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Abstract: In this article, we investigate a class of fractional Choquard equation with critical Sobolev
exponent. By exploiting a monotonicity technique and global compactness lemma, the existence of
ground state solutions for this equation is obtained. In addition, we demonstrate the existence of
ground state solutions for the corresponding limit problem.

Keywords: fractional Choquard equation; ground state solution; PohoZaev identity; critical growth

1. Introduction

In this paper, we study the following fractional Choquard equation

(=A)*u+K(x)u = (Ig* G(u))g(u) + lu%2u, xeRS, 1)

wherea € (3,1), B € (24,3), 2; = 5. (—A)" is defined as

: u(x) — u(y)
(—A)au(x) — C,XPV RS Wdy, X € R3,

-1
where C, = ( Jrs Eﬁ%&d@ ) and P.V.is an abbreviation for Cauchy principal value. The
Riesz potential Ig : R*\ {0} — R is defined by

35

=— 2’ xecR%{o0}.
r(§)m26|x[>~

Let us state some hypothesises on K and g:
(K1) K € CY{(R®) N L®(R?) and aK(x) + (VK(x),x) > 0 for any x € R?;
(Kp) K(x) < |ll‘m inf K(y) = Ko € R for all x € R? and the inequality is strict in a subset
Y|—+o0

of positive Lebesgue measure;
(K3) there is a positive constant ag such that

S (1M 5P Ko ) dx
apg = n

> 0;
ueHg (R%)\ {0} s [u|?dx

(Hy) g € C(R,R), G(1) = fOTg(u)du > 0 for all T € R and there exits Cy > 0 and
1+ g <g< 2;;, . such that for every 7 € R,

8 _
8(D)] < CollT]5 + 77D,
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B+3

where ZZM = 35
Hy) lim 88 — lim S0 —q;
(Hz) 130 B frlmrtoo e
(H3) [4ag(T)T — (3 + B)G(1)]/T|T|B+6—4)/4 is non-decreasing on both (0, +co) and
(Hy) thereexistv > 0and p € (2, 2;;/“) such that g(7) > vtP~! forany T > 0.

When « = 1, G(u) = |u|P, K(x) = 1, Equation (1) is known as following
Choquard equation

—dutu = (g [ul?)|ulP2u+ f(u), ue H'(RY). @

For the case B = 2, p = 2 and f(u) = 0, Equation (2) is called the Choquard-
Pekar equation. It was first proposed by Pekar [1]. Later, Choquard rediscovered it as
an approximation of Hartree-Fock’s theory of single-component plasma [2]. For more
physical interpretation, one can refer to Penrose [3], Diosi [4], Lewin-Nam-Rougerie [5,6]
and Jones [7,8]. Moroz-Van Schaftingen [9] obtained a solution to (2) when 1 + g <

p < 34 B, where 3+ p and 1+ g are the upper and lower critical exponents. Gao-

Yang [10] investigated the existence of solution for the upper critical exponent case. Yao-
Chen-Radulescu-Sun [11] studied the existence of results for the double critical case. Du-
Gao-Yang [12] and Yang-Radulescu-Zhou [13] considered the existence and properties of
solutions with Stein-Weiss type nonlinearities. Moroz-Van Schaftingen [14] investigated
the semi-classical states for p > 2, and set the rest case p < 2 for open problem. Cingolani-
Tanaka [15] given a pisitive answer to the open problem. Furthermore, Su-Liu [16,17]
extended the semi-classical results to the upper critical case. Afterwards, these results were
extended to the more general function G or the more general potential K, see [18-28].

Recently, researchers are increasingly concerned the existence results of fractional
Choquard equation

(=A)"u + K(x)u = (Ig * lulP)|ulP~2u, inR3,

where # <p< 33;*72!1 For instance, Shen-Gao-Yang [29] established the existence of non-
negative ground state solution by supposing that the nonlinearities satisfied the general
Berestycki-Lions type conditions. Su et al. [30] studied the existence of results for the
double critical case. Li, Zhang, Wang and Teng [31] considered

(=A)*u+K(x)u = [|x\_5 * G(u)]g(u) +A[\x\_ﬁ * |u\p]p|u|p_2u, inRY, (3)

where0 <o <1,N > 24,0 < f < 2«a,and p > 22‘3’0‘. They obtained that there existed ground
state solutions to Equation (3) with critical or supercritical growth by the variational methods.

We notice that the work in the above literature focuses on the existence of ground
state solutions to fractional Choquard equations with a Hardy-Littlewood-Sobolev critical
exponent. We determine to investigate a class of fractional order Choquard equations
with a critical local term. Inspired by the above work, we first deal with the case of a
constant potential. Specifically, by taking a minimizing sequence from a Nehari-Pohozaev
manifold, we obtain a minimum value and prove that the minimum value is a critical
point. Therefore, we prove the existence of the Nehari-PohoZaev type ground state solution
for the fractional Choquard equation with a constant potential. On this basis, we use
a monotonicity technique and a global compactness lemma to obtain the existence of a
Nehari-PohoZaev type ground state solution to Equation (1). As we’ve seen there is nearly
not any result for the existence of nonnegative least energy solutions for the fractional
Choquard Equation (1) with critical growth.

