the past information of the image. Meanwhile, the long-range dependency of this
equation can avoid excessive smoothing.

• The final equation is based on a structure tensor; this equation is an isotropic diffusion
equation, which performs well when dealing with the discontinuity. Let s = | ∇uσ|,
and choose the diffusion function g2(s) = 1

1+(s/K)2 , where K is a threshold value.

Alternatively, we can choose the diffusion function as g2(s) = 1
ε+(s)2 , where ε is a

smaller positive number. The diffusion coefficient changes with the local features of
the image, thereby preserving the edge information of the image and avoiding texture
and edge information to be blurred.

Comparing with the existing methods, the key points of the proposed model lie
in the construction of the diffusion tensor, the introduction of the fractional-order time
delay, and the instruction of the source term. Most existing models rely on the spatial
regularization of structural tensor, but these methods cannot extract the past information
of images during the diffusion process. Chen et al. [25] proposed the concept of time-
delay regularization, which compensates for the shortcomings of spatial regularization,
but its application is not widespread. To this end, the proposed model in this paper
regularizes the structural tensor in space using nonlinear isotropic diffusion, and regularizes
the structural tensor in time using the time-delay method. Moreover, the two diffusion
methods can extract feature values and better enhance the coherence structure of the image.
Furthermore, extending the model from the integer order to fractional order greatly enriches
the theoretical research value and applicability of the model. In addition, introducing the



Fractal Fract. 2023, 7, 569 6 of 34

source term into the model ensures that the image only has black color and white color,
where the black color represents the flowing structure, and white color represents the
background. It can only restore the original image and enhance the contrast loss of pure
diffusion filters and is also suitable for processing white noise.

2.3. The Theoretical Analysis of the Proposed Model

Let

L0u = −div(g1(J)∇u)− λ u

L1 Ji, j =
1
τ

Ji, j, i, j = 1, 2

L2vi, j = −div(g2(|∇uσ|)∇vi, j), i, j = 1, 2

where L0, L1, and L2 denote three operators and τ > 0. Then we can convert the model (3)
into the following form:

∂u
∂t + L0u = λ(u− ũ), (x, t) ∈ Ω× (0, T ]

Dγ
c Ji, j + L1 Ji, j =

1
τ vi, j, (x, t) ∈ Ω× (0, T ]

∂vi, j
∂t = L2vi, j, (x, t) ∈ Ω× (0, T ]

〈g1(J)∇u,~n〉 = 0, ∂v1,1
∂~n =

∂v2,2
∂~n = 0, ∂v1,2

∂~n =
∂v2,1
∂~n = 0, (x, t) ∈ ∂Ω× (0, T ]

u(x, 0) = u0(x), Ji, j(x, 0) = 0, vi, j(x, 0) = (∇u0∇uᵀ
0 )i, j, i, j = 1,2, x ∈ Ω

Assume u0 ∈ L2(Ω), (∇u0∇uᵀ
0 )i, j ∈ L2(Ω)(i, j = 1, 2); the function g1(J) ∈ C∞(R2×2,

R2×2) keeps the uniform positive definiteness and the symmetry of J

‖g1(J1)− g2(J2)‖L∞(Ω) ≤ ‖J1 − J2‖L2(Ω)

Now, we give a definition in the following form:
B0[u, φ; t] :=

∫
Ω g1(J)∇u · ∇φdx− λ

∫
Ω uφdx

B1[Ji, j, φi, j; t] :=
∫

Ω Ji, jφi, jdx
B2[vi, j, ψi, j; t] :=

∫
Ω g2(| ∇uσ|)∇vi, j∇ψi, jdx

(4)

for φ, φi, j, ψi, j ∈ H1(Ω), a.e. t ∈ (0, T ]. For fixed time t ∈ (0, T ], the bilinear forms are
B0[u, φ; t], B1[Ji, j, φi, j; t], B2[vi, j, ψi, j; t]. Define mappings

u : [0, T ]→ H1(Ω), Ji, j : [0, T ]→ H1(Ω), vi, j : [0, T ]→ H1(Ω), i, j = 1, 2

by

[u(t)](x) := u(x, t)

[Ji, j(t)](x) := Ji, j(x, t), i, j = 1, 2

[vi, j(t)](x) := vi, j(x, t), x ∈ Ω, 0 ≤ t ≤ T

Denote H1(Ω)′ as the dual space of H1(Ω). If f ∈ H1(Ω)′, which means that f is a
bounded linear functional on H1(Ω), the norm is

‖ f ‖
(H1(Ω))

′ :=
{

sup〈 f , u 〉|u ∈ H1(Ω), ‖u‖H1(Ω) ≤ 1
}
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where 〈·, ·〉 stands for the dual product of H1(Ω)′ and H1(Ω). (·, ·) stands for the inner
product in H1(Ω). According to [39], the space H1(Ω)′ satisfies the following properties:
(i) Suppose f ∈

(
H1(Ω)

)′, there exists functions f 0, f 1, · · · , f n ∈ L2(Ω) such that

〈 f , u 〉 =
∫

Ω
f 0v +

n

∑
i=1

f ivxi dx, v ∈ H1(Ω)

(ii) For u ∈ H1(Ω), v ∈ L2(Ω) ⊂
(

H1(Ω)
)′,we have

(v, u)L2(Ω) = 〈 v, u 〉

For simplicity, when (i) holds, we denote f = f 0 − ∑n
i=1 f i

xi
. Therefore, the Galerkin

estimate of the equation system is
〈u′, φ〉+ B0[u, φ; t] = −λ(ũ, φ)

(Dγ
c Ji, j, φi, j) + B1[Ji, j, φi, j; t] = 1

τ (vi, j, φi, j), i, j = 1,2
〈v′i, j, ψi, j〉+ B2[vi, j, ψi, j; t] = 0, i, j = 1,2

where φ, φi, j, ψi, j ∈ H1(Ω), B0[u, φ; t], B1[Ji, j, φi, j; t], B2[vi, j, ψi, j; t] are the time-dependent
bilinear forms.

2.4. The Existence of Weak Solutions

Definition 2. Functions

u ∈ L2(0, T ; H1(Ω)), u′ ∈ L2(0, T ; (H1(Ω))′)

vi, j ∈ L2(0, T ; H1(Ω)), v′i, j ∈ L2(0, T ; (H1(Ω))′)

Ji, j ∈ L∞(0, T ; H1(Ω)), Dγ
c Ji, j ∈ L2(0, T ; (H1(Ω))′)

are named the weak solution of (3) if the following hold.
(i) Functions u, vi, j, Ji, j satisfy the following system:

〈u′, φ〉+ B0[u, φ; t] = −λ(ũ, φ)

(Dγ
c Ji, j, φi, j) + B1[Ji, j, φi, j; t] = 1

τ (vi, j, φi, j), i, j = 1,2
〈v′i, j, ψi, j〉+ B2[vi, j, ψi, j; t] = 0, i, j = 1,2

for each φ, φi, j, ψi, j ∈ H1(Ω), (i, j = 1, 2), a.e. t ∈ (0, T ].
(ii) u(x, 0) = u0(x), Ji, j(x, 0) = 0, vi, j(x, 0) = (∇u0∇uᵀ

0 )i, j, i, j = 1, 2.

We select a suitable basic space and one of the standard orthogonal bases to construct
a finite dimensional approximation solution.

Assume there are some smooth functions ωk = ωk(x), (k = 1, 2, · · · ), {ωk}∞
k=1 is the

orthogonal basis of space H1(Ω), and {ωk}∞
k=1 is a standard orthogonal basis of space

L2(Ω). ωk is an eigenfunction of the Laplacian operator with zero Neumann boundary
conditions in H1(Ω), and the corresponding eigenvalues {λk} are arranged in a non-
decreasing sequence. That is {

−∆ωk = λkωk, x ∈ Ω
∂ωk
∂~n = 0, x ∈ ∂Ω

(ωk, ωk) :=
∫

Ω
ω2

kdx = 1, 0 < λ1 ≤ λ2 ≤ · · ·



Fractal Fract. 2023, 7, 569 8 of 34

Then the space span{ωk}∞
k=1 has density in H1(Ω). We define un(t, x) : [0, T ] →

H1(Ω), J n
i, j(t, x) : [0, T ]→ H1(Ω), vn

i, j(t, x) : [0, T ]→ H1(Ω) by

un(t, x) : =
n

∑
k=1

d n
k (t)ωk(x) (5)

vn
i, j(t, x) : =

n

∑
k=1

(ci, j)
n
k (t)ωk(x) (6)

J n
i, j(t, x) : =

1
Γ(γ)

∫ t

0
(t− s)γ−1 1

τ
(vn

i, j − J n
i, j)ds (7)

where n is a positive integer, the coefficients d n
k (t), (ci, j)

n
k (t), (i, j = 1, 2), (0 ≤ t ≤ T,

k = 1, 2, · · · , n) need to satisfy{
d n

k (0) = (u0, ωk)

(ci, j)
n
k (0) = ((∇u0∇uᵀ

0 )i, j, ωk), (k = 1, 2, · · · , n)
(8)

and 
〈(un)′, φ〉+ B0[un, φ; t] = −λ(ũ, φ)

(Dγ
c J n

i, j, φi, j) + B1[J n
i, j, φi, j; t] = 1

τ (vi, j, φi, j), i, j = 1,2

〈(vn
i, j)
′, ψi, j〉+ B2[vn

i, j, ψi, j;t] = 0, i, j = 1,2

(9)

There is a huge difference when dealing with the Caputo fractional derivative instead
of the classical one. In the proposed model, the most important issue is how to deal with
the function J n

i, j involving the singular kernel (t− s)γ−1. The following lemma and theorem
are presented to answer this question.

