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Abstract: The Fokas system with M-truncated derivative (FS-MTD) was considered in this study. To
get analytical solutions of FS-MTD in the forms of elliptic, rational, hyperbolic, and trigonometric
functions, we employed the extend F -expansion approach and the Jacobi elliptic function method.
Since nonlinear pulse transmission in monomode optical fibers is explained by the Fokas system, the
derived solutions may be utilized to analyze a broad range of important physical processes. In order
to comprehend the impacts of MTD on the solutions, the dynamic behavior of the various generated
solutions are shown using 2D and 3D figures.
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1. Introduction

Most phenomena and models in the fields of computer science, medicine, botany,
zoology, ecology, human biology, oceanography, engineering, quantum mechanics, applied
physics, plasma physics, meteorology, applied mathematics, electricity, and fluid dynamics,
are well described by partial differential equations (PDEs). Over the last several decades,
there has been an increase in study on the robustness, stability, uniqueness and existence
and application of solutions to PDEs in many disciplines. Consequently, the exact solution
of PDEs is one of the main topics of nonlinear science. Many specific and simple methods
for getting the exact solutions to PDEs have been introduced and improved in recent
years, for example the (G′/G)-expansion approach [1,2], mapping method [3,4], Jacobi
elliptic function expansion [5], exp-function method [6], sine-cosine procedure [7], auxiliary
equation scheme [8], first-integral method [9], generalized Kudryashov approach [10],
exp(−φ(ς))-expansion method [11], etc.

In this study, we look at the FS-MTD in the following form

iMδ,β
k,t U + θ1Uxx + θ2UV = 0,

θ3Vy = θ4(|U |2)x ,
(1)

where V = V(x, y, t) and U = U (x, y, t) are complex functions, and θ1, θ2, θ3 and θ4 are
arbitrary constants. Mδ,β

k,t is the M-truncated derivative operator for δ ∈ (0, 1], and β > 0,
and will be defined in the next section. If we put δ = 1, β → 0, then we have the Fokas
system (FS):
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iUt + θ1Uxx + θ2UV = 0,
θ3Vy = θ4(|U |2)x .

(2)

Fokas [12] and Shulman [13] introduced the 2 (FS) for examining NLSE in (2 + 1) dimen-
sions. Due to the importance of FS (2), many authors have acquired the exact solutions by
employing numerous techniques, such as Hirota’s bilinear method [14], extended rational
sine-cosine and sinh-cosh methods [15], Jacobi elliptic function expansion [16], exp-function
method [17], He’s frequency formulation method, variational method, tanh-function, and
the simplified extended [18], generalized Kudryashov method [19].

Recently, there have been some studies about the obtained solutions of PDEs with
MTD, for instance the Boiti–Leon–Manna–Pempinelli equation [20], Fokas equation [21],
KdV equation [22], Kraenkel–Manna–Merle system [23], complex Ginzburg-Landau equa-
tion [24], Phi-4 equation [25], etc.

The goal of this research is to obtain the exact solutions of the FS-MTD (1). We utilize
the extended F -expansion method (EFE method) and Jacobi elliptic function method (JEF
method) to obtain the solutions of FS-MTD (1). Since the Fokas system is utilized to explain
nonlinear pulse transmission in monomode optical fibers, the attained solutions can be
utilized for the analysis of a wide variety of crucial physical process. The dynamic behavior
of the various obtained solutions are simulated in 3D and 2D in order to interpret the effects
of MTD on the solutions.

The paper has the following structure: Next, we identify MTD and describe its features.
In Section 3, we find the wave equation for the FS-MTD (1). After then, we employ two
various methods to attain the exact solutions of FS-MTD (1) in Section 4, while the impact
of MTD on the solution of FS-MTD (1) is investigated in Section 5. Finally, the conclusion
of the paper is provided.

2. M-Truncated Derivative

Many authors have presented different types of fractional derivatives. Those offered
by Riemann–Liouville, Riesz, Erdelyi, and Hadamard and Caputo [26–29], are the most
popular. Classical derivative rules, including the quotient rule, chain rule, and product
rule, cannot be applied to the huge variety of fractional derivative forms. In recent years,
Sousa et al. [30] have suggested a novel derivative known as MTD.