Therefore, Let’s first study the limit problem

(—A)*u + Keou = (I * G(u))g(u) + lul%2u, xeRS 4)



Fractal Fract. 2023, 7, 555

30f23

We obtain the following result.

Theorem 1. Assume that « € (3,1), B € (2a,3), (Hy)~(Hy) hold.

(i) Ifp € (2,25 —1), there exists vy > 0 such that for v.> vy, Equation (4) has a ground
state solution
(i) Ifpe(2;—1, 2 % o), for any v > 0, Equation (4) has a ground state solution.

Then, we can obtain the next main result.

Theorem 2. Assume that o € (3,1), B € (2,3), (Ky)~(K3) and (Hy)—(Hy) hold.

(i) Ifp € (2,25 — 1), there exists vy > 0 such that for v > vy, Equation (1) has a ground
state solution.
@@ Ifpe (2 —1,25,), forany v > 0, Equation (1) has a ground state solution.

Remark 1. We will use a global compactness lemma, Jeanjean’s monotonicity trick, and a general
minimax principle to prove the main results. There are some troubles in proving the main theorems.
The first trouble is that f doesn't satisfy Ambrosetti-Rabinowtiz condition, we can’t use the Nehari
manifold to obtain the ground state solution of Equation (1). Moreover, It is difficult to acquire the
boundedness of (PS) sequence. To conquer it, we shall use Jeanjean’s monotonicity technique [32]
and establish the PohoZaev identity. The second problem is the lack of the compactness induced by
the critical term. We will use some new estimates to obtain a global compactness lemma to overcome
this difficulty. Because of the fractional Laplace operator and convolutional nonlinearity, these
estimates are complex. Moreover, the potential K(x) is not a constant, we consider the limit problem
of Equation (1).

The rest of this paper is organized as follows. In Section 2, we introduce some
preliminaries results. In Section 3, we investigate the limit problem. Section 4 is devoted to
the existence of ground state solutions to Equation (1). Section 5 is a brief conclusion of
this paper.

2. Preliminaries
The fractional Sobolev space D*?(R?) is defined by

342
lx—yl"

DA2(R?) { e () M =0 ¢ o XRg)}

with the norm

1
. 2
]| pe2(may := (/R3 |(A)2u|2dx> :

It follows from Propositions 3.4 and 3.6 in [33] that

[l

It is well known that the embedding D%?(R3) < L% (R3) is continuous.The constant
S, is defined as

\u
R3 |3+20{

o
)2 ‘dx—

R?y

2u 2dx
Se= _inf Jos 1(= | -~ (5)
ueDv2(R3)\{0} (Js [1(x)[dx) 2%

The fractional Sobolev space H*(R?) is defined by

342«
|x —y| ™2

H* (RS) {u c LZ(RS) |M( ) ”(3/)| c LZ(R3 % R3)}
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endowed with the norm

1
zx 2
Il = | f, (10052 +02)x|

Define the work space of Equation (1) by

H&(R3) := {u € H*(R®): /3K(x)|u|2dx < —i—OO},
R
with the inner product

(u,0) = /RS( AYSu(— 20dx+/ x)uvdsx,

||u||HIa<(R3) = </ 2u|2dx+/ 2dx> .

From (K)-(K3), the norms || - || jja(g3) and [|u[| s (g3, are equivalent.

and the norm

From (H; ), Hardy-Littlewood-Sobolev inequality [34] and Sobolev embedding theo-
rem, we can conclude that

I+ G(u))G(u)dx| < C||G(u)|?
s Up * G(u)G(u)dx| < ClIG(u)]| O
3+
| 0
<c| f(uls" +ul) ] ®)
2(3+8)
(nunmmm ™, )
P (R9)
and
/w(zﬁ « G(u))g(u)vdx
348 348
[1G@iax) * ([ 1gtwolrax) 7
<CB)| J, 16 Fdx Jos 180)01 %P dx @)
3+B q B q—
< C Ml 2 gy + Ml o [l 2oy 1ol ey + 1l 6 Mol o0 )
L3P (R3) L3+ﬁ (R3) L3+P (R3)

Hence, the energy functional E : H(R?) — R associated with Equation (1)

1

E(w) = 5 [ (1(=8)3ul + K(x) dx—f/ (I * G(u )dx——/ % dx

2*

is well defined on H%(R%) and E € C!(H%(R3), R). Moreover, for any v € H%(R3),

(E'(u),0) = /R3 [(—A)%u(—A)%v + K(x)uv — (I * G(u))g(u)o — |u|2;*1uv} dx.