Lemma 1. For any positive integer n, there exist functions un(t, x), vn
i, j(t, x), J n

i, j(t, x) in the form
of (5)–(7), and these functions satisfy the initial value condition (8) and the system (9).

Proof. Assuming that un(t, x), vn
i, j(t, x), J n

i, j(t, x) can be represented as (5)–(7), {ωk}∞
k=1 is

the standard orthogonal basis of spatial L2(Ω), it can be obtained that(
(un(t))′, ωk

)
= (d n

k (t))
′(

(vn
i, j(t))

′, ωk

)
= ((ci, j)

n
k (t))

′

furthermore,

B0[u, ωk; t] =
n

∑
l=1

B0[ωl , ωk; t]d n
k (t), (k = 1, 2, · · · , n)

B2[vi, j, ωk; t] =
n

∑
l=1

B2[ωl , ωk; t](ci, j)
n
k (t), (k = 1, 2, · · · , n)

Let f k(t) := −λ(ũ, ωk), then (9) can be transformed into

∂d n
k (t)
∂t +

n

∑
l=1

B0[ωl , ωk; t]d n
k = f k(t)

∂(ci, j)
n
k (t)

∂t +
n

∑
l=1

B2[ωl , ωk; t](ci, j)
n
k = 0

d n
k (0) = (u0, ωk), k = 1, 2, · · · , n

(ci, j)
n
k (0) = ((∇u0∇u>0 )i, j, ωk), k = 1, 2, · · · , n
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further simplify

Fk(t, d n
1 (t), · · · , d n

n (t), (ci, j)
n
1 (t), · · · , (ci, j)

n
n(t)) : = f k(t)−

n

∑
l=1

B0[ωl , ωk; t]d n
k

Fn+k(t, d n
1 (t), · · · , d n

n (t), (ci, j)
n
1 (t), · · · , (ci, j)

n
n(t)) : =

n

∑
l=1

B2[ωl , ωk; t](ci, j)
n
k

then, (9) can be transformed into an ordinary differential equation with the coefficients
d n

k (t) and (ci, j)
n
k (t):

∂dn
k (t)
∂t = Fk

(
t, d n

1 (t), · · · , d n
n (t), (ci, j)

n
1 (t), · · · , (ci, j)

n
n(t)

)
∂(ci, j)

n
k (t)

∂t = Fn+k(t, d n
1 (t), · · · , d n

n (t), (ci, j)
n
1 (t), · · · , (ci, j)

n
n(t))

d n
k (0) = (u0, ωk)

(ci, j)
n
k (0) = ((∇u0∇uᵀ

0 )i, j, ωk)

(10)

where i, j = 1, 2, k = 1, 2, · · · , n. Since g1 and g2 are both continuous, we can deduce
that the functions Fk are continuous. Peano’s theorem implies that for any n, the (10) has a
solution {d n

k (t), (ci, j)
n
k (t)}

n
k=1.

Therefore, there exist functions un(t, x), vn
i, j(t, x), J n

i, j(t, x) in the form of (5)–(7), and
these functions satisfy the initial value condition (8) and the system (9) for a.e. t ∈ (0, T ].

Lemma 2 (Consistent Estimation Inequality). There exists a constant C, only depending on Ω,
T, g1, g2 and Gσ such that

max
0≤t≤T

‖un‖L2(Ω) + max
0≤t≤T

∥∥∥J n
i, j

∥∥∥
H1(Ω)

+ max
0≤t≤T

∥∥∥vn
i, j

∥∥∥
L2(Ω)

+ ‖un‖L2(0, T ; H1(Ω)) +
∥∥vi, j

∥∥
L2(0, T ; H1(Ω))

+
∥∥(un)′

∥∥
L2(0, T ; (H1(Ω))′) +

∥∥∥(vn
i, j)
′
∥∥∥

L2(0, T ; (H1(Ω))′)

≤C
(
‖u0‖L2(Ω) +

∥∥(∇u0∇uᵀ
0 )i, j

∥∥
L2(Ω)

+ ‖ũ‖L2(0, T ; L2(Ω))

)
Proof. (i) max

0≤t≤T
‖un‖L2(Ω) estimation. Multiply the first equation of (9) by (di, j)

n
k (t), sum

for k = 1, 2 · · · , n. By virtue of (5), we can obtain the following equation:(
(un)′, un)+ B0[un, φn; t] = −λ(ũ, un), a.e. 0 < t ≤ T (11)

Because g1(J n) ∈ C∞(R2×2, 2×2) keeps the uniform positive definiteness and the
symmetry of J, we can obtain

β‖un‖2
H1(Ω) ≤ B0[un, un; t] + γ‖un‖2

L2(Ω)

where β > 0, γ ≥ 0. Then (11) can be formulated as

d
dt

(
‖un‖2

L2(Ω)

)
+ 2 β‖un‖2

H1(Ω) ≤ (λ + 2 γ)‖un‖2
L2(Ω) + λ‖ũ‖2

L2(Ω) (12)

for a.e. t ∈ (0, T ]. Applying the Gronwall inequality yields the following estimation:

max
0≤t≤T

‖un‖2
L2(Ω) ≤ C

(
‖u0‖2

L2(Ω) + ‖ũ‖
2
L2(0, T ; L2(Ω))

)
(13)
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(ii) max
0≤t≤T

∥∥∥vn
i, j

∥∥∥
L2(Ω)

estimation. Multiply the first equation of (9) by (ci, j)
n
k (t) and sum for

k = 1, 2 · · · , n. According to (6), we obtain the following equation:

((vn
i, j)
′, vn

i, j) + B2[vn
i, j, vn

i, j; t] = 0, i, j = 1, 2, a.e. 0 < t ≤ T (14)

Since

((vn
i, j)
′, vn

i, j) =
d
dt

(
1
2
‖ vn

i, j ‖2
L2(Ω)

)
a.e. 0 < t ≤ T (15)

bring (15) into (14) and integrate from 0 to t, and we obtain

1
2

∥∥∥vn
i, j

∥∥∥2

L2(Ω)
− 1

2

∥∥∥vn
i, j(0)

∥∥∥2

L2(Ω)
+
∫ T

0
B2[vn

i, j, vn
i, j; t]dx = 0 (16)

Let un ∈ L2(0, T ; L2(Ω))
⋂

L∞(0, T ; L2(Ω)) such that

‖un‖L∞(0, T ; L2(Ω)) ≤ ‖u0‖L2(Ω)

Due to g2, Gσ ∈ C∞, we can gain that g2(|∇Gσ ∗ un|) ∈ L∞(0, T ; C∞(Ω)). Since g2 is
monotonically decreasing and greater than zero, then we have g2(|∇un

σ|) = g2(|∇Gσ ∗ un|) ≥
z0 ≥ 0. Therefore, we have B2[vn

i, j, vn
i, j; t] ≥ z0 ≥ 0. Based on (16), there holds

∥∥∥vn
i, j

∥∥∥2

L2(Ω)
≤
∥∥∥vn

i, j(0)
∥∥∥

L2(Ω)

Thus, we have

max
0≤t≤T

∥∥∥vn
i, j

∥∥∥2

L2(Ω)
≤
∥∥(∇u0∇uᵀ

0 )i, j
∥∥2

L2(Ω)
(17)

(iii)
∥∥vi, j

∥∥
L2(0, T ; H1(Ω))

estimation. By (ii), we know that

d
dt

(
‖ vn

i, j ‖2
L2(Ω)

)
+ 2 z1

∥∥vi, j
∥∥2

H1(Ω)
≤ 2 z1

∥∥vi, j
∥∥2

L2(Ω)
(18)

Integrating Equation (18) from 0 to T yields that∥∥∥vn
i, j

∥∥∥2

L2(Ω)
|t=T + 2 z1

∥∥vi, j
∥∥2

L2(0, T; H1(Ω))
≤ 2 z1

∫ T

0

∥∥vi, j
∥∥2

L2(Ω)
ds +

∥∥∥vn
i, j(0)

∥∥∥2

L2(Ω)

According to the Gronwall inequality in the integral form, it can be deduced that∥∥∥vn
i, j

∥∥∥2

L2(Ω)
|t=T ≤ (1 + 2 z0Te2 z0T)

∥∥(∇u0∇uᵀ
0 )i, j

∥∥2
L2(Ω)

(19)

Combining (18) and (19), it can be obtained that∥∥vi, j
∥∥2

L2(0, T ; H1(Ω))
≤ C

∥∥(∇u0∇uᵀ
0 )i, j

∥∥2
L2(Ω)

, i, j = 1, 2 (20)

(iv)
∥∥∥(vn

i, j)
′
∥∥∥

L2(0, T ; (H1(Ω))′)
estimation. Based on the properties of g2, it can be seen that

there exists a constant α0 such that∫
Ω

g2(| ∇uσ|)∇vn
i, j∇ψi, j)dx ≤ α0

∥∥∥vn
i, j

∥∥∥
H1(Ω)

∥∥ψi, j
∥∥

H1(Ω)



Fractal Fract. 2023, 7, 569 11 of 34

Giving ψi, j ∈ H1(Ω) and
∥∥ψi, j

∥∥
H1(Ω)

