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Abstract: In this article, we investigate a class of fractional Choquard equation with critical Sobolev
exponent. By exploiting a monotonicity technique and global compactness lemma, the existence of
ground state solutions for this equation is obtained. In addition, we demonstrate the existence of
ground state solutions for the corresponding limit problem.
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1. Introduction

In this paper, we study the following fractional Choquard equation

(−∆)αu + K(x)u = (Iβ ∗ G(u))g(u) + |u|2∗α−2u, x ∈ R3, (1)

where α ∈ ( 3
4 , 1), β ∈ (2α, 3), 2∗α = 6

3−2α . (−∆)α is defined as

(−∆)αu(x) := CαP.V.
∫
R3

u(x)− u(y)
|x− y|3+2α

dy, x ∈ R3,

where Cα =
(∫

R3
1−cosζ1
|ζ|3+2α dζ

)−1
and P.V. is an abbreviation for Cauchy principal value. The

Riesz potential Iβ : R3 \ {0} → R is defined by

Iβ(x) :=
Γ( 3−β

2 )

Γ( β
2 )π

3
2 2β|x|3−β

, x ∈ R3\{0}.

Let us state some hypothesises on K and g:

(K1) K ∈ C1(R3) ∩ L∞(R3) and αK(x) + (∇K(x), x) > 0 for any x ∈ R3;
(K2) K(x) 6 lim inf

|y|→+∞
K(y) = K∞ ∈ R+ for all x ∈ R3 and the inequality is strict in a subset

of positive Lebesgue measure;
(K3) there is a positive constant a0 such that

a0 = inf
u∈Hα

K(R3)\{0}

∫
R3

(
|(−∆)

α
2 u|2 + K(x)|u|2

)
dx∫

R3 |u|2dx
> 0;

(H1) g ∈ C(R,R), G(τ) =
∫ τ

0 g(u)du ≥ 0 for all τ ∈ R and there exits C0 > 0 and

1 + β
3 < q < 2∗β,α such that for every τ ∈ R,

|g(τ)| 6 C0(|τ|
β
3 + |τ|q−1),
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where 2∗β,α = β+3
3−2α ;

(H2) lim
|τ|→0

g(τ)

τ
β
3

= lim
|τ|→+∞

g(τ)

τ
2∗

β,α−1 = 0;

(H3) [4αg(τ)τ − (3 + β)G(τ)]/τ|τ|(β+6−4α)/4α is non-decreasing on both (0,+∞) and
(−∞, 0);

(H4) there exist ν > 0 and p ∈ (2, 2∗β,α) such that g(τ) > ντp−1 for any τ > 0.

When α = 1, G(u) = |u|p, K(x) ≡ 1, Equation (1) is known as following
Choquard equation

−∆u + u = (Iβ ∗ |u|p)|u|p−2u + f (u), u ∈ H1(R3). (2)

For the case β = 2, p = 2 and f (u) = 0, Equation (2) is called the Choquard-
Pekar equation. It was first proposed by Pekar [1]. Later, Choquard rediscovered it as
an approximation of Hartree-Fock’s theory of single-component plasma [2]. For more
physical interpretation, one can refer to Penrose [3], Diosi [4], Lewin-Nam-Rougerie [5,6]
and Jones [7,8]. Moroz-Van Schaftingen [9] obtained a solution to (2) when 1 + β

3 <

p < 3 + β, where 3 + β and 1 + β
3 are the upper and lower critical exponents. Gao-

Yang [10] investigated the existence of solution for the upper critical exponent case. Yao-
Chen-Radulescu-Sun [11] studied the existence of results for the double critical case. Du-
Gao-Yang [12] and Yang-Radulescu-Zhou [13] considered the existence and properties of
solutions with Stein-Weiss type nonlinearities. Moroz-Van Schaftingen [14] investigated
the semi-classical states for p > 2, and set the rest case p < 2 for open problem. Cingolani-
Tanaka [15] given a pisitive answer to the open problem. Furthermore, Su-Liu [16,17]
extended the semi-classical results to the upper critical case. Afterwards, these results were
extended to the more general function G or the more general potential K, see [18–28].

Recently, researchers are increasingly concerned the existence results of fractional
Choquard equation

(−∆)αu + K(x)u = (Iβ ∗ |u|p)|u|p−2u, in R3,

where 3+β
3 < p < 3+β

3−2α . For instance, Shen-Gao-Yang [29] established the existence of non-
negative ground state solution by supposing that the nonlinearities satisfied the general
Berestycki-Lions type conditions. Su et al. [30] studied the existence of results for the
double critical case. Li, Zhang, Wang and Teng [31] considered

(−∆)αu + K(x)u = [|x|−β ∗ G(u)]g(u) + λ[|x|−β ∗ |u|p]p|u|p−2u, in RN , (3)

where 0 < α < 1, N > 2α, 0 < β < 2α, and p ≥ 2∗β,α. They obtained that there existed ground
state solutions to Equation (3) with critical or supercritical growth by the variational methods.

We notice that the work in the above literature focuses on the existence of ground
state solutions to fractional Choquard equations with a Hardy-Littlewood-Sobolev critical
exponent. We determine to investigate a class of fractional order Choquard equations
with a critical local term. Inspired by the above work, we first deal with the case of a
constant potential. Specifically, by taking a minimizing sequence from a Nehari-Pohožaev
manifold, we obtain a minimum value and prove that the minimum value is a critical
point. Therefore, we prove the existence of the Nehari-Pohožaev type ground state solution
for the fractional Choquard equation with a constant potential. On this basis, we use
a monotonicity technique and a global compactness lemma to obtain the existence of a
Nehari-Pohožaev type ground state solution to Equation (1). As we’ve seen there is nearly
not any result for the existence of nonnegative least energy solutions for the fractional
Choquard Equation (1) with critical growth.

Therefore, Let’s first study the limit problem

(−∆)αu + K∞u = (Iβ ∗ G(u))g(u) + |u|2∗α−2u, x ∈ R3. (4)
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We obtain the following result.

Theorem 1. Assume that α ∈ ( 3
4 , 1), β ∈ (2α, 3), (H1)–(H4) hold.

(i) If p ∈ (2, 2∗α − 1), there exists ν1 > 0 such that for ν > ν1, Equation (4) has a ground
state solution.

(ii) If p ∈ (2∗α − 1, 2∗β,α), for any ν > 0, Equation (4) has a ground state solution.

Then, we can obtain the next main result.

Theorem 2. Assume that α ∈ ( 3
4 , 1), β ∈ (2α, 3), (K1)–(K3) and (H1)–(H4) hold.

(i) If p ∈ (2, 2∗α − 1), there exists ν1 > 0 such that for ν > ν1, Equation (1) has a ground
state solution.

(ii) If p ∈ (2∗α − 1, 2∗β,α), for any ν > 0, Equation (1) has a ground state solution.

Remark 1. We will use a global compactness lemma, Jeanjean’s monotonicity trick, and a general
minimax principle to prove the main results. There are some troubles in proving the main theorems.
The first trouble is that f doesn’t satisfy Ambrosetti-Rabinowtiz condition, we can’t use the Nehari
manifold to obtain the ground state solution of Equation (1). Moreover, It is difficult to acquire the
boundedness of (PS) sequence. To conquer it, we shall use Jeanjean’s monotonicity technique [32]
and establish the Pohožaev identity. The second problem is the lack of the compactness induced by
the critical term. We will use some new estimates to obtain a global compactness lemma to overcome
this difficulty. Because of the fractional Laplace operator and convolutional nonlinearity, these
estimates are complex. Moreover, the potential K(x) is not a constant, we consider the limit problem
of Equation (1).

The rest of this paper is organized as follows. In Section 2, we introduce some
preliminaries results. In Section 3, we investigate the limit problem. Section 4 is devoted to
the existence of ground state solutions to Equation (1). Section 5 is a brief conclusion of
this paper.

2. Preliminaries

The fractional Sobolev space Dα,2(R3) is defined by

Dα,2(R3) :=

{
u ∈ L2∗α(R3) :

|u(x)− u(y)|
|x− y| 3+2α

2
∈ L2

(
R3 ×R3

)}

with the norm

‖u‖Dα,2(R3) :=
(∫

R3
|(−∆)

α
2 u|2dx

) 1
2
.

It follows from Propositions 3.4 and 3.6 in [33] that

∫
R3

∣∣∣(−∆)
α
2 u
∣∣∣2dx =

1
C(α)

∫
R3

∫
R3

|u(x)− u(y)|2
|x− y|3+2α

dxdy.