Similar to Proposition 2.10 in [35], we get the PohoZaev type identity.
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Lemma 1. Assume that (Ky)—-(Ky), (Hy) hold, and u € H%(R®) is a solution to Equation (1).
Then the PohoZaev identity holds true

3 e ,
||”||pa2(R3) 2/ dx+2/ (VK(x), x)u’dx

:#/RS(IB*G(L[) (u )dx+;/ 2 dx.

Define the Nehari-PohoZaev manifold by

I1:= {u € HYR3)\ {0} : J(u) := 2a(E'(u),u) — L(u) = 0},

where
L) =22y 2 g+ 2/ Yuldx 4~ / (VK(x), x)uldx
- # [ (g G(0)Gw)dx ;/Rs 4% dx
and
) 1= 2l + 5 [, (48 = 3)K () — (VK(x), 0)]uds

+ ;{/Rs(lﬁ *G(u))[(3+ B)G(u) — dag(u)uldx — (6a — 3) /]1&3 u|23dx}.

By combining Lemma 2.2 in [10] and [30], we are able to get the next Brezis-Lieb
type lemma.

Lemma 2. Ifu, — uin HY(R3) witha € (3,1) and u, — u a.e. in R3, then

E(un) = E(u) + E(un —u) +0(1),  J(un) = J(u) + ] (un —u) +o0(1),

and
E'(uy) = E'(u) + E'(uy — u) +0(1),

and
(E'(un), un) = (E'(u),u) + (E'(uy — ), up — u) +o(1).

At the end of this section, we set up some crucial inequalities.

Lemma 3. Assume that (Hy) and (Hs) hold. Then for all > 0and T € R,

£(8,7) = ﬂiﬁ G(8%7) + (1 03) [dag(x)T — (3 + H)G(1)] ~3G(r) > 0

Proof. Clearly, f(9,0) > 0 for ¢ > 0. From (H3), for T # 0, we obtain

d
2 58,7)
_ 392 |T|%6 4ag (0%*7)9%* T — (3 + B)G(8%*1) _ 4ag(t)T— 3+ B)G(7)
2 wzaﬂ’%é |T|ﬂ4tf
>0, 9>1
<0, 0<¥<«<],

which implies that f(9,7) > f(1,7) = 0forall ¢ € (0, +0c0)and T € (—0c0,0) U (0, +00). O
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Lemma 4. Assume that « € (3,1), (Hy)~(Hj) hold. Then

G(8)

W is nondecreasing on both (—o0,0) and (0, +00).

Proof. Together with (H;), Lemma 3 and « > %, we obtain
llgin(l)f(ﬁ, T) =4ag(T)T— (6 +B)G(T) > 0. 8)
—

It follows from (8) that

d G(9) B
db <l9|l9|<8"‘+/3‘6)/4"‘)  4a|9](160-+p—6)/da [425(9)9

— (120 + B — 6)G(8)] > 0.

O

Lemma 5. Assume that (Hy)—(Hsz) hold. Then
K(9,0) == / {61‘;‘3+ﬁ3 (I * G(6%0))G(8v)
+(1- 196"‘_3)(Iﬁ * G(v))[4ag(v)v — (3+ B)G(v)] — (6a — 3)(1/3 * G(v))G(v)}dx
>0, V0>0,vec HYR3).

Proof. It follows from (H;) and Lemma 4 that

G(9%0) >0, 0>1,
Ip + <|19|(12a+5—6)/2> —Ipx G(U){S 0, 0<8<l. )
From (H7), (Hs3) and (9), we obtain

d
ad

/]Rs{ l93+/5 (Iﬁ * G(9%"0))g (8% 0)9** o

B 9GEB) , Gewie

— (6a — 3)196“*4(15 * G(v))[4ag(v)v — (3+ B)G(v)] }dx

B G(8%*0) 4ag(0%%0) 0% v — (3 + B)G(8%*0)
_ _ 60 —4 (B+6)/4a
(6a —3)0 /R3 0| {Iﬁ * (|19|(121x+/56)/2> |82y (B+6) /4

—k(8,v)

4ag(v)v — (34 B)G(v)
— (Ig*G(0)) o] (B+6)/4a dx
>0, ¢>1,
<0, 0<9<«],

which yields k(¢,0) > k(1,v) =0 forall 8 > 0Oand v € HX(R3). O
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3. The Limit Problem
Noting that | 1|1m K(x) = Koo, we consider the limit problem (4), whose energy func-
X|—00

tional is defined by

1 1
Eeo(u) :EHUH%a,Z(RS) + 2K ||”||L2 (R3)

1 1 .
- RS(Iﬁ*G(u))G(u)dx—nga % dx.