≤ 1, we can represent it as ψi, j = ψ1
i, j + ψ2

i, j,

where ψ1
i, j ∈ span{ωk}n

k=1 and (ψ2
i, j, ωk) = 0, k = 1, 2, · · · , n. Because{ωk}∞

k=1 is orthogo-

nal in H1(Ω), there is ∥∥∥ψ1
i, j

∥∥∥
H1(Ω)

≤
∥∥ψi, j

∥∥
H1(Ω)

≤ 1

By (9), it can be obtained that

((vn
i, j)
′, ψ1

i, j) + B2[vn
i, jψ

1
i, j; t] = 0, i, j = 1, 2

Since
∥∥∥ψ1

i, j

∥∥∥
H1(Ω)

≤ 1,

〈(vn
i, j)
′, ψi, j〉 = ((vn

i, j)
′, ψi, j) = ((vn

i, j)
′, ψ1

i, j) = −B2[vn
i, j, ψ1

i, j; t] = 0

|〈(vn
i, j)
′, ψi, j〉| ≤ |B2[vn

i, j, ψ1
i, j; t]| ≤ α0

∥∥∥vn
i, j

∥∥∥
H1(Ω)

∥∥ψi, j
∥∥

H1(Ω)
≤ α0

∥∥∥vn
i, j

∥∥∥
H1(Ω)

Thus,∥∥∥(vn
i, j)
′
∥∥∥
(H1(Ω))′

= sup
ψi, j∈H1(Ω),‖ψi, j‖H1(Ω)

≤1
|〈(vn

i, j)
′, ψi, j〉| ≤ α0

∥∥∥vn
i, j

∥∥∥
H1(Ω)

∥∥∥(vn
i, j)
′
∥∥∥2

L2(0, T ; (H1(Ω))′)
=
∫ T

0

∥∥∥(vn
i, j)
′
∥∥∥2

(H1(Ω))′
dt

≤α0

∫ T

0

∥∥∥vn
i, j

∥∥∥2

H1(Ω)
dt

≤α0

∥∥∥vn
i, j

∥∥∥
L2(0, T ; H1(Ω))

≤C
∥∥(∇u0∇uᵀ

0 )i, j
∥∥2

L2(Ω)

Therefore, ∥∥∥(vn
i, j)
′
∥∥∥2

L2(0, T ; (H1(Ω))′)
≤ C

∥∥(∇u0∇uᵀ
0 )i, j

∥∥2
L2(Ω)

(21)

(v) max
0≤t≤T

∥∥∥J n
i, j

∥∥∥
H1(Ω)

estimation. According to the following fractional time-delay ordinary

differential equation

τDγ
c Ji, j + Ji, j = vi, j, (x, t) ∈ Ω× (0, T ]

Ji, j(x, 0) = 0, i, j = 1, 2, x ∈ Ω

It can be obtained that

J n
i, j :=

1
Γ(γ)

∫ t

0
(t− s)γ−1 1

τ
(vn

i, j − J n
i, j)ds

To estimate the inequality, we divide the interval (0, T ] equally, the length between the
divided cells is a, which is denoted as (ka, (k + 1)a ], and the equation within the interval is

τDγ
c Ji, j + Ji, j = vi, j, t ∈ (ka, (k + 1)a ]

Ji, j(x, 0) = Ji, j(ka), i, j = 1, 2, x ∈ Ω
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The solution of the equation in the interval (ka, (k + 1)a ] is

J n
i, j(t) = J n

i, j(ka) +
1

Γ(γ)

∫ (k+1)a

ka
(t− s)γ−1 1

τ
(vn

i, j − J n
i, j)ds

= J n
i, j(ka) +

1
τΓ(γ)

∫ (k+1)a

ka
(t− s)γ−1vn

i, j(s)ds +
1

τΓ(γ)

∫ (k+1)a

ka
(t− s)γ−1 J n

i, j(s)ds

Estimating inequalities involves∥∥∥J n
i, j(t)

∥∥∥
H1(Ω)

=
∥∥∥J n

i, j(ka)
∥∥∥

H1(Ω)
+

1
τΓ(γ)

∫ (k+1)a

ka
((k + 1)a− s)γ−1

∥∥∥vn
i, j(s)

∥∥∥
H1(Ω)

ds

+
1

τΓ(γ)

∫ (k+1)a

ka
((k + 1)a− s)γ−1

∥∥∥J n
i, j(s)

∥∥∥
H1(Ω)

ds

≤
∥∥∥J n

i, j(ka)
∥∥∥

H1(Ω)
+

1
τΓ(γ)

max
0≤t≤T

∥∥∥vn
i, j(t)

∥∥∥
H1(Ω)

∫ (k+1)a

ka
((k + 1)a− s)γ−1ds

+
1

τΓ(γ)
max

0≤t≤T

∥∥∥J n
i, j(t)

∥∥∥
H1(Ω)

∫ (k+1)a

ka
((k + 1)a− s)γ−1ds

=
∥∥∥J n

i, j(ka)
∥∥∥

H1(Ω)
+

1
γτΓ(γ)

aγ

(
max

0≤t≤T

∥∥∥vn
i, j(t)

∥∥∥
H1(Ω)

+ max
0≤t≤T

∥∥∥J n
i, j(t)

∥∥∥
H1(Ω)

)
Taking the maximum value at both ends of the inequality simultaneously, it has(

1− 1
γτΓ(γ)

aγ

)
max

0≤t≤T

∥∥∥J n
i, j(t)

∥∥∥
H1(Ω)

≤
∥∥∥J n

i, j(ka)
∥∥∥

H1(Ω)
+

1
γτΓ(γ)

aγ max
0≤t≤T

∥∥∥vn
i, j(t)

∥∥∥
H1(Ω)

We can choose a such that 1 − 1
γτΓ(γ) aγ < 1. Because J n

i, j(ka) = 0 in the interval
(0, T ] and

max
0≤t≤T

∥∥∥vn
i, j

∥∥∥2

H1(Ω)
≤ C1

∥∥(∇u0∇uᵀ
0 )i, j

∥∥2
L2(Ω)

we set

C =

1
γτΓ(γ) aγC1

1− 1
γτΓ(γ) aγ

Therefore,

max
0≤t≤T

∥∥∥J n
i, j

∥∥∥
H1(Ω)

≤ C
∥∥(∇u0∇uᵀ

0 )i, j
∥∥2

L2(Ω)
(22)

(vi) ‖un‖L2(0, T ; H1(Ω)) estimation. By integrating Equation (14) from 0 to T, we have

‖un‖2
L2(Ω)|t=T + 2 β‖un‖2

L2(0, T ; H1(Ω))

≤(λ + 2γ)
∫ T

0
‖un‖2

L2(Ω)dt + λ‖ũ‖2
L2(0, T ; L2(Ω)) + ‖u

n(0)‖2
L2(Ω)

Therefore

‖un‖2
L2(0, T ; H1(Ω)) ≤ C

(
‖u0‖2

L2(Ω) + ‖ũ‖
2
L2(0, T ; L2(Ω))

)
(23)

(vii) ‖(un)′‖L2(0, T ; (H1(Ω))′) estimation. Giving φ ∈ H1(Ω) and ‖φ‖H1(Ω) ≤ 1, we can
represent it as φ = φ1 + φ2, where φ1 ∈ span{ωk}n

k=1 and (φ2, ωk) = 0, k = 1, 2, · · · , n.
Because{ωk}∞

k=1 is orthogonal in H1(Ω), then we have
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∥∥∥φ1
∥∥∥

H1(Ω)
≤ ‖φ‖H1(Ω) ≤ 1

By (5), it can be obtained that

∥∥(un)′
∥∥2

L2(0, T ; (H1(Ω))′) =
∫ T

0

∥∥(un)′
∥∥2
(H1(Ω))′dt

≤ C
∫ T

0
‖un‖2

H1(Ω) + ‖ũ‖
2
L2(Ω)dt

≤ C
(
‖u0‖2

L2(Ω) + ‖ũ‖
2
L2(0, T ; L2(Ω))

)
Therefore, ∥∥(un)′

∥∥2
L2(0, T ; (H1(Ω))′) ≤ C

(
‖u0‖2

L2(Ω) + ‖ũ‖
2
L2(0, T ; L2(Ω))

)
(24)

Combining the inequalities estimated by (17), (20)–(22), (13), (23) and (24), we obtain
a consistent estimation inequality.

In order to prove the existence of weak solutions for (3), we need to analyze whether
the sequence J n

i, j has a subsequence with weak/strong convergence property in the corre-
sponding space.

Lemma 3. Let F(t) = {J n
i, j(t)}n∈N , where N is the index set, J n

i, j : [0, T ] 7→ X ∈ L2(Ω), then
F(t) is a relatively compact set in C(0,T ; L2(Ω)).