It is well known that the embedding Dα,2(R3) ↪→ L2∗α(R3) is continuous.The constant
Sα is defined as

Sα = inf
u∈Dα,2(R3)\{0}

∫
R3 |(−∆)

α
2 u|2dx

(
∫
R3 |u(x)|2∗α dx)

2
2∗α

. (5)

The fractional Sobolev space Hα(R3) is defined by

Hα(R3) :=

{
u ∈ L2(R3) :

|u(x)− u(y)|
|x− y| 3+2α

2
∈ L2(R3 ×R3)

}
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endowed with the norm

‖u‖Hα(R3) =

[∫
R3

(
|(−∆)

α
2 u|2 + u2

)
dx
] 1

2
.

Define the work space of Equation (1) by

Hα
K(R3) :=

{
u ∈ Hα(R3) :

∫
R3

K(x)|u|2dx < +∞
}

,

with the inner product

〈u, v〉 :=
∫
R3
(−∆)

α
2 u(−∆)

α
2 vdx +

∫
R3

K(x)uvdx,

and the norm

‖u‖Hα
K(R3) :=

(∫
R3
|(−∆)

α
2 u|2dx +

∫
R3

K(x)u2dx
) 1

2
.

From (K2)–(K3), the norms ‖ · ‖Hα(R3) and ‖u‖Hα
K(R3) are equivalent.

From (H1), Hardy-Littlewood-Sobolev inequality [34] and Sobolev embedding theo-
rem, we can conclude that∣∣∣∣∫R3

(Iβ ∗ G(u))G(u)dx
∣∣∣∣ ≤ C‖G(u)‖2

L
6

3+β (R3)

≤ C

[∫(
|u|

3+β
3 + |u|q

) 6
3+β

] 3+β
3

≤ C

(
‖u‖

2(3+β)
3

L2(R3)
+ ‖u‖2q

L
6q

3+β (R3)

)
,

(6)

and ∣∣∣∣∫R3
(Iβ ∗ G(u))g(u)vdx

∣∣∣∣
≤ C(β)

(∫
R3
|G(u)|

6
3+β dx

) 3+β
6
(∫

R3
|g(u)v|

6
3+β dx

) 3+β
6

≤ C

(
‖u‖

3+β
3

L2(R3)
+ ‖u‖q

L
6q

3+β (R3)

)(
‖u‖

β
3
L2(R3)

‖v‖L2(R3) + ‖u‖
q−1

L
6q

3+β (R3)

‖v‖
L

6q
3+β (R3)

)
.

(7)

Hence, the energy functional E : Hα
K(R3)→ R associated with Equation (1)

E(u) =
1
2

∫
R3
(|(−∆)

α
2 u|2 + K(x)u2)dx− 1

2

∫
R3
(Iβ ∗ G(u))G(u)dx− 1

2∗α

∫
R3
|u|2∗α dx

is well defined on Hα
K(R3) and E ∈ C1(Hα

K(R3),R). Moreover, for any v ∈ Hα
K(R3),

〈E′(u), v〉 =
∫
R3

[
(−∆)

α
2 u(−∆)

α
2 v + K(x)uv− (Iβ ∗ G(u))g(u)v− |u|2∗α−1uv

]
dx.

Similar to Proposition 2.10 in [35], we get the Pohožaev type identity.
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Lemma 1. Assume that (K1)–(K2), (H1) hold, and u ∈ Hα
K(R3) is a solution to Equation (1).

Then the Pohožaev identity holds true

3− 2α

2
‖u‖2

Dα,2(R3) +
3
2

∫
R3

K(x)u2dx +
1
2

∫
R3
(∇K(x), x)u2dx

=
3 + β

2

∫
R3
(Iβ ∗ G(u))G(u)dx +

3
2∗α

∫
R3
|u|2∗α dx.

Define the Nehari-Pohoz̆aev manifold by

Π := {u ∈ Hα
K(R3) \ {0} : J(u) := 2α〈E′(u), u〉 − L(u) = 0},

where

L(u) :=
3− 2α

2
‖u‖2

Dα,2(R3) +
3
2

∫
R3

K(x)u2dx +
1
2

∫
R3
(∇K(x), x)u2dx

− 3 + β

2

∫
R3
(Iβ ∗ G(u))G(u)dx− 3

2∗α

∫
R3
|u|2∗α dx

and

J(u) :=
6α− 3

2
‖u‖2

Dα,2(R3) +
1
2

∫
R3
[(4α− 3)K(x)− (∇K(x), x)]u2dx

+
1
2

{∫
R3
(Iβ ∗ G(u))[(3 + β)G(u)− 4αg(u)u]dx− (6α− 3)

∫
R3
|u|2∗α dx

}
.

By combining Lemma 2.2 in [10] and [30], we are able to get the next Brezis-Lieb
type lemma.

Lemma 2. If un ⇀ u in Hα
K(R3) with α ∈ ( 3

4 , 1) and un → u a.e. in R3, then

E(un) = E(u) + E(un − u) + o(1), J(un) = J(u) + J(un − u) + o(1),

and
E′(un) = E′(u) + E′(un − u) + o(1),

and
〈E′(un), un〉 = 〈E′(u), u〉+ 〈E′(un − u), un − u〉+ o(1).

At the end of this section, we set up some crucial inequalities.

Lemma 3. Assume that (H1) and (H3) hold. Then for all ϑ > 0 and τ ∈ R,

f (ϑ, τ) :=
3

ϑ
3+β

2

G(ϑ2ατ) +
(

1− ϑ
3
2

)
[4αg(τ)τ − (3 + β)G(τ)]− 3G(τ) ≥ 0.

Proof. Clearly, f (ϑ, 0) ≥ 0 for ϑ > 0. From (H3), for τ 6= 0, we obtain

d
dϑ

f (ϑ, τ)

=
3ϑ

1
2 |τ|

β+6
4α

2

[
4αg(ϑ2ατ)ϑ2ατ − (3 + β)G(ϑ2ατ)

|ϑ2ατ|
β+6
4α

− 4αg(τ)τ − (3 + β)G(τ)

|τ|
β+6
4α

]
{
≥ 0, ϑ ≥ 1
< 0, 0 < ϑ < 1,

which implies that f (ϑ, τ) ≥ f (1, τ) = 0 for all ϑ ∈ (0,+∞) and τ ∈ (−∞, 0)∪ (0,+∞).
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Lemma 4. Assume that α ∈ ( 3
4 , 1), (H1)–(H3) hold. Then

G(ϑ)

ϑ|ϑ|(8α+β−6)/4α
is nondecreasing on both (−∞, 0) and (0,+∞).

Proof. Together with (H2), Lemma 3 and α > 3
4 , we obtain

lim
ϑ→0

f (ϑ, τ) = 4αg(τ)τ − (6 + β)G(τ) ≥ 0. (8)

It follows from (8) that

d
dϑ

(
G(ϑ)

ϑ|ϑ|(8α+β−6)/4α

)
=

1
4α|ϑ|(16α+β−6)/4α

[4αg(ϑ)ϑ− (12α + β− 6)G(ϑ)] ≥ 0.

Lemma 5. Assume that (H1)–(H3) hold. Then

k(ϑ, v) :=
∫
R3

{
6α− 3
ϑ3+β

(Iβ ∗ G(ϑ2αv))G(ϑ2αv)

+ (1− ϑ6α−3)(Iβ ∗ G(v))[4αg(v)v− (3 + β)G(v)]− (6α− 3)(Iβ ∗ G(v))G(v)
}

dx

≥ 0, ∀ϑ > 0, v ∈ Hα
K(R3).

Proof. It follows from (H1) and Lemma 4 that

Iβ ∗
(

G(ϑ2αv)
|ϑ|(12α+β−6)/2

)
− Iβ ∗ G(v)

{
≥ 0, ϑ ≥ 1,
≤ 0, 0 < ϑ < 1.

(9)

From (H1), (H3) and (9), we obtain

d
dϑ

k(ϑ, v)

=
∫
R3

{
(6α− 3)4α

ϑ3+β
(Iβ ∗ G(ϑ2αv))g(ϑ2αv)ϑ2α−1v

− (6α− 3)(3 + β)

ϑβ+4 (Iβ ∗ G(ϑ2αu))G(ϑ2αv)

− (6α− 3)ϑ6α−4(Iβ ∗ G(v))[4αg(v)v− (3 + β)G(v)]
}

dx

= (6α− 3)ϑ6α−4
∫
R3
|v|(β+6)/4α

{
Iβ ∗

(
G(ϑ2αv)

|ϑ|(12α+β−6)/2

)
4αg(ϑ2αv)ϑ2αv− (3 + β)G(ϑ2αv)

|ϑ2αv|(β+6)/4α

− (Iβ ∗ G(v))
4αg(v)v− (3 + β)G(v)

|v|(β+6)/4α

}
dx{

≥ 0, ϑ ≥ 1,
≤ 0, 0 < ϑ < 1,

which yields k(ϑ, v) ≥ k(1, v) = 0 for all ϑ > 0 and v ∈ Hα
K(R3).
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3. The Limit Problem

Noting that lim
|x|→∞

K(x) = K∞, we consider the limit problem (4), whose energy func-

tional is defined by

E∞(u) =
1
2
‖u‖2

Dα,2(R3) +
1
2

K∞‖u‖2
L2(R3)

− 1
2

∫
R3
(Iβ ∗ G(u))G(u)dx− 1

2∗α

∫
R3
|u|2∗α dx.