(10)

By Lemma 1, if u is the critical point of Ee in H%(R3), then it satisfies the
PohoZaev identity

_ 3- 3 348 3 2
Loo(ut) := T||MHDM ®) T KooHuHLZ R?) > /]Rs(lﬁ * G(u))G(u)dx — 2 /]1{3 |u|*dx
=0.
Set uy = 0**u(dx). By direct calculation, we deduce that
9ox—3 9Aa—3
h(8) = Eeo(tt9) = ~——||tt][pua(ea) + 5 KeolltlF2pa)
3(6a—3) (11)

— o5 L g G0 (6% u)dx — o Ll
which implies that Ee (11g) — —o0 as @ — +co. As a consequence, we obtain the next lemma.
Lemma 6. E is not bounded from below.
Define ITeo = {u € HX(R3)\{0} : Joo(u) = 0}, where

Joo (1) = 20(Eqo (1), 1) — Loo(u)

60 —3 4o —3 60 — 3 x
= 2l ey + —5—KeollulFa(es) —T/R3|u|zadx
3+ (12)
+ Tﬁ [ (g + G(u))G(u)dx 20 /R3(15*G(u))g(u)udx
_ dEOO(uﬂ)|
4y b
Set
f(0) = 1= 943 (da—3)(1— 93 0= 1= i o0
o 2 2(6a —3) ’ o 2 25 ’
Clearly,
EB) >0, () >0, #€(0,1)U(1,+o). (13)

Lemma 7. Forany u € HY(R%) and ¢ > 0,

%]oo(u) +¢(9) /RS Keoti?dx + (8) /R3 |2 dx.
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Proof. From (10)-(13) and Lemma 5, we get that

1— 196“73
60 —3

9) /RS Koot?dx + 2(6“1 3 /R3 {6;‘3:53(15 * G(0%"u))G(9* u)
+(1- 196"‘_3)(15 * G(u))[4ag(u)u — (34 B)G(u)] — (6o — 3)(15 * G(u))G(u)}dx
+2(9) /R3 |u\2;dx

>0,

Eco(1t) = Eco (1) — Joo (1)

which comes to the conclusions. [

Lemma 8. Forall u € H%(IR¥)\{0}, there exists a unique 8 > 0 such that ug, € Ile. Moreover,

Eco(ug,) = 132615( Eco(uy).

Proof. Setu € H%(R?)\{0} be fixed, one has h'(8) = 0 is equivalent to uy € I, for ¥ > 0.
By (Ky), (Hz), (6) and g > 1+ g > 14+ g, we obtain limy_,o+ 1(¢) = 0, for ¢ > 0 small,
h(9) > 0 and for ¢ large, h(8) < 0. Hence, maxy~q h(9) is attained at ¢ = 0 (u) > 0 such
that #/(dy) = 0 and uy, € Ile.

Next, we show ® is unique for any u € H%(R3)\{0}. Suppose on the contrary that
there exist ¢, 9, > 0 such that &' (8;) = h'(91) = 0. It follows from Jeo(1t9,) = Joo(1g,) = 0
and Lemma 7 that

Eo(83"u(81x))
5 ?s 3 1961x 3
> Eco (05" u(9x)) + W]w( u(t1x))
(66-3)3 . (14)
+e(ta/00)90 [ Koot + L (82/8)8, % s P
(66-3)3

Eoo(853u(82)) + &(02/01)8{° 3/ Koouzdx+§(l92/191)z9 o /3|u|2:cdx

and

Eco (83" (82x))
19604 3 1960( 3

> Ea(tftu(tnn)) + 25 i (03

u(drx))
(66—3)3 . (15)
+E(01/0,) 6% 3/ Keotidx + 7 (81/85)0,° / % dx
(6a—3)3
> Eoo(02%u(81x)) + (01 / 0) 00— 3/ Koot + (01/8,)0,5 5 /3 || dx.

Therefore, from (14) and (15), we obtain ¢; = ¢,. That is, ¢y is unique for any
u € HYR3)\{0}. O

Lemma 9. The manifold I, satisfies the following properties:
(1) there exists o > O such that |[u|| e (r3) = 0, Vit € eo.
(2) oo = infyerry, Eeo(u) > 0.
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Proof. (1) By (6)-(7), we have
4o — 3 60 — 3 4o — 3
Tl gy < T llBuae) + =5 [ Koo
1
=5 [, (g Gw) ag(wu - 3+ B)G(w) ‘dx
2 :
<l oy + 112 +nu||§;;(R3)>,
which implies
HMHHﬁ(Re’) 2 ag, Yu e Hoo- (16)
(2) Let{u,} C Il be such that Ec(1t,) — ceo. There exist two possible scenarios:
(i) infyen [[unllr2(ms) > 0, 0r
(ii) infen ||”n||L2(]R3) =0.
Case (i) infye [|un | 2(rs) = 01 > 0. It follows from (8), (10) and (12) that
1
Coo = Eoo(un) = Eoo(un) - m]oo(un)
= — / Keo2dx + (;—21) /3|un|zzzdx
Y w/ IR (17)
+ 26a—3) /]1{3(113 « G(un))[4ag(un)uy — (60 + ) G(uy,)]dx
aKeo 5
> ——07.
= 6u—3"1