Proof. (i) Prove that {J n
i, j|n ∈ N, t ∈ [0, T ]} is relatively compact in L2(Ω). According to

step (v) of the consistent estimation inequality, we can obtain

max
0≤t≤T

∥∥∥J n
i, j

∥∥∥
H1(Ω)

≤ C
∥∥(∇u0∇uᵀ

0 )i, j
∥∥2

L2(Ω)

Because F(t) is uniformly bounded inL2(Ω),∥∥∥J n
i, j

∥∥∥
C([0, T ]; H1(Ω))

≤ C

It means that F(t) is bounded in H1(Ω). Therefore, {J n
i, j| n ∈ N, t ∈ [0, T ]} is relatively

compact in L2(Ω).
(ii) Proof of the equicontinuity of F(t). For ∀ ε > 0, with t1 as the initial value diffused to
t2, then

J n
i, j(t2) = J n

i, j(t1) +
1

τΓ(γ)

∫ t2

t1

(t2 − s)γ−1(vn
i, j(s)− J n

i, j(s))ds

then for ∀ ε > 0, ∃ δ =

∥∥∥vn
i, j(s)−J n

i, j

∥∥∥
H1(Ω)

ε

τγΓ(γ) , when |t1 − t2| < δ, we have

∥∥∥J n
i, j(t2)− J n

i, j(t1)
∥∥∥

H1(Ω)
≤ 1

Γτ(γ)

∫ t2

t1

(t2 − s)γ−1
∥∥∥vn

i, j(s)− J n
i, j(s)

∥∥∥
H1(Ω)

ds

≤ 1
τγΓ(γ)

∥∥∥vn
i, j − J n

i, j

∥∥∥
H1(Ω)

|t2 − t1|

≤ 1
τγΓ(γ)

∥∥∥vn
i, j − J n

i, j

∥∥∥
H1(Ω)

· τγΓ(γ)δ∥∥∥vn
i, j − J n

i, j

∥∥∥
H1(Ω)
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Therefore
∥∥∥J n

i, j(t2)− J n
i, j(t1)

∥∥∥
H1(Ω)

< ε, which means F(t) is equicontinuous. Finally,

combining (i)–(ii) and according to the Arela–Ascoli lemma, F(t) is a relatively compact set
in C(0,T ; L2(Ω)).

Theorem 2. Under the assumption that u0 ∈ L2(Ω), (∇u0∇uᵀ
0 )i, j ∈ L2(Ω), there exists a weak

solution of (3).

Proof. (i) According to the consistent estimation inequality, the sequences {un}∞
n=1, {vn

i, j}∞
n=1

are bounded in L2(0, T ; H1(Ω), {(un)′}∞
n=1, {(vn

i, j)
′}∞

n=1 are bounded in L2(0, T ; (H1(Ω))′)

and {J n
i, j}∞

n=1 are bounded in L∞(0, T ; H1(Ω)).
According to the weak/strong sequence compactness in Lp(Ω) and the compact em-

bedding theorem in Sobolev spaces, there exist subsequences {unk}∞
k=1 ⊂ {u

n}∞
k=1, {vnk

i, j}
∞
k=1

⊂ {vn
i, j}∞

k=1. According to lemma (3), there exist subsequences {J nk
i, j }

∞
k=1 ⊂ {J n

i, j}∞
k=1

and functions

u ∈ L2(0, T ; H1(Ω)), u′ ∈ L2(0, T ; H1(Ω)′)

vi, j ∈ L2(0, T ; H1(Ω)), v′i, j ∈ L2(0, T ; (H1(Ω))′)

Ji, j ∈ L∞(0, T ; H1(Ω)), Dγ
c Ji, j ∈ L2(0, T ; (H1(Ω))′)

such that 

unk ⇀ u in L2(0, T ; H1(Ω))

(unk )′ ⇀ u′ in L2(0, T ; (H1(Ω))′)

vnk
i, j ⇀ vi, j in L2(0, T ; H1(Ω))

(vnk
i, j)
′ ⇀ v′i, j in L2(0, T ; (H1(Ω))′)

J nk
i, j → Ji, j in C(0, T; H1(Ω))

Dγ
c J nk

i, j ⇀ Dγ
c Ji, j in L2(0, T ; (H1(Ω))′)

(25)

(ii) Fixing a positive integer N, choosing functions φ, φi, j, ψi, j ∈ C1([0, T ]; H1(Ω)) satisfies

φ(t) =
N

∑
l=1

αl(t)ωl(x)

φi, j(t) =
N

∑
l=1

αl
i, j(t)ωl(x)

ψi, j(t) =
N

∑
l=1

βl
i, j(t)ωl(x), i, j = 1, 2

where {αl}N
l=1, {αl

i, j}N
l=1, {βl

i, j}N
l=1 are the given smooth functions. Choose n ≥ N, multi-

plying (9) by {αl}N
l=1, {αl

i, j}N
l=1, {βl

i, j}N
l=1, and taking the summation for l = 1, 2, · · · , N,

integrate from 0 to t
∫ T

0 [〈(un)′, φ〉+ B0[un, φ; t]]dt = −
∫ T

0 [λ(ũ, ψ)dt∫ T
0 [(Dγ

c Jn
i, j, φi, j) + B1[Jn

i, j, φi, j, t]]dt = 1
τ

∫ T
0 [(vn

i, j, φi, j)dt, i, j = 1, 2∫ T
0 [〈(vn

i, j)
′, ψi, j〉+ B2[vn

i, j, ψi, j; t]]dt = 0, i, j = 1, 2

(26)
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Let n = nk, and take the limit on both ends of (25),∫ T

0
[〈u′, φ〉+ B0[u, φ; t]]dt = −

∫ T

0
λ(ũ, ψ)dt (27)∫ T

0
[(Dγ

c Jij, φi, j) + B1[Ji, j, φi, j; t]]dt =
1
τ

∫ T

0
(vi, j, φi, j)dt, i, j = 1, 2 (28)∫ T

0
[〈v′i, j, ψi, j〉+ B2[vi, j, ψi, j; t]]dt = 0, i, j = 1, 2 (29)

Since φ, φi, j, ψi, j are dense in H1(Ω), there holds φ, φi, j, ψi, j ∈ L2(0, T ; H1(Ω)). Hence,

〈u′, φ〉+ B0[u, φ; t] = −λ(ũ, ψ)

(Dγ
c Ji, j, φi, j) + B1[Ji, j, φi, j; t] =

1
τ
(vi, j, φi, j), i, j = 1, 2

〈v′i, j, ψi, j〉+ B2[vi, j, ψi, j; t] = 0, i, j = 1, 2

for each φ, φi, j, ψi, j ∈ H1(Ω), a.e. t ∈ (0, T ].
(iii) For φ, φi, j, ψi, j ∈ C1([0, T ]; H1(Ω)), we have φ(T ) = 0, φi, j(T ) = 0, ψi, j(T ) = 0,
(i, j = 1,2). With the partial integration of (27)–(29), we have

∫ T
0 [−〈φ′, u〉+ B0[u, φ; t]]dt = −

∫ T
0 λ(ũ, ψ)dt + 〈u(0), φ(0)〉∫ T

0 [(Dγ
c Ji, j, φi, j) + B1[Ji, j, φi, j; t]]dt

= 1
τ

∫ T
0 (vi, j, φi, j)dt + T

n−1

∑
j=0

Dγ+j−n
(0, T )

φi, j(0)Dn−i−j Ji, j(0)∫ T
0 [−〈ψ′i, j, vi, j〉dt + B2[vi, j, ψi, j; t]]dt = 〈vi, j(0), ψi, j(0)〉 i, j = 1, 2

(30)

where Dγ+j−n
(0, T )

φi, j =
1

Γ(n−γ)

(
− d

dt

)n ∫ T
t (t− s)n−γ−1φi, jds.

Similarly, integrating each equation of (26) by parts yields

∫ T
0 [−〈φ′, un〉+ B0[un, φ; t]]dt = −

∫ T
0 λ(ũ, ψ)dt + 〈un(0), φ(0)〉∫ T

0 [(Dγ
c J n

i, j, φi, j) + B1[J n
i, j, φi, j; t]]dt

= 1
τ

∫ T
0 (vi, j, φi, j)dt + T

n−1

∑
j=0

Dγ+j−n
(0, T )

φi, j(0)Dn−i−j J n
i, j(0)∫ T

0 [−〈ψ′i, j, vn
i, j〉dt + B2[vn

i, j, ψi, j; t]]dt = 〈vn
i, j(0), ψi, j(0)〉, i, j = 1, 2

(31)

Let n = nk, k→ +∞, and apply (25). There holds

∫ T
0 [−〈φ′, u〉+ B0[u, φ; t]]dt = −

∫ T
0 λ(ũ, ψ)dt + 〈u0, φ(0)〉∫ T

0 [(Dγ
c Ji, j, φi, j) + B1[Ji, j, φi, j; t]]dt

= 1
τ

∫ T
0 (vi, j, φi, j)dt + T

n−1

∑
j=0

Dγ+j−n
(0, T )

φi, j(0) · 0∫ T
0 [−〈ψ′i, j, vi, j〉dt + B2[vi, j, ψi, j; t]]dt = 〈(∇u0∇u>0 )i, j, ψi, j(0)〉, i, j = 1, 2

(32)

Since φ(0), φi, j(0), ψi, j(0), (i, j = 1, 2) are arbitrary, according to (30) and (32), we
deduce that u(0) = u0, Ji, j(0) = 0, vi, j(0) = (∇u0∇u>0 )i, j, i, j = 1, 2.

2.5. Uniqueness of Weak Solutions

This section studies the uniqueness of the weak solution of the model in the text,
and provides a detailed proof as follows.
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Theorem 3. Under the assumption that u0 ∈ L2(Ω), (∇u0∇uᵀ
0 )i, j ∈ L2(Ω), there exists a

unique weak solution of (3).