(10)

By Lemma 1, if u is the critical point of E∞ in Hα
K(R3), then it satisfies the

Pohožaev identity

L∞(u) :=
3− 2α

2
‖u‖2

Dα,2(R3) +
3
2

K∞‖u‖2
L2(R3) −

3 + β

2

∫
R3
(Iβ ∗ G(u))G(u)dx− 3

2∗α

∫
R3
|u|2∗α dx

= 0.

Set uϑ = ϑ2αu(ϑx). By direct calculation, we deduce that

h(ϑ) = E∞(uϑ) =
ϑ6α−3

2
‖u‖2

Dα,2(R3) +
ϑ4α−3

2
K∞‖u‖2

L2(R3)

− 1
2ϑ3+β

∫
R3
(Iβ ∗ G(ϑ2αu))G(ϑ2αu)dx− ϑ

3(6α−3)
3−2α

2∗α

∫
R3
|u|2∗α dx,

(11)

which implies that E∞(uϑ)→ −∞ as ϑ→ +∞. As a consequence, we obtain the next lemma.

Lemma 6. E∞ is not bounded from below.

Define Π∞ = {u ∈ Hα
K(R3)\{0} : J∞(u) = 0}, where

J∞(u) = 2α〈E′∞(u), u〉 − L∞(u)

=
6α− 3

2
‖u‖2

Dα,2(R3) +
4α− 3

2
K∞‖u‖2

L2(R3) −
6α− 3

2

∫
R3
|u|2∗α dx

+
3 + β

2

∫
R3
(Iβ ∗ G(u))G(u)dx− 2α

∫
R3
(Iβ ∗ G(u))g(u)udx

=
dE∞(uϑ)

dϑ
|ϑ=1.

(12)

Set

ξ(ϑ) :=
1− ϑ4α−3

2
− (4α− 3)(1− ϑ6α−3)

2(6α− 3)
, ζ(ϑ) :=

1− ϑ6α−3

2
− 1− ϑ

3(6α−3)
3−2α

2∗α
, ∀ϑ > 0.

Clearly,
ξ(ϑ) > 0, ζ(ϑ) > 0, ϑ ∈ (0, 1) ∪ (1,+∞). (13)

Lemma 7. For any u ∈ Hα
K(R3) and ϑ > 0,

E∞(u) ≥ E∞(uϑ) +
1− ϑ6α−3

6α− 3
J∞(u) + ξ(ϑ)

∫
R3

K∞u2dx + ζ(ϑ)
∫
R3
|u|2∗α dx.
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Proof. From (10)–(13) and Lemma 5, we get that

E∞(u)− E∞(uϑ)−
1− ϑ6α−3

6α− 3
J∞(u)

= ξ(ϑ)
∫
R3

K∞u2dx +
1

2(6α− 3)

∫
R3

{
6α− 3
ϑ3+β

(Iβ ∗ G(ϑ2αu))G(ϑ2αu)

+ (1− ϑ6α−3)(Iβ ∗ G(u))[4αg(u)u− (3 + β)G(u)]− (6α− 3)(Iβ ∗ G(u))G(u)
}

dx

+ ζ(ϑ)
∫
R3
|u|2∗α dx

≥ 0,

which comes to the conclusions.

Lemma 8. For all u ∈ Hα
K(R3)\{0}, there exists a unique ϑ0 > 0 such that uϑ0 ∈ Π∞. Moreover,

E∞(uϑ0) = max
ϑ≥0

E∞(uϑ).

Proof. Set u ∈ Hα
K(R3)\{0} be fixed, one has h′(ϑ) = 0 is equivalent to uϑ ∈ Π∞, for ϑ > 0.

By (K2), (H2), (6) and q > 1 + β
3 > 1 + β

4α , we obtain limϑ→0+ h(ϑ) = 0, for ϑ > 0 small,
h(ϑ) > 0 and for ϑ large, h(ϑ) < 0. Hence, maxϑ>0 h(ϑ) is attained at ϑ = ϑ0(u) > 0 such
that h′(ϑ0) = 0 and uϑ0 ∈ Π∞.

Next, we show ϑ0 is unique for any u ∈ Hα
K(R3)\{0}. Suppose on the contrary that

there exist ϑ1, ϑ2 > 0 such that h′(ϑ1) = h′(ϑ1) = 0. It follows from J∞(uϑ1) = J∞(uϑ2) = 0
and Lemma 7 that

E∞(ϑ2α
1 u(ϑ1x))

≥ E∞(ϑ2α
2 u(ϑ2x)) +

ϑ6s−3
1 − ϑ6α−3

2

(6α− 3)ϑ6α−3
1

J∞(ϑ2α
1 u(ϑ1x))

+ ξ(ϑ2/ϑ1)ϑ
4α−3
1

∫
R3

K∞u2dx + ζ(ϑ2/ϑ1)ϑ
(6α−3)3

3−2α
1

∫
R3
|u|2∗α dx

≥ E∞(ϑ2α
2 u(ϑ2x)) + ξ(ϑ2/ϑ1)ϑ

4s−3
1

∫
R3

K∞u2dx + ζ(ϑ2/ϑ1)ϑ
(6α−3)3

3−2α
1

∫
R3
|u|2∗α dx

(14)

and

E∞(ϑ2α
2 u(ϑ2x))

≥ E∞(ϑ2α
1 u(ϑ1x)) +

ϑ6α−3
2 − ϑ6α−3

1

(6α− 3)ϑ6α−3
2

J∞(ϑ2α
2 u(ϑ2x))

+ ξ(ϑ1/ϑ2)ϑ
4α−3
2

∫
R3

K∞u2dx + ζ(ϑ1/ϑ2)ϑ
(6α−3)3

3−2α
2

∫
R3
|u|2∗α dx

≥ E∞(ϑ2α
1 u(ϑ1x)) + ξ(ϑ1/ϑ2)ϑ

4α−3
2

∫
R3

K∞u2dx + ζ(ϑ1/ϑ2)ϑ
(6α−3)3

3−2α
2

∫
R3
|u|2∗α dx.

(15)

Therefore, from (14) and (15), we obtain ϑ1 = ϑ2. That is, ϑ0 is unique for any
u ∈ Hα

K(R3)\{0}.

Lemma 9. The manifold Π∞ satisfies the following properties:

(1) there exists σ > 0 such that ‖u‖Hα
K(R3) ≥ σ, ∀u ∈ Π∞.

(2) c∞ = infu∈Π∞ E∞(u) > 0.
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Proof. (1) By (6)–(7), we have

4α− 3
2
‖u‖2

Hα
K(R3) ≤

6α− 3
2
‖u‖2

Dα,2(R3) +
4α− 3

2

∫
R3

K∞u2dx

=
1
2

∫
R3
(Iβ ∗ G(u))[4αg(u)u− (3 + β)G(u)]dx +

6α− 3
2

∫
R3
|u|2∗α dx

≤ C(‖u‖2+ 2β
3

Hα
K(R3)

+ ‖u‖2q
Hα

K(R3)
+ ‖u‖2∗α

Hα
K(R3)

),

which implies
‖u‖Hα

K(R3) ≥ σ, ∀u ∈ Π∞. (16)

(2) Let {un} ⊂ Π∞ be such that E∞(un)→ c∞. There exist two possible scenarios:

(i) infn∈N ‖un‖L2(R3) > 0, or
(ii) infn∈N ‖un‖L2(R3) = 0.

Case (i) infn∈N ‖un‖L2(R3) = σ1 > 0. It follows from (8), (10) and (12) that

c∞ = E∞(un) = E∞(un)−
1

6s− 3
J∞(un)

=
α

6α− 3

∫
R3

K∞u2
ndx +

(
1
2
− 1

2∗α

) ∫
R3
|un|2

∗
α dx

+
1

2(6α− 3)

∫
R3
(Iβ ∗ G(un))[4αg(un)un − (6α + µ)G(un)]dx

≥ αK∞

6α− 3
σ2

1 .