Case (ii) inf, ey ||un ||L2(R3) = 0. According to (16), passing to a sub-sequence, we obtain

o
[nll2ey = 0, llunllpraes) 2 5- (18)
It follows from (Hj )-(Hy) that for any € > 0, there exists Cc > 0 such that
IG(1)| < Celt|'*5 + |t vwreR. (19)
From (5), (6) and (19), we deduce that

3+B)

2i(
2+%
/Rs(l,s*G(u))G( u) < CCelfull 2 gs) + CeSa IIMIIDM (®3)" (20)

1
o 3 60—3
Letd, = |(2%) s |7 ||552 (R%} . Then, due to (18), {#, } isbounded. Applying
Lemma 7, (11), (18) and (20), we deduce that

Coo +0n(1) = Eoo(un) > Ew((“n)l%,)

196 - 93 .
H”nHDaZ R3) + "T /R3 Koou,%dx
3(6a—3)
: o ow n3—2a o
n 20i+ﬁ IR3(I,B*G(1911 u))G(ﬂn u)dxf > /1R3 |Mn| «dx
1960"—3 B #
> o |t oz ) *Cce(ﬁf’a 3HMHHZL2(R3>>
o
% 3p =T 3
. 2 ‘= 3-2 - T
— CeS, * (19211 ?»HunHzDa,z(RB)) v ;; <193a 3||un|\%mz(ﬂ§3)>
8 un %)
DV2(R%) Sa 6a—3, |12 =
- 2= == (" unllpaz g +0,(1)
4 2% < n nilp 2(R3>> n
1 320 3
12072 S +ou(1).
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It follows from Case (i) and Case (ii) that cco = infyery, Eco(#) > 0. O

By using Lemmas 8 and 9, we can find the next result.
Lemma 10. The following equality holds

Coo = Coo := Inf max Eqo(11y).
u#0 9>0

We shall use Proposition 2.8 (the general mini-max principle) in [36] to obtain a
Cerami sequence for the functional E with Jeo (1) — 0, where Eco, Joo(1n) are given in
(10) and (12), respectively.

Lemma 11. There exists a sequence {u,} C H%(IR3) such that
Eco(tn) — oo > 0, ||E:>o||HI;“(R3)(1 + llun ||y (rey) — 0 and Joo(un) — 0, (21)
where

Coo = inf max Euo((1), T {1 € (0,1, HE(R?)) : j1(0) = 0, E(u(1)) < 0}.

Proof. Foru € HY(R?)\{0}, By (H,), one has Ec(Tu) — —00 as T — +oo. By the standard
arguments, we have I' # @ and ¢, < co. Furthermore, it is easy to check that there exist
00,80 > 0 such that Ee (1) > 0 for all u with ||”HH;“<(R3) < 0y and Eeo (1) > 9y for all u with
[ ]] H (R3) = 00- Together with the definition of I', we obtain ||u(1)|| Hy(R?) > 00- From the
continuity of (7) and the intermediate value theorem, there exists 7, € (0,1) such that
[[1(T) | 2 (m3) = 00 Hence, we obtain

max Eeo(#(T)) > Eco(p(T1)) > 60 >0,
T€[0,1]

which implies
00 > (oo = inf Ew(u(t)) = 69 > 0.
Inf max (u(7)) = do

Define the continuous map
7:Rx HYR?) — HY(R?), 5(t,u)(x) =e*Tu(ex), fort € R, u € HY(R?),x € RS,

where R x H%(IR3) is the Banach space with the product norm || (, u) ||RxH;§(R3) = (|7]* +

u %. We define the following auxiliary functional:
) g y

H%ﬁé(ﬂ@

Eco(T,1t) = Eoo(1(7,11))

1 3
=5 L (=8 20T ) [* + Kool (1) ) dx
1 1 2
—5 WU&*GWﬁwU»quwnﬂx—Eiégnﬁﬂﬂ dx
(6a—3)T (4a—3)T
e e
= 5Dz es) + —5—Keollull 2 g,
e (B+B)T LG

20T 20T o
_44?4i44@*cw )G ) = [l

Moreover, by direct calculations, we obtain Ee € C!(R x H&(R?),R), and

rEoo(T,1) = Jeo((T, 1)), OuEeo(T,u)w = Ef(11(T,1) )11 (7, )
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forallt€e Rand u,w € HI”Q(RE’). We define the mini-max value & for E by

where T = {1 € C([0,1], R x HY(R?)) : #(0) = (0,0), Ew(f(1)) < 0}. Since T = {501 :
fi € T}, we deduce that ée = Eo. By the definition of ¢, there exists y1,, € T such that for

any n € N,

1
Eoo - Eco(ptn < Ceo -
8% Eeo(0, (7)) = max Eeo(pn(T)) < Co + 15

Applying Proposition 2.8 (the general mini-max principle) in [36] to Eeo, setting
D =[0,1], Dy = {0,1}, B = Rx H{(R3), 0 = &, 6 = L and fin(7) = (0, un(7)),
we conclude that there exist (T, un) € R X HI”Q(]RS) such that

and N
||Ego(Tn/”n)||]B/(1 + | (Tn, un) llB) — 0, (22)

and
dist((Tn, un), {0} x un([0,1])) — 0, (23)

as n — co. Thus, (23) implies 7, — 0. It is easy to see that for all (t,w) € R x H%(R3),
(Eo (T, tn), (t,w)) = (Eqo((Tu, ), 7 (Ta, ) + Joo (1 (T, ) ). (24)