Proof. Assume that the system (3) has two solutions, respectively, i.e., (ū, J̄i, j, v̄i, j), (û, Ĵi, j, v̂i, j),
(i, j = 1, 2). Consider the definition of weak solutions

〈ū′, φ〉+ B0[ū, φ; t] = −λ(ũ, ψ)

(Dγ
c J̄i, j, φi, j) + B1[ J̄i, j, φi, j; t] = 1

τ (v̄i, j, φi, j), i, j = 1, 2
〈v̄′i, j, ψi, j〉+ B2[v̄i, j, ψi, j; t] = 0, i, j = 1, 2

(33)

where ∀φ, φi, j, ψi, j ∈ H1(Ω)(i, j = 1, 2), a.e. t ∈ (0, T ]. Similarly, applying (33) to
(û, Ĵi, j, v̂i, j), (i, j = 1, 2) and subtracting the result of two equations, we have

〈(ū− v̂)′, φ〉+ B0[(ū− v̂), φ; t] = −λ(ũ, ψ)

(Dγ
c ( J̄i, j − Ĵi, j), φi, j) + B1[( J̄i, j − Ĵi, j), φi, j; t] = 1

τ ((v̄i, j − v̂i, j), φi, j), i, j = 1, 2
〈(v̄i, j − v̂i, j)

′, ψi, j〉+ B2[(v̄i, j − v̂i, j), ψi, j; t] = 0, i, j = 1, 2

Selecting φ = ū− û, φi, j = J̄i, j − Ĵi, j, ψi, j = v̄i, j − v̂i, j and integrating in Ω,

1
2

d
dt‖ū− û‖2

L2 +
∫

Ω g1( J̄)∇(ū− û) · ∇(ū− û)dx− λ‖ū− û‖2
L2

= −
∫

Ω(g1( J̄)− g1( Ĵ))∇û · ∇(ū− û)dx

τ
∫

Ω Dγ
c ( J̄i, j − Ĵi, j) · ( J̄i, j − Ĵi, j)dx +

∥∥ J̄i, j − Ĵi, j
∥∥2

L2

=
∫

Ω(v̄i, j − v̂i, j)( J̄i, j − Ĵi, j)dx
1
2

d
dt

∥∥v̄i, j − v̂i, j
∥∥2

L2 +
∫

Ω g2(|∇ūσ|)∇(v̄i, j − v̂i, j) · ∇(v̄i, j − v̂i, j)dx
= −

∫
Ω(g2(|∇ūσ|)− g2(|∇ûσ|))∇v̂i, j · ∇(v̄i, j − v̂i, j)dx

(34)

For the first equation in (34), using the smoothness and positive definiteness of g1(J),
the Cauchy inequality with ε, and the Schwarz inequality, it can be obtained that

1
2

d
dt
‖ū− û‖2

L2 + z1‖∇(ū− û)‖2
L2 − λ‖ū− û‖2

L2

≤
∫

Ω

∣∣(g1( J̄)− g1( Ĵ))∇(û)
∣∣ · |∇(ū− û)|dx

≤‖∇(ū− û)‖L2

(∫
Ω

∣∣(g1( J̄)− g1( Ĵ))∇û
∣∣2dx

) 1
2

≤‖∇(ū− û)‖L2‖∇û‖L2

2

∑
i, j=1

∥∥∥(g1( J̄)− g1( Ĵ)
)

i, j

∥∥∥
L∞

≤C‖∇(ū− û)‖L2‖∇û‖L2

2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥

L2

≤2C
z1

2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥2

L2‖∇û‖2
L2 +

z1

2
‖∇(ū− û)‖2

L2

Reorganizing the above equation, we obtain

d
dt
‖ū− û‖2

L2 + z1‖∇(ū− û)‖2
L2 ≤

4C
z1

2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥2

L2‖∇û‖2
L2 + λ‖ū− û‖2

L2
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Therefore,

d
dt
‖ū− û‖2

L2 ≤M1

2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥2

L2‖∇û‖2
L2 + λ‖ū− û‖2

L2 , M1 =
4C
z1

(35)

where M1 > 0. For the second equation in (34), by applying theorem (1), we obtain

τ

2
Dγ

c
∥∥ J̄i, j − Ĵi, j

∥∥2
L2 ≤ τ

∫
Ω

Dγ
c ( J̄i, j − Ĵi, j) · ( J̄i, j − Ĵi, j)dx

Further, the second equation in (34) can be transformed into

τ

2
Dγ

c
∥∥ J̄i, j − Ĵi, j

∥∥2
L2 +

∥∥ J̄i, j − Ĵi, j
∥∥2

L2 ≤
∫

Ω
(v̄i, j − v̂i, j)( J̄i, j − Ĵi, j)dx

Thus,

Dγ
c

2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥2

L2 ≤ τ
2

∑
i, j=1

∥∥v̄i, j − v̂i, j
∥∥2

L2 − τ
2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥2

L2 (36)

Therefore,

Dγ
c

2

∑
i, j=1

∥∥ J̄i, j − Ĵi, j
∥∥2

L2 ≤ τ
2

∑
i, j=1

∥∥v̄i, j − v̂i, j
∥∥2

L2 (37)

For the third equation in (34), similar to the derivation of the first equation, we apply
the properties of g2, the Schwarz inequality, and the Cauchy inequality with ε,

1
2

d
dt
∥∥v̄i, j − v̂i, j

∥∥2
L2 + z2

∥∥∇(v̄i, j − v̂i, j)
∥∥2

L2

≤
∫

Ω

∣∣g2(| ∇ūσ|)− g2(| ∇ûσ|)∇v̂i, j
∣∣ · ∇(v̄i, j − v̂i, j)dx

≤
∥∥∇(v̄i, j − v̂i, j)

∥∥
L2

(∫
Ω

∣∣(g2(|∇ūσ|)− g2(| ∇ûσ|))∇v̂i, j
∣∣2dx

) 1
2

≤Ci, j

2

∑
i, j=1

∥∥∇v̂i, j
∥∥

L2‖ū− û‖L2 ·
∥∥∇(v̄i, j − v̂i, j)

∥∥
L2

≤
2Ci, j

z2

2

∑
i, j=1

∥∥∇v̂i, j
∥∥2

L2 · ‖ū− û‖2
L2 +

z2

2

∥∥∇(v̄i, j − v̂i, j)
∥∥2

L2

After reorganization, it becomes

d
dt
∥∥v̄i, j − v̂i, j

∥∥2
L2 + z2

∥∥∇(v̄i, j − v̂i, j)
∥∥2

L2 ≤
4Ci, j

z2

2

∑
i, j=1

∥∥∇v̂i, j
∥∥2

L2 · ‖ū− û‖2
L2

Therefore,

d
dt

2

∑
i, j

∥∥v̄i, j − v̂i, j
∥∥2

L2 ≤M2

2

∑
i, j=1

∥∥∇v̂i, j
∥∥2

L2 · ‖ū− û‖2
L2 , M2 = max

i, j

(
4Ci, j

z2

)
(38)

According to the solution of the fractional-order ordinary differential equation and
the formula (37), we obtain
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∥∥ J̄i, j − Ĵi, j
∥∥2

L2 =
∫ t

0
(t− s)γ−1Dγ

c
∥∥ J̄i, j − Ĵi, j

∥∥2
L2ds

≤
∫ t

0
(t− s)γ−1τ

∥∥v̄i, j − v̂i, j
∥∥2

L2ds
(39)

Dividing the interval (0, t ] equally and assuming that the length between each cell
after division is b, each interval can be denoted as (kb, (k + 1)b ], k = 0, · · · , t/b. Let
‖w‖ = max

ι∈(kb, (k+1)b ]

∥∥(v̄i, j − v̂i, j)(ι)
∥∥. To operate on (39), there are

∥∥ J̄i, j − Ĵi, j
∥∥2

L2 ≤
∫ (k+1)b

kb
((k + 1)b− s)γ−1τ

∥∥v̄i, j − v̂i, j
∥∥2

L2ds

≤‖w‖2
∫ (k+1)b

kb
((k + 1)b− s)γ−1τds

≤C‖w‖2

Integrating (38) from kb to (k + 1)b,

∥∥v̄i, j − v̂i, j
∥∥2

L2 ≤
∫ (k+1)b

kb
M2

2

∑
i, j=1

∥∥∇v̂i, j(s)
∥∥2

L2 · ‖(ū− û)(s)‖2
L2ds (40)

For (40), taking the maximum value at both ends simultaneously, we have

‖w‖2 ≤ max
s∈(kb, (k+1)b]

∫ s

0
M2

2

∑
i, j=1

∥∥∇v̂i, j(s)
∥∥2

L2 · ‖(ū− û)(s)‖2
L2ds (41)

Let ‖z‖ = max
ι∈(kb, (k+1)b ]

‖ū− û‖, k = 0, · · · , t/b, then (41) can be transformed into

‖w(t)‖2 ≤ ‖z(t)‖2
∫ s

0
M2
∥∥∇v̂i, j(s)

∥∥2
L2ds (42)

Integrating (35) from kb to (k + 1)b

‖ū− û‖2
L2 ≤

∫ (k+1)b

kb
M1

2

∑
i, j=1

∥∥( J̄i, j − Ĵi, j)(s)
∥∥2

L2‖∇û(s)‖2
L2ds (43)

+ λ
∫ (k+1)b

kb
‖(ū− û)(s)‖2

L2ds (44)

For (43), taking the maximum value at both ends simultaneously, we have

‖z‖2 ≤ C‖z‖2 max
s∈(kb, (k+1)b]

∫ (k+1)b

kb
‖∇û(s)‖2

L2ds + λ
∫ (k+1)b

kb
‖z‖2ds(

1− C max
s∈(kb, (k+1)b]

∫ (k+1)b

kb
‖∇û(s)‖2

L2ds
)
‖z‖2 ≤ λ

∫ (k+1)b

kb
‖z‖2ds

Because b is the length of the divided interval, it is small enough to make the follow-
ing equation

1− C max
s∈(kb, (k+1)b]

∫ (k+1)b

kb
‖∇û(s)‖2

L2ds ≤ 1

hold. Applying the Gronwall inequality in integral form to z yields

‖z‖ = max
ι∈(kb, (k+1)b ]

‖ū− û‖ = 0 (45)
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Hence, ū = û, for a.e. t ∈ (0, T ]. Similarly, v̄i, j = v̂i, j and J̄i, j = Ĵi, j, for a.e. t ∈ (0, T ].
Therefore, there exists a unique weak solution for the model.