(17)

Case (ii) infn∈N ‖un‖L2(R3) = 0. According to (16), passing to a sub-sequence, we obtain

‖un‖L2(R3) → 0, ‖un‖Dα,2(R3) ≥
σ

2
. (18)

It follows from (H1)–(H2) that for any ε > 0, there exists Cε > 0 such that

|G(τ)| ≤ Cε|τ|1+
β
3 + ε|τ|2

∗
β,α , ∀τ ∈ R. (19)

From (5), (6) and (19), we deduce that∫
R3
(Iβ ∗ G(u))G(u) ≤ CCε‖u‖

2+ 2β
3

L2(R3)
+ CεS−

2∗α
2

α ‖u‖
2∗α(3+β)

3
Dα,2(R3)

. (20)

Let ϑn =

[
(2∗α)

3−2α
2α S

3
2α
α ‖un‖−2

Dα,2(R3)

] 1
6α−3

. Then, due to (18), {ϑn} is bounded. Applying

Lemma 7, (11), (18) and (20), we deduce that

c∞ + on(1) = E∞(un) ≥ E∞((un)ϑn )

=
ϑ6α−3

n
2
‖un‖2

Dα,2(R3)
+

ϑ4α−3
n
2

∫
R3

K∞u2
ndx

− 1

2ϑ
3+β
n

∫
R3
(Iβ ∗ G(ϑ2α

n u))G(ϑ2α
n u)dx− ϑ

3(6α−3)
3−2α

n

2∗α

∫
R3
|un|2

∗
α dx

≥ ϑ6α−3
n
2
‖un‖2

Dα,2(R3)
− CCε

(
ϑ4α−3

n ‖un‖2
L2(R3)

) 3+β
3

− CεS
− 2∗α

2
α

(
ϑ6α−3

n ‖un‖2
Dα,2(R3)

) 3+β
3−2α − S

− 2∗α
2

α

2∗α

(
ϑ6α−3

n ‖un‖2
Dα,2(R3)

) 3
3−2α

=
ϑ6s−3

n ‖un‖2
Dα,2(R3)

4

2− S
− 2∗α

2
α

2∗α

(
ϑ6α−3

n ‖un‖2
Dα,2(R3)

) 2α
3−2α

+ on(1)

=
1
4
(2∗α)

3−2α
2α S

3
2α
α + on(1).
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It follows from Case (i) and Case (ii) that c∞ = infu∈Π∞ E∞(u) > 0.

By using Lemmas 8 and 9, we can find the next result.

Lemma 10. The following equality holds

c∞ = c̄∞ := inf
u 6=0

max
ϑ>0

E∞(uϑ).

We shall use Proposition 2.8 (the general mini-max principle) in [36] to obtain a
Cerami sequence for the functional E∞ with J∞(un) → 0, where E∞, J∞(un) are given in
(10) and (12), respectively.

Lemma 11. There exists a sequence {un} ⊂ Hα
K(R3) such that

E∞(un)→ č∞ > 0, ‖E′∞‖H−α
K (R3)(1 + ‖un‖Hα

K(R3))→ 0 and J∞(un)→ 0, (21)

where

č∞ := inf
µ∈Γ

max
τ∈[0,1]

E∞(µ(τ)), Γ :=
{

µ ∈ C([0, 1], Hα
K(R3)) : µ(0) = 0, E∞(µ(1)) < 0

}
.

Proof. For u ∈ Hα
K(R3)\{0}, By (H2), one has E∞(τu)→ −∞ as τ → +∞. By the standard

arguments, we have Γ 6= ∅ and č∞ < ∞. Furthermore, it is easy to check that there exist
σ0, δ0 > 0 such that E∞(u) ≥ 0 for all u with ‖u‖Hα

K(R3) ≤ σ0 and E∞(u) ≥ δ0 for all u with
‖u‖Hα

K(R3) = σ0. Together with the definition of Γ, we obtain ‖µ(1)‖Hα
K(R3) > σ0. From the

continuity of µ(τ) and the intermediate value theorem, there exists τµ ∈ (0, 1) such that
‖µ(τµ)‖Hα

K(R3) = σ0. Hence, we obtain

max
τ∈[0,1]

E∞(µ(τ)) ≥ E∞(µ(τµ)) ≥ δ0 > 0,

which implies
∞ > č∞ = inf

µ∈Γ
max

τ∈[0,1]
E∞(µ(τ)) ≥ δ0 > 0.

Define the continuous map

η : R× Hα
K(R3)→ Hα

K(R3), η(τ, u)(x) = e2ατu(eτx), for τ ∈ R, u ∈ Hα
K(R3), x ∈ R3,

where R× Hα
K(R3) is the Banach space with the product norm ‖(τ, u)‖R×Hα

K(R3) := (|τ|2 +
‖u‖2

Hα
K(R3)

)
1
2 . We define the following auxiliary functional:

Ẽ∞(τ, u) = E∞(η(τ, u))

=
1
2

∫
R3
(|(−∆)

α
2 η(τ, u)|2 + K∞|η(τ, u)|2)dx

− 1
2

∫
R3
(Iβ ∗ G(η(τ, u)))G(η(τ, u))dx− 1

2∗α

∫
R3
|η(τ, u)|2∗α dx

=
e(6α−3)τ

2
‖u‖2

Dα,2(R3) +
e(4α−3)τ

2
K∞‖u‖2

L2(R3)

− e−(3+β)τ

2

∫
R3
(Iβ ∗ G(e2ατu))G(e2ατu)dx− e

2∗α(6α−3)
2 τ

2∗α
‖u‖2∗α

L2∗α (R3)
.

Moreover, by direct calculations, we obtain Ẽ∞ ∈ C1(R× Hα
K(R3),R), and

∂τ Ẽ∞(τ, u) = J∞(η(τ, u)), ∂uẼ∞(τ, u)w = E′∞(η(τ, u))η(τ, w)
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for all τ ∈ R and u, w ∈ Hα
K(R3). We define the mini-max value c̃∞ for Ẽ by

c̃∞ = inf
µ̃∈Γ̃

max
τ∈[0,1]

Ẽ∞(µ̃(τ)),

where Γ̃ = {µ̃ ∈ C([0, 1],R× Hα
K(R3)) : µ̃(0) = (0, 0), Ẽ∞(µ̃(1)) < 0}. Since Γ = {η ◦ µ̃ :

µ̃ ∈ Γ̃}, we deduce that č∞ = c̃∞. By the definition of č∞, there exists µn ∈ Γ such that for
any n ∈ N,

max
τ∈[0,1]

Ẽ∞(0, µn(τ)) = max
τ∈[0,1]

E∞(µn(τ)) ≤ č∞ +
1
n2 .

Applying Proposition 2.8 (the general mini-max principle) in [36] to Ẽ∞, setting
D = [0, 1], D0 = {0, 1}, B = R × Hα

K(R3), σ = 1
n2 , δ = 1

n and µ̃n(τ) = (0, µn(τ)),
we conclude that there exist (τn, un) ∈ R× Hα

K(R3) such that

Ẽ∞(τn, un)→ č∞,

and
‖Ẽ′∞(τn, un)‖B′(1 + ‖(τn, un)‖B)→ 0, (22)

and
dist((τn, un), {0} × µn([0, 1]))→ 0, (23)

as n→ ∞. Thus, (23) implies τn → 0. It is easy to see that for all (t, w) ∈ R× Hα
K(R3),

〈Ẽ′∞(τn, un), (t, w)〉 = 〈E′∞(η(τn, un)), η(τn, w)〉+ J∞(η(τn, un))t. (24)

Set vn = η(τn, un). If we take t = 1 and w = 0 in (24), we obtain J∞(vn) → 0 as
n → ∞. For each u ∈ Hα

K(R3), let t = 0 and wn = e−2ατn u(e−τn x) in (24). We deduce
from (22)–(23) that ∣∣〈E′∞(vn), u〉

∣∣(1 + ‖vn‖Hα
K(R3))

=|〈E∞(η(τn, un)), η(τn, wn)〉|(1 + ‖vn‖Hα
K(R3))

=o(1)‖wn‖Hα
K(R3),

as n→ ∞. Therefore, (21) holds.

Lemma 12. č∞ < α
3 S

3
2α
α , where Sα is given in (5).