Definition 1. If ϕ : [0, ∞)→ R then the MTD of order δ ∈ (0, 1] is known as

Mδ,β
k,t ϕ(t) = lim

h→0

ϕ(tEk,β(ht−δ))− ϕ(t)
h

, for t > 0,

where Ek,β is known as

Ek,β(z) =
k

∑
j=0

zj

Γ(jβ + 1)
,

for β > 0, z ∈ C and Γ is a gamma function.

The next theorem describes the characteristics of MTD:

Theorem 1. If ψ and ϕ are δ-differentiable functions for δ ∈ (0, 1], β > 0, then
(1)Mδ,β

k,t (aϕ + bψ) = aMδ,β
k,t (ϕ) + bMδ,β

k,t (ψ);

(2)Mδ,β
k,t (t

ν) = ν
Γ(β+1) tν−δ;

(3)Mδ,β
k,t (ϕψ) = ϕMδ,β

k,t ψ + ψMδ,β
k,t ϕ;

(4)Mδ,β
k,t (ϕ)(t) = t1−δ

Γ(β+1)
dϕ
dt ;

(5)Mδ,β
k,t (ψ ◦ ϕ)(t) = ψ′(ϕ(t))Mδ,β

k,t ϕ(t),
where a, b, υ are real constants.
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3. Traveling Wave Equation for FS-MTD

To get the wave equation for FS-MTD (1), we utilize

with
U (x, y, t) = Φ(µ)eiφ, V(x, y, t) = Ψ(µ),

φ = φ1x + φ2y + φ3
Γ(β+1)

δ tδ and µ = µ1x + µ2y + µ3
Γ(β+1)

δ tδ,
(3)

where Φ and Ψ are real functions, and φk, µk are non-zero constants for k = 1, 2, 3. We
note that

Mδ,β
k,t U = [µ3Φ′ + iφ3Φ]eiφ,

Ux = (µ1Φ′ + iφ1Φ)eiφ, (|U |2)x = µ1(Φ2)′,

Uxx = (µ2
1Φ′′ + 2iφ1µ1Φ′ − φ2

1Φ)eiφ, Vy = µ2Ψ′. (4)

Plugging Equation (4) into Equation (1), we have, for the real part

(θ1µ2
1)Φ

′′ + (−φ3 − θ1φ2
1)Φ + θ2ΦΨ = 0, (5)

θ3µ2Ψ′ = θ4µ1(Φ2)′, (6)

and for the imaginary part
(2θ1φ1µ1 + µ3)Φ′ = 0. (7)

Setting that:
µ3 = −2θ1φ1µ1.

Then, Equation (7) vanishes. Integrating (6) once and ignoring the integral constant, we get

Ψ =
θ4µ1

θ3µ2
Φ2. (8)

Substituting Equation (8) into Equation (5), we have

Φ′′ + AΦ + BΦ3 = 0, (9)

where

A =
−φ3 − θ1φ2

1
θ1µ2

1
, and B =

θ2θ4

θ3θ1µ1µ2
.

4. Exact Solutions of FS-MTD

To solve Equation (9), two different approaches are used: the EFE method and the JEF
method. Then, the solutions to the FS-MTD (1) are derived.

4.1. EFE Method

Assuming the solution Φ of Equation (9) is:

Φ(µ) = a0 +
N

∑
k=1

(akF k(µ) +
bk

F k(µ)
), (10)

where F solves
F ′ = F 2 + v, (11)

where v is a real constant. Hence, Equation (11) has the solutions:

F (µ) =
√

v tan(
√

vµ) or F (µ) = −
√

v cot(
√

vµ), (12)
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if v > 0, or

F (µ) = −
√
−v tanh(

√
−vµ) or F (µ) = −

√
−v coth(

√
−vµ), (13)

if v < 0, or

F (µ) = −1
µ

, (14)

if v = 0.
To determine N, we balance Φ′′ with Φ3 in Equation (9) as follows:

N + 2 = 3N ⇒ N = 1.