3. Numerical Algorithms and Experimental Results
3.1. Numerical Algorithm

In this section, we use the finite difference method [40] to give a simple numerical
scheme of the model (3). Denote J = Ji, j, v = vi, j, (i, j = 1, 2). Assume the width and
length of the image are N and M, respectively, then

xl = lhx, l = 1, 2, · · · , N

yk = khy, k = 1, 2, · · · , M

tm = m∆t, m = 1, 2, · · · , P

where hx = 1, hy = 1 and ∆t = T
P . Define the grid functions by

um
l, k = u(xl , yk, tm), J m

l, k = J(xl , yk, tm)

vm
l, k = v(xl , yk, tm), (xl , yk) ∈ Ωh, m = 1, 2, · · · , P

The initial condition on grid point (xl , yk) is

u0
l, k = (u0)l, k, J 0

l, k = 0, v0
l, k = (∇u0∇u>0 )l, k

In this section, we use the scheme in [9] to solve the nonlinear isotropic diffusion
equation in the proposed model. Firstly, we discretize the left side of the equation by the
forward difference method

∂vl, k

∂t
=

vm+1
l, k − vm

l, k

∆t
Next, for the discretization of the divergence term at the right end of the equation,

the Laplacian operator is discretized in four directions: north, south, east, and west. Param-
eter g2 uses “half-point” discretization. From the definition of the divergence operator, it is
obtained that

div(g2(|∇uσ|)m
l, k∇vm

l, k) =
∂

∂x

(
g2

∂v
∂x

)m

l, k
+

∂

∂y

(
g2

∂v
∂y

)m

l, k

Thus,

vm+1
l, k =vm

l, k + ∆t

(
(g2)

m
l+1, k + (g2)

m
l, k

2
(vm

l+1, k − vm
l, k)−

(g2)
m
l, k + (g2)

m
l−1, k

2
(vm

l, k − vm
l−1, k)

)

+ ∆t

(
(g2)

m
l, k+1 + (g2)

m
l, k

2
(vm

l, k+1 − vm
l, k)−

(g2)
m
l, k + (g2)

m
l, k−1

2
(vm

l, k − vm
l, k−1)

)

where ∆t is the unit time step size, and a large number of experiments have shown that
when 0 ≤ ∆t ≤ 1/4, the numerical format is stable [9] .

For the fractional time-delay equation, we will adopt a general numerical discretization
scheme proposed by Diego et al. [41], which is based on a simple quadrature formula to
approximate the first-type Volterra integral definition of Caputo fractional derivatives.
The numerical format of J at grid nodes (xl , yk, tm) is given by
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Dγ
c J m

l, k =
1

Γ(1− γ)

∫ tm

0

∂Jl, k(s)
∂t

(Jm − s)−γds

=
1

Γ(1− γ)

m

∑
p=1

∫ l∆t

(p−1)∆t

 J p
l, k − J p−1

l, k

∆t
+ O(∆t)

(m∆t− s)−γds

=
1

(1− γ)Γ(1− γ)

m

∑
p=1

 J p
l, k − J p−1

l, k

∆t
+ O(∆t)

[(m− p + 1)1−γ − (m− p)1−γ]


(∆t)1−γ

=
1

(1− γ)Γ(1− γ)

1
(∆t)γ

m

∑
p=1

(J p
l, k − J p−1

l, k )[(m− p + 1)1−γ − (m− p)1−γ]

+
1

(1− γ)Γ(1− γ)

m

∑
p=1

[(m− p + 1)1−γ − (m− p)1−γ]O((∆t)2−γ)

Let σγ, ∆t =
(∆t)−γ

Γ(1−γ)(1−γ)
, ξ

(γ)
p = p1−γ − (p− 1)1−γ, 1 = ξ

(γ)
1 > ξ

(γ)
2 > · · · > ξ

(γ)
p , then

∂γ J m
l, k

∂γu
= Dγ

c J m
l, k = σγ,∆t

m

∑
p=1

ξ
(γ)
p

(
J m−p+1
l, k − J m−p

l, k

)
+

1
Γ(1− γ)

1
1− γ

n1−γO
(
(∆t)2−γ

)
= σγ,∆t

m

∑
p=1

ξ
(γ)
p

(
J m−p+1
l, k − J m−p

l, k

)
+ O(∆t)

Let ς = ∆t, the first-order approximation method for the Caputo fractional derivative
is as follows:

Dγ
c J m+1

l, k
∼= σγ,, s

m+1

∑
p=1

ξ
(γ)
p

(
J (m+1)−p+1
l, k − J (m+1)−p

l, k

)
= σγ, ς

[
J(m+1)
l, k −

m

∑
p=1

(
ξ
(γ)
p − ξ

(γ)
p+1

)
J (m+1)−p
l, k − ξ

(γ)
n J 0

l, k

]

Thus,

J m+1
l, k =

τσγ, ζ

τσγ, ζ + 1

[
m+1

∑
p=1

(
ξ
(γ)
p − ξ

(γ)
p+1

)
J m+1−p
l, k + ξ

(γ)
m J 0

l, k

]
+

1
τσγ, ζ + 1

vm+1
l, k

=
τσγ, ζ

τσγ, ζ + 1

m

∑
p=1

(
ξ
(γ)
p − ξ

(γ)
p+1

)
J m+1−p
l, k +

τσγ, ζ

τσγ,ζ + 1
ξ
(γ)
m J 0

l, k +
1

τσγ, ζ + 1
vm+1

l, k

In order to ensure that the discretized scheme is rotationally invariant, can avoid fuzzy
artifacts (dissipative), and has high accuracy, the filtering method proposed by [42] is used
to perform explicit numerical discretization of the coherent enhanced anisotropic diffusion
equation. The divergence operator in the anisotropic diffusion equation is written as

div(D∇u) =
∂

∂x

(
d11

∂u
∂x

+ d12
∂u
∂y

)
+

∂

∂y

(
d12

∂u
∂x

+ d22
∂u
∂y

)
The total template size of the filter is 5× 5, that is, two first-order derivatives with

the size of 3× 3 are applied consecutively to approach the second derivative. Specifically,
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the derivative operators Fx and Fy are convolutionally approximated to the first derivative
of the original image, respectively. We select the discrete form of the derivative operator as

Fx =
1

32

 −3 0 3
−10 0 10
−3 0 3

, Fy =
1

32

 3 10 3
0 0 0
−3 10 −3


Therefore, the divergence operator is discretized as

div
(

Dn
l, k∇um

l, k

)
= Fx

(
d11Fx

(
um

l, k

)
+ d12Fy

(
um

l, k

))
+ Fy

(
d12Fx

(
um

l, k

)
+ d22Fy

(
um

l, k

))
Thus,

um+1
l, k = um

l, k + ∆t∗
(
∇ ·

(
Dm

l, k∇um
l, k

)
+ λ

(
um

l, k − ũ
))

For λ(u− ũ), we adaptively choose the parameter λ as

λ(t) =
p

(IterOURS · ∆t)
1
4
· t

1
4

where we set 0 < p < 0.1, IterOURS represents the iteration step size of the proposed model,
and ∆t is the time step for isotropic diffusion. Choosing appropriate adaptive parameters
λ(t) not only completes the interruption of line connections but also improves the contrast
of the image.

Based on the numerical discretization schemes of the three equations mentioned above,
combined with the setting of boundary conditions and initial conditions, a numerical dis-
cretization algorithm for the image enhancement model in the text as shown in Algorithm 1
is obtained.

Algorithm 1 The proposed model
Input: Initial image u0, parameter σ, τ, γ, p, iteration step size IterOURS, time step for
isotropic diffusion ∆t, and time step for anisotropic diffusion ∆t∗.
Initial conditions: vl, k(x, 0) =

(
∇u0∇uᵀ

0
)

l, k.
For (m = 1, · · · , P)
• Choose the diffusivity g2(t) = 1

1+(t/K)2 or g2(t) = 1
ε+tp .

• vm+1
l, k =vm

l, k

+ ∆t

(
(g2)

m
l+1, k + (g2)

m
l, k

2
(vm

l+1, k − vm
l, k)−

(g2)
m
l, k + (g2)

m
l−1, k

2
(vm

l, k − vm
l−1, k)

)

+ ∆t

(
(g2)

m
l, k+1 + (g2)

m
l, k

2
(vm

l, k+1 − vm
l, k)−

(g2)
m
l, k + (g2)

m
l, k−1

2
(vm

l, k − vm
l, k−1)

)
.