Set v, = (T, un). If we take t = 1 and w = 0 in (24), we obtain Jo(v,) — 0 as
n — oo. For each u € HY(R3), let t = 0 and w, = e~ 2*™u(e~"x) in (24). We deduce
from (22)—(23) that

|(Ee u)|(1+ 100 | 1 () )
=|(E ( (Tn/un)) 1(Tu, Wn ) )| (1 4 [ 0n| 1o (g3 )

=0(L) [l g 1)

as n — oo. Therefore, (21) holds. O

3
Lemma 12. ¢ < 354, where S, is given in (5).

Proof. Let ¢(x) € C§°(R3) be a cut-off function such that 0 < ¢(x) < 1inR3, ¢ = 1in
B1(0) and ¢ = 0in R®\ B,(0). As is known to all, S, is achieved by

32«

i = k(0?4 |x — x0|*)~
foranyx € R, o > 0and xg € R3. Hence, setting xo = 0, we define

ue(x) == ¢p(x)Ue(x), x €R3,

. A 0
Us(x) =€ 2 u*(x/e), u'(x)=—F——>=

where

Hﬁ||L22§(R3)

As in [23], we obtain

= /Ra (—A)$uePdx < SF + O(E2), (25)
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and s
Be = /Rg luePodx = S+ O(eY). (26)
By a simple calculation, we observe
Ce = / e Pdx = O(e32), 27)
JR3
and o2
O(€ )s s> 305,
3(2— s 2uas
D, = /Rg\uerdx: 0™ 4™ logel), s= 53, (28)
(8—2a)s Za )s
O(e27), s < m

By virtue of (6) and (28), for any p € (2,2;) we obtain

|ue (x) |7 |ue(y)[P
He = /R3/R3 X =y R dxdy

= CAI(?) BI(X?O) |u€(x)|p|u€(]/)|pd.?(fdy

(38-2a)p 71/1(2 ) r2 ?
o 3_—z)p o
=Cle ’ /eSa (3—2a)p dr

0 (02 +712) 2

— o(€6*(3*2ﬂ¢)1ﬂ)_

(29)

Since sup, - Eco(Tle) = Eco(Telte) > Jp > 0, there exists Ty > 0 such that 7o > Tj.
Moreover, we infer from Ee(Tue) — —00 as T — oo that there exists T, > 0 such that
Te < Tp. Then T} < 1e < Ty. Note that

2
T 4
Eoo(Tue) < 2 R3(|(—A)2u€|2 + Keoute|*)dux
20,2 2 «
—sz/Rs(Iﬁ*|u€|p)|u€|pdx—2—*/R3|u€|2“dx (30)
(44
72 72 2P 7%
N ~ KelCo — —1V*H. — —B..
2 Ae+ 2 Cg zpzl/ He 2;’2 Bg
Define ) .
T 2%

sup Qe (T) < =82 + 0O(e>72). (31)

4
>0 3
It follows from (27), (29)—(31) that

3
Coo < Eoo(TME) < gséa + O(GB_Z’)‘) _ O(Vzeﬁ—(3—2a)p)‘

If25, > p>2;—1,then0 <6 — (3 —2a)p <3 —2a, which implies that for any fixed

3 (3-20)p-4-2 )
V2> 0,80 < 555 fore > Osmall. If2 < p <27 —landv >e€ 5 a,we also obtain

3
Coo < 5S5*. O
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Lemma 13. The following equality holds

inf sup Eeo(#(T)) = Coo = Coo = Inf max Eeo (1
ﬂeffe[o}i] (u(7)) Inf max (ug).

Proof. From Lemma 6, we can see that Es(1g) < 0 for u € H%(R?) \ {0} and ¢ large
enough. This implies ¢ < Coo. Then, we show ¢ > Coo. We claim that for any u €
I, u([0,1]) NI # @. Indeed, from (17), we obtain for any u € T,

Jeo((1)) < (60 —3)Eno(p(1)) — tKeo0f < 0.