Equation (10) becomes

Φ(µ) = a0 + a1F +
b1

F . (15)

Setting Equation (15) into Equation (9), we attain

(2a1 + Ba3
1)F 3 + (3a0a2

1)F 2 + (2va1 + 3Ba2
0a1

+3Ba2
1b1 + Aa1)F + (Ba3

0 + 6Ba0a1b1 + Aa0)

+(2vb1 + 3Ba2
0b1 + 3Ba1b2

1 + Ab1)F−1 +

+(3a0a2
1)F−2 + (2b1v2 + Bb3

1)F−3 = 0.

Comparing to zero the coefficients of every power of F :

2a1 + Ba3
1 = 0,

3a0a2
1 = 0,

2va1 + 3Ba2
0a1 + 3Ba2

1b1 + Aa1 = 0,

Ba3
0 + 6Ba0a1b1 + Aa0 = 0,

2vb1 + 3Ba2
0b1 + 3Ba1b2

1 + Ab1 = 0,

3a0b2
1 = 0,

and
2b1v2 + Bb3

1 = 0.

The following are the three families of solutions obtained by solving these equations:
First family:

a0 = 0, a1 = ±
√
−2
B

, b1 = 0, µ1 = ±

√
φ3 + θ1φ2

1
2θ1v

. (16)

Second family:

a0 = 0, a1 = ±
√
−2
B

, b1 = ±v

√
−2
B

, µ1 = ±

√
φ3 + θ1φ2

1
8θ1v

. (17)

Third family:

a0 = 0, a1 = ∓
√
−2
B

, b1 = ±v

√
−2
B

, µ1 = ±

√
φ3 + θ1φ2

1
4θ1v

. (18)

First family: Equations (8) and (9) have the following solutions:

Φ(µ) = ±

√
−2θ3θ1µ1µ2

θ2θ4
F (µ),
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and

Ψ(µ) =
−2θ1µ2

1
θ2

F 2(µ).

Consequently, by using Equation (3), the solution of FS-MTD (1) is

U (x, y, t) = ±

√
−2θ3θ1µ1µ2

θ2θ4
F (µ)eiφ and V(x, y, t) =

−2θ1µ2
1

θ2
F 2(µ). (19)

where φ = φ1x + φ2y + φ3
Γ(β+1)

δ tδ and µ = µ1x + µ2y + µ3
Γ(β+1)

δ tδ. For F (µ), there are
three different cases:

Case 1: If v > 0, then Equation (19), using (12), has the form

U (x, y, t) = ±

√
−2vθ3θ1µ1µ2

θ2θ4
tan(
√

vµ)eiφ, (20)

V(x, y, t) =
−2vθ1µ2

1
θ2

tan2(
√

vµ), (21)

and

U (x, y, t) = ∓

√
−2vθ3θ1µ1µ2

θ2θ4
cot(
√

vµ)eiφ, (22)

V(x, y, t) =
−2vθ1µ2

1
θ2

cot2(
√

vµ). (23)

Case 2: If v < 0, then Equation (19), using (13), becomes

U (x, y, t) = ∓

√
2vθ3θ1µ1µ2

θ2θ4
tanh(

√
−vµ)eiφ, (24)

V(x, y, t) =
2vθ1µ2

1
θ2

tanh2(
√
−vµ), (25)

and

U (x, y, t) = ∓

√
2vθ3θ1µ1µ2

θ2θ4
coth(

√
−vµ)eiφ, (26)

V(x, y, t) =
2vθ1µ2

1
θ2

coth2(
√
−vµ). (27)

Case 3: If v = 0, then Equation (19), using (14), takes the type

U (x, y, t) = ∓

√
−2θ3θ1µ1µ2

θ2θ4

1
µ

eiφ and V(x, y, t) =
−2θ1µ2

1
θ2

1
µ2 , (28)

where φ = φ1x + φ2y + φ3
Γ(β+1)

δ tδ and µ = µ1x + µ2y + µ3
Γ(β+1)

δ tδ.
Second family: Equations (8) and (9) have the following solutions:

Φ(µ) = ±

√
−2θ3θ1µ1µ2

θ2θ4

(
F (µ) + v

F (µ)

)
,

and

Ψ(µ) =
−2θ1µ2

1
θ2

(
F (µ) + v

F (µ)

)2
.
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Consequently, by using Equation (3), the solution of FS-MTD (1) is

U (x, y, t) = ±

√
−2θ3θ1µ1µ2

θ2θ4

(
F (µ) + v

F (µ)

)
eiφ, (29)

and

V(x, y, t) =
−2θ1µ2

1
θ2

(
F (µ) + v

F (µ)

)2
, (30)

where φ = φ1x + φ2y + φ3
Γ(β+1)

δ tδ and µ = µ1x + µ2y + µ3
Γ(β+1)

δ tδ. For F (µ), there are
three cases:

Case 1: If v > 0, then Equations (29) and (30), using (12), become

U (x, y, t) = ±

√
−2vθ3θ1µ1µ2

θ2θ4

(
tan(
√

vµ) + cot(
√

vµ)
)

eiφ, (31)

and

V(x, y, t) =
−2vθ1µ2

1
θ2

(
tan(
√

vµ) + cot(
√

vµ)
)2

. (32)

Case 2: If v < 0, then Equations (29) and (30), using (13), have the forms

U (x, y, t) = ±

√
2vθ3θ1µ1µ2

θ2θ4

(
tanh(

√
−vµ) + coth(

√
−vµ)

)
eiφ, (33)

and

V(x, y, t) =
2vθ1µ2

1
θ2

(
tanh(

√
−vµ) + coth(

√
−vµ)

)2
. (34)

Case 3: If v = 0, then Equations (29) and (30), using (14), become

U (x, y, t) = ±

√
−2θ3θ1µ1µ2

θ2θ4

(
1
µ
+ µ

)
eiφ and V(x, y, t) =

−2θ1µ2
1

θ2

(
1
µ
+ µ

)2
. (35)

Third family: Equations (8) and (9) have the following solutions:

Φ(µ) = ±

√
−2θ3θ1µ1µ2

θ2θ4

(
F (µ)− v

F (µ)

)
,

and

Ψ(µ) =
−2θ1µ2

1
θ2

(
F (µ)− v

F (µ)

)2
.

Consequently, by using Equation (3), the solution of FS-MTD (1) is

U (x, y, t) = ±

√
−2θ3θ1µ1µ2

θ2θ4

(
F (µ)− v

F (µ)

)
eiφ, (36)

and

V(x, y, t) =
−2θ1µ2

1
θ2

(
F (µ)− v

F (µ)

)2
, (37)

where φ = φ1x + φ2y + φ3
Γ(β+1)

δ tδ and µ = µ1x + µ2y + µ3
Γ(β+1)

δ tδ. For F (µ), there are
three cases:
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Case 1: If v > 0, then Equations (36) and (37), using (12), become

U (x, y, t) = ±

√
−2vθ3θ1µ1µ2

θ2θ4

(
tan(
√

vµ)− cot(
√

vµ)
)

eiφ, (38)

and

V(x, y, t) =
−2vθ1µ2

1
θ2

(
tan(
√

vµ)− cot(
√

vµ)
)2

. (39)

Case 2: If v < 0, then Equations (36) and (37), using (13), take the types

U (x, y, t) = ±

√
2vθ3θ1µ1µ2

θ2θ4

(
tanh(

√
−vµ)− coth(

√
−vµ)

)
eiφ, (40)

and

V(x, y, t) =
2vθ1µ2

1
θ2

(
tanh(

√
−vµ)− coth(

√
−vµ)

)2
. (41)

Case 3: If v = 0, then Equations (36) and (37), using (14), has the form

U (x, y, t) = ±

√
−2θ3θ1µ1µ2

θ2θ4

(
1
µ
− µ

)
eiφ and V(x, y, t) =

−2θ1µ2
1

θ2

(
1
µ
− µ

)2
. (42)

4.2. JEF Method

Assuming that the solutions of Equation (9), (with N = 1), is

Φ(µ) = a + bcn(λµ, m), (43)

where a, b, λ are unknown constants and cn(λµ, m) is Jacobi elliptic cosine function for
0 < m < 1, then differentiating Equation (43) twice, we attain