• J m+1
l, k =

τσγ, ζ

τσγ, ζ + 1

m

∑
p=1

(
ξ
(γ)
p − ξ

(γ)
p+1

)
J m+1−p
l, k +

τσγ, ζ

τσγ,ζ + 1
ξ
(γ)
m J 0

l, k +
1

τσγ, ζ + 1
vm+1

l, k ;

• Calculate the eigenvalues and eigenfunctions of the structural tensor J m
l, k.

• Using the component d11,d12,d22 of the diffusion tensor D = g1(J) as a function of the
structural tensor J m

l, k;
• Calculate flux components E1 := d11Fxu + d12Fyu and E2 := d12Fxu + d22Fyu.
• ∇ · (D(∇u)) = FxE1 + FyE2.

• um+1
l, k = um

l, k + ∆t∗
(
∇ ·

(
Dm

l, k∇um
l, k

)
+ λ

(
um

l, k − ũ
))

end
Output: The image u.
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3.2. Experimental Results

In this subsection, we attempt to design multiple numerical experiments to justify
the efficiency and superiority of the proposed model. We compare the proposed model
with several well-known partial differential image enhancement methods, mainly the CED
model (1) and CDEs model (2). For all experiments, the best visual effect is selected as the
condition to stop iteration. Experiments are implemented in Python.

The test images are shown in Figure 1, which are fingerprint1 with a resolution of
256× 256; fingerprint2 with a resolution of 200× 200; alphabet with a resolution of 400× 561;
spring image with a resolution of 400× 400; texture1 with a resolution of 256× 256; texture
image 2, with a resolution of 256× 256; weaving diagram with a resolution of 340× 342;
the Van Gogh, a Dutch Impressionism painter, painting “15 sunflowers in a vase” with a
resolution of 255× 317; Van Gogh’s oil painting “Wheat Field and Cypress Tree” denoted as
“cypress” with a rate of 255× 200.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Test figures: (a) fingerprint1; (b) fingerprint2; (c) texture1; (d) texture2; (e) alphabet; (f) spring;
(g) sunflowers; (h) cypress.

The meaning of the experimental parameters for the proposed model, CED model and
CDEs model is as follows: σ is the initial image convolution parameter, ρ is a Gaussian
kernel parameter, tCED represents the diffusion time of the CED model, IterCED represents
the step size in the iteration for the CED model. t1CDEs denotes the diffusion time of
structure tensor J in the CDEs model , t2CDEs denotes the diffusion time of the anisotropic
equation in the CDEs model, and IterCDEs represents the iteration step size of the CDEs
model. λ is a source item parameter, τ is the delay regularization parameter, γ is a fractional-
order parameter, K is the parameter in g2-PM, ∆t represents the diffusion time of the model
structure tensor J in our model, ∆t∗ denotes the diffusion time of the anisotropic equation
in our model, and IterOURS represents the iteration step size of our model. In the specific
experiment, K = 80, α = 0.001, and more details can be found in the [42]. Select the source
term as the average of image u in Ω, which means ũ = 1

mean(Ω)

∫
Ω udx. The selection of

experimental parameters can be found in Tables 1–3. Due to the subsequent involvement
of numerous fingerprint experiments, it is explained that the fingerprint1 parameters in
Tables 1–3 refer to Figure 5. The fingerprint2 parameter refers to Figure 7.
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Table 1. This is the parameter selection in CED model experiment.

Test Figures σ ρ tced IterCED

fingerprint1 0.3 4 0.3 100
fingerprint2 0.5 4 0.5 100

spring 0.5 5 0.2 80
alphabet 0.3 6 0.3 150
texture1 0.3 5 0.5 100
texture2 0.3 7 0.5 150

sunflower 0.2 2 0.6 50
cypress 0.2 2 0.6 50

Table 2. This is the parameter selection in CDEs model experiment.

Test Figures σ t1cdes t2cdes IterCDEs

fingerprint1 0.5 0.2 0.3 30
fingerprint2 0.5 0.2 0.5 100

spring 0.3 0.1 0.2 50
alphabet 0.3 0.15 0.3 90
texture1 0.5 0.15 0.5 110
texture2 0.5 0.2 0.5 100

sunflower 0.2 0.2 0.6 30
cypress 0.2 0.2 0.6 30

Table 3. This is the parameter selection in our model experiment.

Test Figures σ λ τ γ ∆t ∆t∗ IterOURS

fingerprint1 0.5 0.018 0.5 0.7 0.2 0.3 120
fingerprint2 0.5 0.018 0.5 0.7 0.2 0.5 100

spring 0.3 0.02 0.5 (0.1, 0.5, 0.7) 0.1 0.2 40
alphabet 0.5 0.025 0.3 (0.1, 0.5, 0.7) 0.15 0.3 80
texture1 0.5 0.02 0.5 0.7 0.15 0.5 60
texture2 0.5 0.007 0.5 0.1 0.2 0.5 150

sunflower 0.2 0.02 0.5 0.5 0.2 0.6 30
cypress 0.2 0.02 0.5 0.5 0.2 0.6 30

Since the proposed model can significantly enhance the contrast of image, we use
entropy and contrast to quantitatively analyze the model. The contrast of an image
is measured from the darkest area to the brightest area, and the calculation formula is
as follows:

CContrast =
L−1

∑
i=0

(zi −m)2 p(zi)

where zi is a random variable that represents the grayscale value of pixels in the image, p(zi)
is the probability of pixels with a grayscale value of zi occupying the entire image, and
L represents possible levels of grayscale values. The lower the contrast of the image,
the blurrier the image. Entropy is an indicator to measure the information randomness of
an image, which reflects the average information contained in the image. The calculation
formula is as follows:

HEntropy(z) = −
L−1

∑
i=0

p(zi) log p(zi)

The rougher areas of the image, the higher the entropy. The smoother the image,
the lower the entropy.

In order to verify the importance of the parameters λ, τ, and γ in the proposed model,
we give the following three experiments. The results of the numerical experiment about λ,
τ, and γ are shown in Figures 2–4.



Fractal Fract. 2023, 7, 569 24 of 34

(a) (b) (c) (d)
Figure 2. Different values of λ in the proposed model: (a) fingerprint1; (b) λ = 1.8 × 10−3;
(c) λ = 1.8× 10−1; (d) λ = 1.8.

(a) (b) (c) (d)
Figure 3. Different values of τ in the proposed model: (a) τ = 5 × 10−3; (b) τ = 5 × 10−1;
(c) τ = 5× 104; (d) τ = 5× 105.

(a) (b) (c) (d)
Figure 4. Different values of γ in the proposed model: (a) γ = 0.3; (b) γ = 0.5; (c) γ = 0.7; (d) γ = 0.9.

As shown in Figure 2b,c, the interrupted lines in fingerprint1 are connected but it
is obviously that the contrast of Figure 2c is higher and clearer. Meanwhile, the contrast
between Figure 2c,d is high and the figures are very clear. However, the connection of
the interrupted lines in Figure 2d is very poor, retaining many broken lines, similar to the
original image. From the above conclusions, we know that the larger the λ, the stronger the
enhancement effect. The smaller the λ, the smoother the enhancement effect. Choosing the
appropriate value of λ can complete the connection of the interruption lines, while ensuring
good contrast in the model. In this experiment, selecting λ = 0.018 has the best effect.

Figure 3 shows the different values of τ in the proposed model. It can be seen from the
experiment that Figure 3a,b have more enhancement effects than Figure 3c,d. These worse
image enhancement phenomena indicate that the larger τ is chosen in the proposed model,
which means that the information of the images is not fully utilized, and the information is
lost. The experiment should choose a smaller value of τ with τ = 5× 10−1.

In Figure 4, the image enhancement effect of γ with different values is relatively good.
The consistency between the experiment and theoretical analysis fully demonstrates that
the introduction of fractional time delay not only fully utilizes the information of the image
but also expands the applicability of the model. Extending the model from traditional time
delay to fractional time delay facilitates further exploration of fractional-order models.

Figure 5 presents the experiment results of the fingerprint1 image. Comparing with
the CED model and CDEs model, it can be found that the proposed model has a better
enhancement effect. While the proposed model completes the fingerprint1 interrupted line
connection, it also increases the contrast of the image, and even the clarity of images is
better than that of the original image.
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However, due to the source term acting on the entire image in Figure 5, the restoration
effect of the local area lines is poor as shown in the red box of Figure 5d. To address this
issue, the spiral fingerprint image is divided into multiple small images so that the source
term can be adapted to each small image.

In this experiment, the spiral fingerprint image is divided into 9 subfigures in the ratio
of 3× 3, represented by the coordinates location (x, y), x, y = 1, 2, 3 subfigure. Based on
the experimental results of Figure 5, we select the position (1,1) subfigure, position (2,1)
subfigure, and position (3,3) subfigure as examples for demonstration. The experimental
results are shown in Figure 6, and the parameter settings are the same as those in Figure 5.