Proof. Let φ(x) ∈ C∞
0 (R3) be a cut-off function such that 0 ≤ φ(x) ≤ 1 in R3, φ ≡ 1 in

B1(0) and φ ≡ 0 in R3 \ B2(0). As is known to all, Sα is achieved by

ũ := κ(σ2 + |x− x0|2)−
3−2α

2

for any κ ∈ R, σ > 0 and x0 ∈ R3. Hence, setting x0 = 0, we define

uε(x) := φ(x)Uε(x), x ∈ R3,

where

Uε(x) = ε−
(3−2α)

2 u∗(x/ε), u∗(x) =
ũ
(

x/S1/(2α)
α

)
‖ũ‖L2∗α (R3)

.

As in [23], we obtain

Aε :=
∫
R3
|(−∆)

α
2 uε|2dx ≤ S

3
2α
α + O(ε3−2α), (25)
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and
Bε :=

∫
R3
|uε|2

∗
α dx = S

3
2α
α + O(ε3). (26)

By a simple calculation, we observe

Cε :=
∫
R3
|uε|2dx = O(ε3−2α), (27)

and

Dε :=
∫
R3
|uε|sdx =


O(ε

3(2−s)+2αs
2 ), s > 3

3−2α ,

O(ε
3(2−s)+2αs

2 | log ε|), s = 3
3−2α ,

O(ε
(3−2α)s

2 ), s < 3
3−2α .

(28)

By virtue of (6) and (28), for any p ∈ (2, 2∗α) we obtain

Hε =
∫
R3

∫
R3

|uε(x)|p|uε(y)|p

|x− y|3−β
dxdy

≥ C
∫

B1(
x0
ε )

∫
B1(

x0
ε )
|Uε(x)|p|Uε(y)|pdxdy

= C

(
ε3− (3−2α)p

2

∫ 1

εS1/(2α)
α

0

r2

(σ2 + r2)
(3−2α)p

2

dr

)2

= O(ε6−(3−2α)p).

(29)

Since supτ≥0 E∞(τuε) = E∞(τεuε) ≥ δ0 > 0, there exists T1 > 0 such that τε > T1.
Moreover, we infer from E∞(τuε) → −∞ as τ → ∞ that there exists T2 > 0 such that
τε < T2. Then T1 < τε < T2. Note that

E∞(τuε) ≤
τ2

2

∫
R3
(|(−∆)

α
2 uε|2 + K∞|uε|2)dx

− τ2pν2

2p2

∫
R3
(Iβ ∗ |uε|p)|uε|pdx− τ2∗α

2∗α

∫
R3
|uε|2

∗
α dx

=
τ2

2
Aε +

τ2

2
K∞Cε −

τ2p

2p2 ν2Hε −
τ2∗α

2∗α
Bε.

(30)

Define

Qε(t) :=
τ2

2
Aε −

τ2∗α

2∗α
Bε.

According to (25)–(26), it is easy to verify that

sup
τ≥0

Qε(τ) ≤
α

3
S

3
2α
α + O(ε3−2α). (31)

It follows from (27), (29)–(31) that

č∞ ≤ E∞(τuε) ≤
α

3
S

3
2α
α + O(ε3−2α)−O(ν2ε6−(3−2α)p).

If 2∗β,α > p > 2∗α − 1, then 0 < 6− (3− 2α)p < 3− 2α, which implies that for any fixed

ν2 > 0, č∞ < α
3 S

3
2α
α for ε > 0 small. If 2 < p ≤ 2∗α − 1 and ν ≥ ε

(3−2α)p−4−2α
2 , we also obtain

č∞ < α
3 S

3
2α
α .
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Lemma 13. The following equality holds

inf
µ∈Γ

sup
τ∈[0,1]

E∞(µ(τ)) = č∞ = c̄∞ = inf
u 6=0

max
ϑ>0

E∞(uϑ).

Proof. From Lemma 6, we can see that E∞(uϑ) < 0 for u ∈ Hα
K(R3) \ {0} and ϑ large

enough. This implies č∞ ≤ c̄∞. Then, we show č∞ ≥ c̄∞. We claim that for any µ ∈
Γ, µ([0, 1]) ∩Π∞ 6= ∅. Indeed, from (17), we obtain for any µ ∈ Γ,

J∞(µ(1)) ≤ (6α− 3)E∞(µ(1))− αK∞σ2
1 < 0.

For any u ∈ Hα
K(R3) \ {0}, from (6), (7) and (12), we deduce that

J∞(u) =
6α− 3

2

∫
R3
|(−∆)

α
2 u|2dx +

4α− 3
2

∫
R3

K∞u2dx

− 1
2

∫
R3
(Iβ ∗ G(u))[4αg(u)u− (3 + β)G(u)]dx− 6α− 3

2

∫
R3
|u|2∗α dx

≥ 4α− 3
2
‖u‖2

Hα
K(R3) − C‖u‖2+ 2β

3
Hα

K(R3)
− C‖u‖2q

Hα
K(R3)

− C‖u‖2∗α
Hα

K(R3)
,

which yields there exists σ2 ∈ (0, ‖µ(1)‖Hα
K(R3)) and ρ2 > 0 such that J∞(u) ≥ ρ2 for

‖u‖Hα
K(R3) = σ2. This implies there exists τ0 ∈ (0, 1) such that J∞(µ(τ0)) ≥ ρ2. Therefore,

the curve µ ∈ Γ must cross Π∞, which indicates č∞ ≥ c∞. Together with Lemma 10, we
obtain č∞ ≥ c̄∞.

Proof of Theorem 1. By Lemma 11, there exists a sequence {un} ⊂ Hα
K(R3) satisfying (21).

It follows from (8) and (17) that

č∞ = E∞(un) = E∞(un)−
1

6α− 3
J∞(un)

≥ α

6α− 3

∫
R3

K∞u2
ndx +

(
1
2
− 1

2∗α

) ∫
R3
|un|2

∗
α dx.

Combining with the Hölder inequality, we deduce that {un} is bounded in Lr(R3) for
r ∈ [2, 2∗α]. Then, by J∞(un)→ 0, (6) and (7), we can see that

6α− 3
2
‖un‖Dα,2(R3)

≤ 1
2

∫
R3
(Iβ ∗ G(un))[4αg(un)un − (3 + β)G(un)]dx +

6α− 3
2

∫
R3
|un|2

∗
α dx

≤ C(‖un‖
2+ 2β

3
L2(R3)

+ ‖un‖2q

L
6q

3+β (R3)

+ ‖un‖2∗α
L2∗α (R3)

) ≤ C.

This implies {un} is bounded in Hα
K(R3).

Now, we claim that
lim

n→∞
sup
y∈R3

∫
B1(y)

|un|2dx > 0.

If it does not occur, then it follows fromLemma 2.4 (a fractional version of Lions
vanishing lemma) in [37] that un → 0 in Lr(R3) for r ∈ (2, 2∗α). Hence, we obtain

on(1) = 〈E′∞(un), un〉 = ‖un‖2
Dα,2(R3) + K∞‖un‖2

L2(R3) − ‖un‖2∗α
L2∗α (R3)

+ on(1),
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as n → ∞. Since {un} is bounded in Hα
K(R3) and č∞ > 0, we may assume that up to a

sub-sequence, as n→ ∞, for some l > 0,

‖un‖2
Dα,2(R3) + K∞‖un‖2

L2(R3) → l, ‖un‖2∗α
L2∗α (R3)

→ l. (32)

In view of (5) and (32), we obtain

l = lim
n→∞

(
‖un‖2

Dα,2(R3) + K∞‖un‖2
L2(R3)

)
≥ lim

n→∞
‖un‖2

Dα,2(R3)

≥Sα‖un‖2
L2∗α (R3)

= Sαl
2

2∗α ,

which implies

l ≥ S
3

2α
α . (33)

Combining the fact

č∞ + on(1) =E∞(un)

=
1
2

(
‖un‖2

Dα,2(R3) + K∞‖un‖2
L2(R3)

)
− 1

2∗α
‖un‖2∗α

L2∗α (R3)
+ on(1)

=
α

3
l + on(1)

and (33), we observe that č∞ ≥ α
3 S

3
2α
α , which contradicts Lemma 12. Hence, there exists

σ > 0 and a sequence {zn} ⊂ R3 such that
∫

B1(zn)
|vn|2dx > σ. Let v̌n(x) = vn(x + zn),

then as n→ ∞,
E∞(v̌n)→ č∞, E′∞(v̌n)→ 0, J∞(v̌n)→ 0

and
∫

B1(0)
|v̌n|2dx > δ. Hence, passing to a sub-sequence, there exists v̌ ∈ Hα

K(R3) such that


v̌n ⇀ v̌ in Hα

K(R3),
v̌n → v̌ in Lr

loc(R
3) for r ∈ [1, 2∗α),

v̌n → v̌ a.e. in R3.