Φ′′(µ) = −(2m2 − 1)bλ2cn(λµ, m)− 2m2bλ2cn3(λµ, m), (44)

where [cn(λµ, m)]′ = −λsn(λµ, m)dn(λµ, m), [dn(λµ, m)]′ = −λm2sn(λµ, m)cn(λµ, m)
and [sn(λµ, m)]′ = λcn(λµ, m)dn(λµ, m). Since sn is Jacobi elliptic sine function and dn
is the delta amplitude function, then plugging Equations (43) and (44) into Equation (9),
we have

(Bb3 − 2m2bλ2)cn3(λµ, m) + 3Bab2cn2(λµ, m)

+[3Ba2b− (2m2 − 1)bλ2 + Ab]cn(λµ, m) + (Ba3 + aA) = 0.

Balancing the coefficient of [cn(λµ, m)]n to zero for n = 0, 1, 2, 3, we obtain

Ba3 + aA = 0,

−(2m2 − 1)bλ2 + 3Ba2b + Ab = 0,

3Bab2 = 0,

and
Bb3 − 2m2bλ2 = 0.

The solution to the above equations is

a = 0, b = ±

√
2m2 A

(2m2 − 1)B
, λ2 =

A
(2m2 − 1)

.
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Thus, Equation (9), by using (43), has the solution

Φ(µ) = ±

√
2m2 A

(2m2 − 1)B
cn(λµ, m).

Hence, the solution of FS-MTD (1) is

U (x, y, t) = ±

√
2m2 A

(2m2 − 1)B
cn
(√ A

(2m2 − 1)
µ, m

)
eiφ , (45)

V(x, y, t) =
2θ4µ1m2 A

(2m2 − 1)θ3µ2B
cn2
(√ A

(2m2 − 1)
µ, m

)
, (46)

where B
(2m2−1) > 0, φ = φ1x + φ2y+ φ3

Γ(β+1)
δ tδ and µ = µ1x + µ2y+ µ3

Γ(β+1)
δ tδ. If m→ 1,

the solution of FS-MTD (1) is

U (x, y, t) = ±
√

2A
B

sech
(√

Aµ
)

eiφ. (47)

V(x, y, t) =
2θ4µ1 A
θ3µ2B

sech2
(√

Aµ
)

, (48)

In similar way, we can replace cn in (43) by sn and dn to get the next solutions of Equation (9):

Φ(µ) = ±

√
2m2 A

(2−m2)B
dn(

A
(2−m2)

µ, m),

and

Φ(µ) = ±

√
2m2B

(m2 + 1)A
sn(

B
(m2 + 1)

µ, m),

respectively. Thus, the solutions of FS-MTD (1) are

U (x, y, t) = ±

√
2m2B

(2m2 − 1)A
dn
(√ B

(2m2 − 1)
µ, m

)
eiφ, (49)

V(x, y, t) =
2θ4µ1m2B

(2m2 − 1)θ3µ2 A
dn2
(√ B

(2m2 − 1)
µ, m

)
, (50)

for B
(2m2−1) > 0, and

U (x, y, t) = ±

√
2m2B

(m2 + 1)A
sn
(√ B

(m2 + 1)
µ, m

)
eiφ, (51)

V(x, y, t) =
2θ4µ1m2B

(m2 + 1)θ3µ2 A
sn2
(√ B

(m2 + 1)
µ, m

)
, (52)

for B > 0, respectively. If m→ 1, then the solutions (49) and (51) are

U (x, y, t) = ±
√

2B
A

csch
(√

Bµ
)

eiφ, (53)

V(x, y, t) =
2θ4µ1B
θ3µ2 A

csch2
(√

Bµ
)

, (54)
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and for B > 0

U (x, y, t) = ±
√

B
A

tanh
(√B

2
µ
)

eiφ , (55)

V(x, y, t) =
θ4µ1B
θ3µ2 A

tanh2
(√B

2
µ
)

, (56)

where φ = φ1x + φ2y + φ3
Γ(β+1)

δ tδ and µ = µ1x + µ2y + µ3
Γ(β+1)

δ tδ.