(a) (b) (c) (d)
Figure 5. Fingerprint1 image: (a) original image; (b) results obtained by CED; (c) results obtained by
CDEs; (d) results obtained by OURS.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 6. Experimental results of fingerprint1 with subfigures of “positions (1,1), (2,1), and (3,3)”:
(a) (1,1) original subfigure; (b) (1,1) results obtained by CED; (c) (1,1) results obtained by CDEs;
(d) (1,1) results obtained by OURS; (e) (2,1) original subfigure; (f) (2,1) results obtained by CED;
(g) (2,1) results obtained by CDEs; (h) (2,1) results obtained by OURS; (i) (3,3) original subfigure;
(j) (3,3) results obtained by CED; (k) (3,3) results obtained by CDEs; (l) (3,3) results obtained by OURS.
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Observing Figures 5d and 6d, it is found that there are very short lines in the upper right
corner of the “position (1,1) subfigure” of the original image. Observing Figures 5d and 6e,
it is found that there is a large gap in the left part of the “position (2,1) subfigure” of the
original image, which is manifested by only leaving very short fingerprints similar to points.
In Figure 6d,h, the corresponding positions of the subgraphs are restored, and the lines are
clearer and more distinct. Observing Figure 6l, it is found that after the contrast in the lower
right corner of the “position (3,3) subfigure” of the original image is enhanced, the degree
of the flattening of the lines with small gray values relative to Figure 5d is decreased.
Experiments showed that subdividing the image, which involves local processing of the
image and changing the source terms, can achieve better results. On the other hand,
in response to the poor restoration effect of the lines in the lower right and upper left
corners of the original spiral fingerprint image, we find that this is not a problem with the
model itself but rather due to the large grayscale range of the image; the average of the
entire image cannot reflect the characteristics of local regions.

To verify the sensitivity of the model to noise, Gaussian noise with a standard deviation
of 50 is added to the dustpan-shaped fingerprint image. The experimental results of the
fingerprint2 image without Gaussian noise and with Gaussian noise are observed as shown
in Figures 7 and 8.

(a) (b) (c) (d)
Figure 7. Fingerprint2 image without noise: (a) original image; (b) results obtained by CED; (c) results
obtained by CDEs; (d) results obtained by OURS.

(a) (b) (c) (d)
Figure 8. Fingerprint2 image with noise: (a) original image; (b) results obtained by CED; (c) results
obtained by CDEs; (d) results obtained by OURS.

As shown in Figure 7b,c, the CED model and the CDEs model can complete the inter-
rupted lines, while significantly reducing the contrast between the texture and background.
On the contrary, Figure 7d indicates that our model completes the connection of interrupted
lines while enhancing the contrast. Looking at Figure 8b,c, it is found that the CED model
and the CDEs model are sensitive to noise. Figure 8d shows that the proposed model
completely removes noise, and the image restoration effect is very good. This indicates that
the proposed model can remove noise while connecting the interrupted lines.

According to the numerical experiments of fingerprint1 and fingerprint2 without/
containing Gaussian noise, Table 4 gives their contrast and entropy of images enhanced by
the CED model, CDEs model and OURS model.



Fractal Fract. 2023, 7, 569 27 of 34

Table 4. Contrast and information entropy of two fingerprint images with respect to different models.

Figure 5 Figure 5 Figure 7 Figure 7 Figure 8 Figure 8

contrast entropy contrast entropy contrast entropy

original 43.59 7.24 80.31 6.62 81.39 6.74
CED 35.27 7.15 71.18 7.27 71.31 7.25
CDEs - - 71.95 7.28 75.69 7.15
OURS 73.57 6.49 113.56 3.75 119.13 3.05

Comparing the contrast of different models for the same image, it is found that the
proposed model has the highest contrast, indicating that the proposed model effectively
improves the contrast of the image and makes it clearer. At the same time, by comparing the
information entropy of the same picture with that of different models, it is found that the
information entropy of the proposed model is the smallest, which means that the proposed
model effectively reduces the chaos of the picture and the image becomes more smooth.
The data in the Table 4 use contrast and information entropy to quantitatively demonstrate
the effectiveness of the model in enhancing image contrast. In Table 4, the best results are
shown in bold face.

The following will conduct numerical experiments on two letter images and provide
experimental results for different numerical formats of the CED model, CDEs model,
and OURS model with different γ values, which are shown in Figures 9 and 10.

The three pairs of local blocks shown in red line boxes in Figure 9 show that the pro-
posed model can effectively restore blurry lines, successfully solving the problem of hand-
writing blurring caused by running out of ink or other reasons during writing. The letters
“K, N, E, Q, Y” highlighted by the red lines in Figure 10 indicate that the proposed model
achieved good connectivity for broken lines in the shapes of “horizontal, vertical, oblique,
and arc”, and the restored image contrast is more pronounced. Figure 9d–f and 10d–f
show that different values of fractional-order γ can achieve the best recovery effect for the
proposed model.

(a) (b) (c)

(d) (e) (f)
Figure 9. Spring image: (a) original image; (b) results obtained by CED; (c) results obtained by CDEs;
(d) results obtained by OURS with γ = 0.1; (e) results obtained by OURS with γ = 0.5; (f) results
obtained by OURS with γ = 0.7.
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(a) (b) (c)

(d) (e) (f)
Figure 10. Alphabet image: (a) original image; (b) results obtained by CED; (c) results obtained
by CDEs; (d) results obtained by OURS with γ = 0.1; (e) results obtained by OURS with γ = 0.5;
(f) results obtained by OURS with γ = 0.7.

In order to observe the impact of the model on the shape and structure of “horizontal,
vertical, oblique, and circular” in the text more intuitively, eight texture images are selected
to synthesize two texture maps. Figures 11 and 12 provide the processing results.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11. Cont.
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(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 11. Texture1 image: (a) original image; (b) results obtained by CED; (c) results obtained by CDEs;
(d) results obtained by OURS; (e)/(i)/(m)/(q) enlarged image 01/02/03/04; (f)/(j)/ (n)/(r) enlarged
image 01/02/03/04 by CED; (g)/(k)/(o)/(s) enlarged image 01/02/03/04 by CDEs; (h)/(l)/(p)/(t) en-
larged image 01/02/03/04 by OURS.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Cont.
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(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 12. Texture2 image: (a) Original image; (b) results obtained by CED; (c) results obtained by CDEs
(d) results obtained by OURS; (e)/(i)/(m)/(q) enlarged image 01/02/03/04; (f)/(j)/(n)/(r) enlarged
image 01/02/03/04 by CED; (g)/(k)/(o)/(s) enlarged image 01/02/03/04 by CDEs; (h)/(l)/(p)/(t) en-
larged image 01/02/03/04 by OURS.

The typical “horizontal, vertical, oblique, and circular” shape structures in Figures 11 and 12
have significantly enhanced the flow characteristics of the same type of line. The proposed
model further deepens the flow characteristics of the same type of line. The four subimages
in Texture1 exhibit the characteristics of spreading along the horizontal, vertical, oblique,
and any direction, respectively. Figure 11e–t show the enlarged results of the four subimages
in Texture 1. The four subimages in Texture 2 reflect the line features of circular, elliptical,
and wavy structures. Figure 12e–t show the enlarged results of the four subimages in
Texture 2. Compared with the CED model and CDEs model, the two images of the
proposed model have a better enhancement effect, and the contrast of the images is greater,
making the images clearer. The enhancement results of the two images further demonstrate
the unified texture features of the images.

The proposed model is also applicable to color images, and the RGB channels of
Van Gogh’s two oil paintings are enhanced separately, and then integrated to obtain the
enhanced results.

Figures 13b–d and 14b–d present the restoration results of two paintings under the
CED model, CDEs model, and the proposed model. Figures 13e–p and 14e–p, respectively,
provide the restoration results of three enlarged images. Observing the cloud in Figure 13h,
cypress in Figure 13l, and green plant in Figure 13p, as well as the sunflower with various
poses in Figure 14p, it can be found that the proposed model restores the image lines, and
the image contrast is more pronounced. Although Van Gogh’s works are not typical texture
images, they still have characteristics similar to fluidity. As shown in Figures 13d and 14d,
the diffusion of the model further enhances the fluidity of the original image, and the image
presents unity and coordination, reflecting the unified “texture scale” of the painting and
Van Gogh’s unique painting style.

Numerical experiments show that, compared with the CED model and CDEs model,
the proposed model can effectively not only connect blurred and interrupted lines but
also enhance the contrast of images. In addition, the model can effectively remove noise.
Experiments on grayscale and color image further illustrate that the model can deepen
the fluidity characteristics of various types of lines. In the future, we can further develop
other image enhancement methods based on the nonlinear structural tensor and try other
numerical algorithms to improve the accuracy and efficiency of the algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 13. Cypress image: (a) Original image; (b) results obtained by CED; (c) results obtained
by CDEs (d) results obtained by OURS; (e)/(i)/(m) enlarged image 01/02/03; (f)/(j)/(n) enlarged
image 01/02/03 by CED; (g)/(k)/(o) enlarged image 01/02/03 by CDEs; (h)/(l)/(p) enlarged image
01/02/03 by OURS.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Cont.
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(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 14. Sunflowers image: (a) original image; (b) results obtained by CED; (c) results obtained
by CDEs; (d) results obtained by OURS; (e)/(i)/(m) enlarged image 01/02/03; (f)/(j)/(n) enlarged
image 01/02/03 by CED; (g)/(k)/(o) enlarged image 01/02/03 by CDEs; (h)/(l)/(p) enlarged image
01/02/03 by OURS.

4. Conclusions

In the framework of partial differential equations, we propose an image enhancement
model based on fractional time-delay regularization and diffusion tensor for images with
streamlined structures. The structural tensor is spatially regularization using nonlinear
isotropic diffusion and is temporally regularized using fractional delay regularization,
which makes the structural tensor nonlinear and stable. The proof of the existence and
uniqueness of the solution theoretically ensures the feasibility of the model. Through
numerical experiments on various streamlined images, the validity and feasibility of the
model in this paper are verified.
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