By using standard arguments, we obtain that E′∞(v̌) = 0 and E∞(v̌) ≥ c̄∞. Therefore,
v̌ is a nontrivial solution to (4). In view of Lemma 13, (8) and Fatou’s Lemma, we obtain

c̄∞ = č∞ = lim
n→∞

E∞(v̌n) = lim
n→∞

[
E∞(v̌n)−

1
6α− 3

J∞(v̌n)

]
= lim

n→∞

{
α

6α− 3

∫
R3

K∞v̌2
ndx +

1
2(6α− 3)

∫
R3
(Iβ ∗ G(u))[4αg(v̌n)v̌n − (6α + β)G(v̌n)]dx

+

(
1
2
− 1

2∗α

) ∫
R3
|v̌n|2

∗
α dx
}

≥ α

6α− 3

∫
R3

K∞v̌2dx +
1

2(6α− 3)

∫
R3
(Iβ ∗ G(u))[4αg(v̌)v̌− (6α + β)G(v̌)]dx

+

(
1
2
− 1

2∗α

) ∫
R3
|v̌|2∗α dx

= E∞(v̌)− 1
6α− 3

J∞(v̌) ≥ c̄∞,

which implies that E∞(v̌) = c̄∞ = c∞, recalling Lemma 10.
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4. Existence of Ground State Solution to (1)

In this section, our aim is to find ground state solution to (1), whose potential is not
a constant. In order to use a delicate method exploited by Jeanjean [32] (Theorem 1.1),
for λ ∈ [ 1

2 , 1], we study a family of functional Eλ : Hα
K(R3)→ R defined by

Eλ(u) =
1
2

∫
R3
(|(−∆)

α
2 u|2 + K(x)u2)dx− λ

2

[∫
R3
(Iβ ∗ G(u))G(u)dx +

2
2∗α

∫
R3
|u|2∗α dx

]
.

We get the next lemma, which is analogue to Lemma 1.

Lemma 14. Assume that (K1)–(K2) and (H1) hold. Let u be a critical point of Eλ in Hα
K(R3),

then the next Pohožaev type identity holds

Lλ(u) :=
3− 2α

2

∫
R3
|(−∆)

α
2 u|2dx +

3
2

∫
R3

K(x)u2dx +
1
2

∫
R3
(∇K(x), x)u2dx

− (3 + β)λ

2

∫
R3
(Iβ ∗ G(u))G(u)dx− 3λ

2∗α

∫
R3
|u|2∗α dx = 0.

Due to Lemma 14, set Jλ(u) = 2α〈E′λ(u), u〉 − Lλ(u) for all λ ∈ [ 1
2 , 1]. Then

Jλ(u) =
6α− 3

2

∫
R3
|(−∆)

α
2 u|2dx +

1
2

∫
R3
[(4α− 3)K(x)− (∇K(x), x)]u2dx

+
λ

2

{∫
R3
(Iβ ∗ G(u))[(3 + β)G(u)− 4αg(u)u]dx− (6α− 3)

∫
R3
|u|2∗α dx

}
.

(34)

Let us set Eλ(u) = A(u)− λB(u), where

A(u) =
1
2

∫
R3
(|(−∆)

α
2 u|2 + K(x)u2)dx → +∞,

as ‖u‖Hα
K(R3) → +∞ and

B(u) =
1
2

∫
R3
(Iβ ∗ G(u))G(u)dx +

1
2∗α

∫
R3
|u|2∗α dx ≥ 0.

Lemma 15. (i) There is e > 0 such that Eλ(e) < 0 for any λ ∈ [ 1
2 , 1].

(ii) cλ = infµ∈Γ maxτ∈[0,1] Eλ(µ(τ)) > max{Eλ(0), Eλ(e)} for all λ ∈ [ 1
2 , 1], where

Γ = {µ ∈ C([0, 1], Hα
K(R3)) : µ(0) = 0, µ(1) = e}.

Proof. (i) For u ∈ Hα
K(R3)\{0} fixed and λ ∈ [ 1

2 , 1], define

Eλ
∞(u) =

1
2

∫
R3
(|(−∆)

α
2 u|2 + K∞u2)dx

− λ

[
1
2

∫
R3
(Iβ ∗ G(u))G(u)dx +

1
2∗α

∫
R3
|u|2∗α dx

]
.

(35)

Thus, from (K2), we obtain Eλ(u) ≤ E∞
λ (u). Set uϑ = ϑ2αu(ϑx), ∀ϑ > 0. It follows

from Lemma 6 that
E∞

λ (uϑ)→ −∞, as ϑ→ +∞.

Take e = uϑ for ϑ large enough, (i) follows immediately.
(ii) From (6), we observe

Eλ(u) ≥
1
2
‖u‖2

Hα
K(R3) − C(‖u‖2+ 2β

3
Hα

K(R3)
+ ‖u‖2q

Hα
K(R3)

+ ‖u‖2∗α
Hα

K(R3)
),
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which implies that there exist δ > 0 and σ > 0 such that

Eλ(u) ≥ δ > 0, ∀ ‖u‖Hα
K(R3) = σ, for any λ ∈ [

1
2

, 1].

Thus, for any λ ∈ [ 1
2 , 1], there exists τ0 ∈ (0, 1) such that ‖µ(τ0)‖Hα

K(R3) = σ and

max
τ∈[0,1]

Eλ(µ(τ)) ≥ Eλ(µ(τ0)) ≥ δ > max{Eλ(0), Eλ(e)},

which yields cλ > 0.

Taking into account of Theorem 1.1 in [32] and Lemma 15, for any λ ∈ [ 1
2 , 1], we get a

sequence {vn} ⊂ Hα
K(R3) which is bounded and satisfies

Eλ(vn)→ cλ, E′λ(vn)→ 0.

To prove the above sequence {vn} satisfies the (PS) condition, we consider the follow-
ing limit problem

(−∆)αv + K∞v = λ(Iβ ∗ G(v))g(v) + λ|v|2∗α−2v, in R3. (36)

By Theorem 1, Equation (36) admits a ground state solution vλ
∞ ∈ Hα

K(R3), i.e., for any
λ ∈ [ 1

2 , 1], there exists vλ
∞ ∈ Πλ

∞ such that

(Eλ
∞)′(vλ

∞) = 0, Eλ
∞(vλ

∞) = cλ
∞ = inf

v∈∈Πλ
∞

Eλ
∞(u),

where Eλ
∞(u) defined in (35),

Πλ
∞ = {u ∈ Hα

K(R3) \ {0} : Jλ
∞(u) = 0},

Jλ
∞(u) =

6α− 3
2

∫
R3
|(−∆)

α
2 u|2dx +

4α− 3
2

∫
R3

K∞u2dx

+
λ

2

∫
R3
(Iβ ∗ G(u))[(3 + β)G(u)dx− 4αg(u)u]dx− (6α− 3)λ

2

∫
R3
|u|2∗α dx.

Lemma 16. For any λ ∈ [ 1
2 , 1] fixed,

cλ < mλ
∞,

where cλ is defined in Lemma 15 and mλ
∞ = infu∈Πλ

∞
Eλ

∞(u).

Proof. Take uλ
∞ as the minimizer of mλ

∞. By Lemmas 10 and 15 and (K2), we observe that
for all λ ∈ [ 1

2 , 1] and ϑ large enough,

cλ ≤ max
ϑ>0

Eλ(ϑ
2αuλ

∞(ϑx)) < max
ϑ>0

Eλ
∞(ϑ2αuλ

∞(ϑx)) = Eλ
∞(uλ

∞) = mλ
∞.

Lemma 17. Let {vn} be a bounded (PS)cλ
sequence of Eλ. Then there exist a sub-sequence of

{vn}, and integer l ∈ N∪ {0}, a sequence {zj
n} ⊂ R3, ω j ∈ Hα

K(R3) for 1 ≤ j ≤ l such that

(i) vn ⇀ vλ with E
′
λ(vλ) = 0;

(ii) zj
n → +∞ and |zi

n − zj
n| → +∞ for i 6= j;

(iii) ωi 6= 0 and (Eλ
∞)′(ωi) = 0 for 1 ≤ i ≤ l;

(iv) ‖vn − vλ −∑l
j=1 ω j(· − zj

n)‖Hα
K(R3) → 0;
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(v) Eλ(vn)→ Eλ(vλ) + ∑l
j=1 Eλ

∞(ω j).

In addition, we agree that in the case l = 0 the above hold without wj and zj
n.

Proof. Since {vn} ⊂ Hα
K(R3) is a bounded sequence satisfying

Eλ(vn)→ cλ > 0, E′λ(vn)→ 0.