For any u € H%(R?) \ {0}, from (6), (7) and (12), we deduce that

O CE

=5 [ (g Gl lag(wyu — 3+ p)G)ldx — == [ jupiax

4o — 2+ +

> CHuHHzx RS

> 2 By

2%
—CHMHHA ]R3 CH“H}%‘&(RS)/

which yields there exists o5 € (0, [[11(1) ||z (r3)) and p2 > 0 such that Jeo (1) > p2 for
[l e (m3) = 0. This implies there exists 79 € (0,1) such that Joo(p(10)) = p2. Therefore,
the curve y € I' must cross I, which indicates ¢oo > Coo. Together with Lemma 10, we
obtain e > Coo. [

Proof of Theorem 1. By Lemma 11, there exists a sequence {u,} C H%(R3) satisfying (21).
It follows from (8) and (17) that

1
¢oo = Eco(tty) = Eco(tty) — m]oo(”n)

1 1 x
2 2t
6“ / Koousdx + (2 22) /]R3 |ty | dx.

Combining with the Holder inequality, we deduce that {u,} is bounded in L' (R3) for
€ [2,25]. Then, by Joo(uy) — 0, (6) and (7), we can see that

6o —3
3 ||un||D""2(lR3)

< 5 [, Up + Glun) laglua)ies — 3+ B wldx + X [ Ju, iy

,5
< C(Jlunlly, +||Mn\| + [luall% gs)) < C
R3) ﬁ (R3) Lzﬁc R?))
This implies {u, } is bounded in H%(R?).
Now, we claim that
lim sup |un|?dx > 0.
n—o0 yERs Bl Y

If it does not occur, then it follows fromLemma 2.4 (a fractional version of Lions
vanishing lemma) in [37] that u, — 0in L"(R®) for r € (2,2%). Hence, we obtain

0n(1) = (Bl (i) 6n) = ltn Pz, + Keolltn 325y = it )+ 00 (1),



Fractal Fract. 2023, 7, 555 14 of 23

as n — oco. Since {u,} is bounded in HI”é(R3) and ¢ > 0, we may assume that up to a
sub-sequence, as n — oo, for some [ > 0,

||”n||pa2 (R3) + Keo H”nHLz(RS — 1, ||”n||Lz*(R3) — L. (32)

In view of (5) and (32), we obtain

| = lim (||un||%,x/z(R3) + Koo“un”%Z(]Rii))

n—oo

. 2
2 Jim {1t [ e gs)

2
>StXH”n||L2* (R3) = Sl %,

which implies
3
> 82, (33)

Combining the fact
oo +0,(1) :Em(un)
= (1 By + Kool ) — zlznunnj%w) +04(1)
:gl +0n(1)
and (33), we observe that ¢ > %Soﬁ%‘ , which contradicts Lemma 12. Hence, there exists

o > 0and a sequence {z,} C R’ such that [ (,  [va|?dx > 0. Let 0u(x) = va(x + zn),

then as n — oo,
Ew(Tp) = Coo, Ego(z?n) —0, Jo(¥n) —0

and [, B,(0) |0 |?dx > 5. Hence, passing to a sub-sequence, there exists ¥ € H%(R?) such that
Uy =0 in HY(R3),
Uy =0 inLl (R3)forr e [1,25),

Uy — U ae. inR3.

By using standard arguments, we obtain that E,,(¢) = 0 and Ec () > €. Therefore,
¥ is a nontrivial solution to (4). In view of Lemma 13, (8) and Fatou’s Lemma, we obtain

Coo = oo = lim Eo(¥y) = lim {Ew(zﬁ ) — 6a_ 7)o (0 )}

n—oo n—oo

:1}%{6%3/ Ketdx + 372 1_3) [ 0p + Glu) ag(,)8, — (60 + )G(#))d

/ Kmﬁzdﬂz(éo}_s) [, g = Gu)) g () — (60 + B)G ()

6a—3

which implies that Ee () = Coo = Coo, recalling Lemma 10. [
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4. Existence of Ground State Solution to (1)

In this section, our aim is to find ground state solution to (1), whose potential is not
a constant. In order to use a delicate method exploited by Jeanjean [32] (Theorem 1.1),
for A € [},1], we study a family of functional E) : H%(R®) — R defined by

1

Ea(u) = 5 R3(|(—A)%u|z+K(x)u2)dx—g[/ﬂ{s(lﬁ*G(u)) (u )dx+23*/ |u|22?dx]

We get the next lemma, which is analogue to Lemma 1.