5. Effects of MTD on the Solutions

Here, we discuss the effects of MTD on the exact solution of the FS (1). To demonstrate
the behavior of certain found solutions, several diagrams are presented, such as (24), (25),
and (45)–(48). Let us fix the parameters θ1 = θ2 = θ3 = θ4 = 1, µ2 = −1, µ3 = −2,
y = 0, x ∈ [0, 4], and t ∈ [0, 3] to simulate these figures.

Now we conclude from Figures 1–6 that the surface shifts to the right when the order
of M-truncated derivatives increases.

(a) δ = 1, β = 0 (b) δ = 0.7, β = 0.8

(c) δ = 0.5, β = 0.8 (d) δ = 0.5, 0.7, 1

Figure 1. (a–c) display 3D profile of solution |U (x, y, t)| in Equation (24) with µ1 = 1 and
δ = 0.5, 0.7, 1. (d) shows 2D-style of Equation (24) with different δ.

(a) δ = 1, β = 0 (b) δ = 0.7, β = 0.8

Figure 2. Cont.
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(c) δ = 0.5, β = 0.8 (d) δ = 0.5, 0.7, 1

Figure 2. (a–c) display 3D profile of solution |V(x, y, t)| in Equation (25) with µ1 = 1 and
δ = 0.5, 0.7, 1. (d) shows 2D profile of Equation (25) with different δ.

(a) δ = 1, β = 0 (b) δ = 0.7, β = 0.8

(c) δ = 0.5, β = 0.8 (d) δ = 0.5, 0.7, 1

Figure 3. (a–c) display 3D profile of solution |U (x, y, t)| in Equation (45) with µ1 = 1 and
δ = 0.5, 0.7, 1. (d) shows 2D profile of Equation (45) with different δ.

(a) δ = 1, β = 0 (b) δ = 0.7, β = 0.8

Figure 4. Cont.
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(c) δ = 0.5, β = 0.8 (d) δ = 0.5, 0.7, 1

Figure 4. (a–c) display 3D profile of solution |V(x, y, t)| in Equation (46) with µ1 = 1 and
δ = 0.5, 0.7, 1. (d) shows 2D profile of Equation (46) with different δ.

(a) δ = 1, β = 0 (b) δ = 0.7, β = 0.8

(c) δ = 0.5, β = 0.8 (d) δ = 0.5, 0.7, 1

Figure 5. (a–c) display 3D profile of solution |U (x, y, t)| in Equation (47) with µ1 = 2 and
δ = 0.5, 0.7, 1. (d) shows 2D profile of Equation (47) with different δ.

(a) δ = 1, β = 0 (b) δ = 0.7, β = 0.8

Figure 6. Cont.
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(c) δ = 0.5, β = 0.8 (d) δ = 0.5, 0.7, 1

Figure 6. (a–c) display 3D profile of solution |V(x, y, t)| in Equation (48) with µ1 = 2 and
δ = 0.5, 0.7, 1. (d) shows 2D profile of Equation (48) with different δ.

6. Conclusions

In this study, the Fokas system with M-truncated derivative (FS-MTD) is considered.
We used extend F -expansion method and Jacobi elliptic function method to get the exact
solutions of FS-MTD (1) in the form of rational, elliptic, hyperbolic, and trigonometric
functions. Furthermore, we can use various other methods, such as the exp(−ϕ)-expansion
method, improved tan( φ(ρ)

2 )-expansion method, Hirota bilinear method, complex hyperbolic-
function method, Painleve approach, extended trial equation, Weierstrass elliptic function
expansion method, etc. to acquire some different solutions.

Since the Fokas system is utilized to explain nonlinear pulse transmission in monomode
optical fibers, the acquired solutions can be applied to the analysis of a wide variety of
crucial physical phenomena. The dynamic performances of the various obtained solu-
tions are depicted using 3D and 2D curves in order to interpret the effects of MTD on the
solutions. We deduced that the surface shifts to the left when the order of M-truncated
derivatives decreases.
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