Then, there exists vλ ∈ Hα
K(R3) \ {0} satisfying

vn ⇀ vλ in Hα
K(R3),

vn → vλ in Lr
loc(R

3) for r ∈ [1, 2∗s ),
vn → vλ a.e. in R3.

Moreover, we can show that E′λ(vλ) = 0, and so Jλ(vλ) = 0. We deduce from (8), (34)
and (K1) that

Eλ(vλ) = Eλ(vλ)−
1

6α− 3
Jλ(vλ)

=
1

6α− 3

∫
R3
[αK(x) + (∇K(x), x)]v2

λdx +
αλ

3

∫
R3
|vλ|2

∗
α dx

+
λ

2(6α− 3)

∫
R3
(Iβ ∗ G(vλ))[4αg(uλ)vλ − (6α + β)G(vλ)]dx

≥ 0.

(37)

Set u1
n = vn − vλ, then we have u1

n ⇀ 0. In the sequel, one of two conclusions of u1
n holds:

Case 1: u1
n → 0 in Hα

K(R3), or
Case 2: there exists a sequence {y1

n} ∈ R3, R0 > 0, δ > 0 such that

lim inf
n→∞

∫
BR0 (y

1
n)
|u1

n|2dx ≥ δ > 0. (38)

In fact, suppose that Case 2 does not occur. Hence, for any R > 0, we get

lim
n→∞

sup
y∈R3

∫
BR(y1

n)
|u1

n|2dx = 0.

Thus, Lemma 2.4 in [37] implies that u1
n → 0 in Ls(R3), s ∈ (2, 2∗α). In view of (6), we

see that
lim

n→+∞

∫
R3
(Iβ ∗ G(u1

n))G(u1
n)dx = 0. (39)

Moreover, we infer from Lemma 2 and (37) that

lim
n→∞

Eλ(u1
n) = lim

n→∞
Eλ(vn)− Eλ(vλ) ≤ cλ (40)

and
lim

n→∞
(Eλ)

′(u1
n) = lim

n→∞
(Eλ)

′(vn)− (Eλ)
′(vλ) = 0. (41)

By virtue of (39) and (41), we see

0 = lim
n→∞
〈(Eλ)

′(u1
n), u1

n〉 = lim
n→∞

(∫
R3
|(−∆)

α
2 u1

n|2dx +
∫
R3

K(x)(u1
n)

2dx− λ
∫
R3
|u1

n|2
∗
α dx
)

.
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Since {u1
n} is bounded in Hα

K(R3), then we can suppose that up to a subsequence,
as n→ ∞, ∫

R3
|(−∆)

α
2 u1

n|2dx +
∫
R3

K(x)(u1
n)

2dx → χ, λ
∫
R3
|u1

n|2
∗
α dx → χ (42)

for some χ ≥ 0. If χ > 0, in view of (5), we obtain

‖u1
n‖2
Dα,2(R3) +

∫
R3

K(x)(u1
n)

2dx ≥ ‖u1
n‖2
Dα,2(R3) ≥ Sα‖u1

n‖2
L2∗α (R3)

.

This together with (42) gives that

χ ≥ S
3

2α
α λ−

3−2α
2α , for any λ ∈ [

1
2

, 1].

However, (40) implies that

cλ ≥ lim
n→∞

Eλ(u1
n)

= lim
n→∞

[
1
2

(∫
R3
|(−∆)

α
2 u1

n|2dx +
∫
R3

K(x)(u1
n)

2dx
)
− λ

2∗α

∫
R3
|u1

n|2
∗
α dx
]

≥ α

3
S

3
2α
α λ−

3−2α
2α .

(43)

By using similar argument as in Lemmas 10, 12 and 13, we show that

mλ
∞ <

α

3
S

3
2α
α λ−

3−2α
2α .

Combining with (43) and Lemma 16, we obtain

α

3
S

3
2α
α λ−

3−2α
2α ≤ cλ < mλ

∞ <
α

3
S

3
2α
α λ−

3−2α
2α , for all λ ∈ [

1
2

, 1].

which is a contradiction. Thus, χ = 0. From (42), we conclude that ‖u1
n‖Hα

K(R3) → 0, that is,

vn → v in Hα
K(R3) and Lemma 17 holds with χ = 0 if Case 2 does not occur.

In the following, we suppose that Case 2 is true, that is (38) holds. Then, up to a
sub-sequence, we obtain

|z1
n| → +∞, u1

n(·+ z1
n) ⇀ ω1 6= 0, (E∞

λ )′ω1 = 0.

Indeed, consider û1
n := u1

n(· + z1
n). Note that {u1

n} is bounded. Then together
with (38), we deduce that û1

n ⇀ ω1 6= 0. Therefore, it follows from u1
n ⇀ 0 in Hα

K(R3) that
{z1

n} is unbounded, up to a subsequence, |z1
n| → +∞. Now we shall prove (E∞

λ )′(ω1) = 0.

It suffices to prove that 〈(E∞
λ )′(û1

n), ψ〉 → 0 for any ψ ∈ C∞
0 (R3).

According to (41), we obtain

|〈E′λ(un), ψ〉 − 〈E′λ(uλ), ψ〉 − 〈E′λ(u1
n), ψ〉| ≤ on(1)‖ψ‖Hα

K(R3),
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which implies |〈E′λ(u1
n), ψ〉| = on(1)‖ψ‖Hα

K(R3). Note that

〈E′λ(u
1
n), ψ(· − z1

n)〉

=
∫
R3

∫
R3

(u1
n(x)− u1

n(y))(ψ(x− z1
n)− ψ(y− z1

n))

|x− y|3+2α
dxdy

+
∫
R3

K(x)u1
n(x)ψ(x− z1

n)dx− λ
∫
R3
(Iβ ∗ G(u1

n))g(u1
n)ψ(x− z1

n)dx

− λ
∫
R3
|u1

n|2
∗
α−2u1

n(x)ψ(x− z1
n)dx

=
∫
R3

∫
R3

(û1
n(x)− û1

n(y))(ψ(x)− ψ(y))
|x− y|3+2α

dxdy +
∫
R3

K(x + z1
n)û1

n(x)ψ(x)dx

− λ
∫
R3
(Iβ ∗ G(û1

n))g(û1
n)ψ(x)dx− λ

∫
R3
|û1

n|2
∗
α−2û1

n(x)ψ(x)dx

= on(1)‖ψ‖Hα
K(R3).

(44)

Since |z1
n| → +∞ and ψ ∈ C∞

0 (R3), we have∫
R3
[K(x + z1

n)− K∞]û1
n(x)ψ(x)dx → 0. (45)

Combining (44) and (45), we obtain that for any ψ ∈ C∞
0 (R3), 〈(Eλ

∞)′(û1
n), ψ〉 → 0.

By (K2) and vn → vλ in L2
loc(R

3), we can see∫
R3
(K(x)− K∞)(u1

n)
2dx → 0. (46)

It follows immediately from (40) and (46) that

Eλ(u1
n)→ cλ − Eλ(vλ), Eλ(vn)− Eλ(vλ)− Eλ

∞(u1
n)→ 0. (47)

Set u2
n(·) := u1

n(·)− ω1(· − z1
n), then u2

n ⇀ 0 in Hα
K(R3). Noting that û1

n ⇀ ω1 6= 0,
we obtain∫

R3
K(x)|u2

n|2dx =
∫
R3

K(x)|u1
n|2dx +

∫
R3

K(x + z1
n)|ω1(x)|2dx

− 2
∫
R3

K(x + z1
n)u

1
n(x + z1

n)ω
1(x)dx

=
∫
R3

K(x)|vn|2dx−
∫
R3

K(x)|vλ|2dx−
∫
R3

K∞|ω1|2dx + on(1).

(48)

From (48), Brezis-Lieb Lemma, Lemma 2.6 in [35] and Lemma 2.9 in [38], we deduce that
Eλ(u2

n) = Eλ(un)−Φλ(uλ)− Eλ
∞(ω1) + on(1),

Eλ
∞(u2

n) = Φλ(u1
n)− Eλ

∞(ω1) + on(1),
〈E′λ(u2

n), ψ〉 = 〈E′λ(vn), ψ〉 − 〈E′λ(vλ), ψ〉 − 〈(Eλ
∞)′(ω1), ψ〉+ on(1) = on(1).

Therefore, together with (47), we obtain

Eλ(vn) = Eλ(vλ) + Eλ
∞(u1

n) + on(1) = Eλ(vλ) + Eλ
∞(ω1) + Eλ

∞(u2
n) + on(1).

It follows from (37) and Lemma 16 that

Eλ
∞(u2

n) = cλ − Eλ(uλ)− Eλ
∞(ω1) ≤ cλ.

Please notice that one of Case 1 and Case 2 is true for v2
n. If Case 1 holds, then

Lemma 17 holds with l = 1. If Case 2 occurs, we repeat the above arguments. By iterating
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this process we have sequences of {zj
n} ⊂ R3 such that |zj

n| → +∞, |zj
n − zi

n| → +∞ for
i 6= j and uj

n = uj−1
n −ω j−1(· − zj−1

n ) with j ≥ 2 satisfying

uj
n ⇀ 0 in Hα

K(R3), (Eλ
∞)′(ω j) = 0

and 
‖vn‖2

Hα
K(R3)

− ‖vλ‖2
Hα

K(R3)
−∑l

j=1 ‖ω j(· − zj
n)‖2

Hα
K(R3)

= ‖vn − vλ −∑l
j=1 ω j(· − zj

n)‖Hα
K(R3) + on(1),

Eλ(vn)− Eλ(vλ)−∑l−1
j=1 Eλ

∞(ω j)− Eλ
∞(ul

n) = on(1).

(49)

In view of {vn} is bounded in Hα
K(R3), (49) yields that the iteration stops at some

l. That is, ul+1
n → 0 in Hα

K(R3). From (49), it is easy to check that (iv) and (v) are true.
The proof is complete.

Lemma 18. For almost every λ ∈ [ 1
2 , 1], let {vn} be a bounded (PS)cλ

sequence of Eλ. Then there
exists a subsequence {vn} converges to a nontrivial vλ ∈ Hα

K(R3) \ {0} satisfying

Eλ(vλ) = cλ, (Eλ)
′(vλ) = 0.

Proof. From Lemma 17, up to a sub-sequence, there exists vλ ∈ Hα
K(R3), nontrivial critical

points ω j, j = 1, . . . , l of Eλ
∞, l ∈ N ∪ {0} and {zj

n} ⊂ R3 with |zj
n| → +∞, 1 ≤ j ≤ l

such that

E
′
λ(vλ) = 0, vn ⇀ vλ, Eλ(vn)→ Eλ(vλ) +

l

∑
j=1

Eλ
∞(ω j).

Together with (37), we infer that if l 6= 0,

cλ = lim
n→∞

Eλ(vn) = Eλ(vλ) +
l

∑
j=1

Eλ
∞(ω j) ≥ mλ

∞,

which contradicts with Lemma 16. Therefore, this lemma follows.

Proof of Theorem 2. Taking a sequence {λn} ⊂ [ 1
2 , 1] satisfying λn → 1, from Lemma 15,

there is a sequence of nontrivial critical points vλn (we may still denote by {vn}) for Eλn

and Eλn(vn) = cλn . Now, we prove that {vn} is bounded. It follows from (8) and β > 2α
that for every τ ∈ R,

g(τ)τ − 2G(τ) > g(τ)τ − 6α + β

4α
G(τ) ≥ 0.

Combining 〈E′λn
(vn), vn〉 = 0 and 3 < 4α we infer that

c 1
2
≥cλn

=Eλn(vn)−
1
4
〈E′λn

(vn), vn〉

=
1
4
‖vn‖2

Hα
K(R3) +

λn

4

∫
R3
(Iβ ∗ G(vn))[g(vn)vn − 2G(vn)]dx +

(
α

3
− 1

4

)
λn

∫
R3
|vn|2

∗
α dx

≥1
4
‖vn‖2

Hα
K(R3),
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which means that {vn} is bounded in Hα
K(R3). Hence, by Theorem 1.1 in [32], we obtain that

lim
n→∞

E(vn)

= lim
n→∞

{
Eλn(vn) +

λn − 1
2

[∫
R3
(Iβ ∗ G(vn))G(vn))dx +

2
2∗α

∫
R3
|vn|2

∗
α dx
]}

= lim
n→∞

cλn = c1,

and

lim
n→∞
〈E′(vn), ψ〉

= lim
n→∞

{
〈E′λn

(vn), ψ〉+ (λn − 1)
[∫

R3
(Iβ ∗ G(vn))g(vn)ψdx +

∫
R3
|vn|2

∗
α−2vnψdx

]}
=0,

which implies that {vn} is a bounded (PS)c1 sequence of E. Hence, in view of Lemma 18,
there is a nontrivial critical point v0 ∈ for E with E(v0) = c1.

At last, we prove there is a ground state solution to Equation (1). Let

m = inf{E(u) : u 6= 0, E′(u) = 0}.

It is easy to see that 0 ≤ m ≤ E(v0) = c1 < +∞. For any v satisfying E′(v) = 0 and
$ > 0, we see that ‖u‖Hα

K(R3) ≥ $. While, it follows from (K1), J(v) = 0 and (8) that

E(v) = E(v)− 1
6α− 3

J(v)

=
1

6α− 3

∫
R3
[αK(x) + (∇K(x), x)]v2dx

+
1

2(6α− 3)

∫
R3
(Iβ ∗ G(v))[4αg(v)v− (6α + β)G(v)]dx +

α

3

∫
R3
|v|2∗α dx,

which implies m ≥ 0. Suppose m = 0, then one has a critical point sequence {vn} of E with
E(vn)→ 0. Consequently,

lim
n→∞

‖vn‖2∗α
L2∗α (R3)

= 0. (50)

Similar as (20), we infer that∫
R3
(Iβ ∗ G(vn))g(vn)vn ≤ ε‖vn‖

2+ 2β
3

L2(R3)
+ Cε‖vn‖2q

L2∗α (R3)
,

which implies that

lim
n→∞

∫
R3
(Iβ ∗ G(vn))g(vn)vn = 0,

as ε → 0. Combining with (50) and 〈E′(vn), vn〉 = 0, we obtain limn→∞ ‖vn‖Hα
K(R3) = 0,

which contradicts with ‖vn‖Hα
K(R3) ≥ $. Therefore, 0 < m < +∞. Then let {vn} be a

sequence such that E′(vn) = 0, E(vn) → m. Similarly, we observe that {vn} is bounded.
Using a similar proof of Lemma 18, we infer that there is v ∈ Hα

K(R3) satisfying E′(v) = 0,
E(v) = m.

5. Conclusions

The main purpose of this paper is to study the existence of ground state solution for
the fractional Choquard equation with critical Sobolev exponent. To prove Theorem 1, we
first establish a key inequality

E∞(u) ≥ E∞(uϑ) +
1− ϑ6α−3

6α− 3
J∞(u) + ξ(ϑ)

∫
R3

K∞u2dx + ζ(ϑ)
∫
R3
|u|2∗α dx. (51)
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Using (51), we can prove Lemmas 8–9, which investigate some properties of Π∞.
Then we show m∞ = c̄∞ := infu 6=0 maxϑ>0 E∞(uϑ). We use the general mini-max principle
Proposition 2.8 in [36] to obtain a Cerami sequence for the functional E∞ with J∞(vn)→ 0,
where E∞, J∞(vn) are given in (10) and (12), respectively. Finally, we conclude that c∞ is

achieved by using an important estimate c∞ < α
3 S

3
2α
α .

Next, we aim to find ground state solution to Equation (1). Due to the potential is not
a constant, we use Jeanjean’s monotonicity trick. Define a family of functional

Eλ(u) =
1
2

∫
R3
(|(−∆)

α
2 u|2 + K(x)u2)dx− λ

2

[∫
R3
(Iβ ∗ G(u))G(u)dx +

2
2∗α

∫
R3
|u|2∗α dx

]
.

We show that

cλ = inf
µ∈Γ

max
τ∈[0,1]

Eλ(µ(τ)) > max{Eλ(0), Eλ(e)}

for all λ ∈ [ 1
2 , 1], where

Γ = {µ ∈ C([0, 1], Hα
K(R3)) : µ(0) = 0, µ(1) = e}.

Together with Jeanjean’s monotonicity trick, we obtain a bounded sequence {un} ⊂
Hα

K(R3) such that
Eλ(un)→ cλ, E′λ(un)→ 0.

To prove that the above sequence {vn} satisfies the (PS) condition, we consider the
following limit problem

(−∆)αu + K∞u = λ(Iβ ∗ G(u))g(u) + λ|u|2∗α−2u, in R3

and conclude that cλ < mλ
∞. Then we can obtain a global compactness result, i.e., Lemma 17,

which implies that there exists a nontrivial critical point v for E.
In the proof, the restriction on α is very crucial, we do not know whether the solution

can still exist for α ∈ (0, 3
4 ). This is a question that we need to further consider.
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