Lemma 14. Assume that (Ky)—-(Ky) and (Hy) hold. Let u be a critical point of E, in H%(R3),
then the next PohoZaev type identity holds

Ly(u) = 3;2a /Ra|( A)iulldx+ = / Yuldx + - / (VK(x), x)uldx
_ %‘/RS(Iﬁ*G(u))G(M)dxf 2/;/11@ |M|2"‘dx:0,

Due to Lemma 14, set J) (1) = 2a(E (u),u) — £, (u) forall A € [},1]. Then

6a —3 @ 1
O S Y A R
A «
+ 2{/}}@3(15 *G(u))[(3+ B)G(u) —4ag(u)uldx — (6a — 3) /R3 |u2“dx}.
Letusset E)(u) = A(u) — AB(u), where
AW = 3 [ ((=8)8uP + K(x)iP)dx = +oo,
as ||u| a (g3) — +o0 and
1 1 2
B(w) = 5 [ (I * G(w)G(u )dx+2*/ |u|%dx > 0.
Lemma15. (i)  Thereis e > 0 such that Ex(e) < 0 for any A € [1,1].
(ii) ¢y = infyer max,co1) EA(p(7)) > max{Ex(0), Ex(e)} forall A € [3,1], where
I = {ueC([0,1], Hg(R%)) : u(0) = 0,u(1) = e}.
Proof. (i) Foru € H%(R3)\{0} fixed and A € [3,1], define
=3 / A)7u|? + Keou®)dx
(35)

—)L[z/RS(Iﬁ*G(u)) (u )dx+21*/ |u|23idx].

Thus, from (K;), we obtain E, (1) < EQ(u). Set ug = 8**u(dx), V8 > 0. It follows
from Lemma 6 that
ET(ug) — —oo, as® — oo

Take e = uy for ¢ large enough, (i) follows immediately.
(i) From (6), we observe

1 2 2+% 3 2
Ea) > 2l ey — OIS oy + 1012 g + 11 )
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which implies that there exist § > 0 and ¢ > 0 such that

1
Ex(u)>6>0, V ||u||HIa<(R3) =0, forany A € |

=, 1.
2']

Thus, for any A € [, 1], there exists 1y € (0,1) such that || (1) ”H}’é(RS) = o and

max Ex(u(1)) > Ex(p(m0)) > 6 > max{E,(0),Ex(e)},

which yields c;, > 0.
O

Taking into account of Theorem 1.1 in [32] and Lemma 15, for any A € [%, 1], we get a
sequence {v,} C H%(IR3) which is bounded and satisfies

Ex(vn) — ¢y, Ej(vn) — 0.

To prove the above sequence {v, } satisfies the (PS) condition, we consider the follow-
ing limit problem

(=A)"v + Keov = A(Ig * G(v))g(v) + Alo/% 20, inR3. (36)

By Theorem 1, Equation (36) admits a ground state solution v, € H%(R?), i.e., for any
A € [3,1], there exists v, € IT2, such that

(EL) (v4) =0, EXL(vh)=ck = inf EX(u),
veelll,

where E2 (1) defined in (35),
I, = {u € HZ(R®)\ {0} : J& (u) = 0},

60 —3 « 40 — 3
M) =2 /R3|(—A)2u|2dx~|— 5 /R3Koou2dx

+ % /R3(I/S «G(u))[(34 B)G(u)dx — dag(u)u]dx — @ /R3 e,

Lemma 16. Forany A € [},1] fixed,

c) < mﬁo,

where c, is defined in Lemma 15 and mg, = inf,_n E, ().

Proof. Take u, as the minimizer of m,. By Lemmas 10 and 15 and (K3), we observe that
forall A € [4,1] and ¢ large enough,

¢y < max E, (9% ul, (9x)) < max EA (8% ul, (8x)) = EX (ud) = ml..
>0 >0

O

Lemma 17. Let {v,} be a bounded (PS)c, sequence of E,. Then there exist a sub-sequence of
{vn}, and integer | € NU {0}, a sequence {ZL} C R3, w/ € HE(R3) for 1 < j < such that

(i) vy — vy with E)(vy) = 0;

(i) z), — +ooand |z§1—z{'1| — o0 fori # j;

(iii) w' # 0and (EL) (w') =0for1 <i<I;

(iv) ||on —ovp — Zj-:l wl (- — zL)||H%(R3) —0;
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(@) Ex(on) = Ex(02) + iy EL ().
In addition, we agree that in the case | = 0 the above hold without w/ and z{i.
Proof. Since {v,} C H%(RR3) is a bounded sequence satisfying
Ex(vn) = ¢y >0, Ej(va) — 0.
Then, there exists v) € H%(R3) \ {0} satisfying
vy — vy in HY(R?),
vy — vy inLl (R3)forr e [1,27),

vy — v, ae. in RS

Moreover, we can show that E/ (v,) = 0, and so ], (v, ) = 0. We deduce from (8), (34)
and (Kj) that

Er(vr) = Ex(vp) — 6“1_3]/\(UA)
1
= 603 Jes [@K(x) + (VK(x),x UAdx‘f' / ENEEE: -
T 2(6;3) /Rg(lﬁ +G(v)))[4ag(up)vy — (6a + B)G(vy)]dx

> 0.

Set u}, = v, — v,, then we have u}l — 0. In the sequel, one of two conclusions of u,l1 holds:
Case 1: u}, — 0in HY(R?), or
Case 2: there exists a sequence {y.} € R3, Ry > 0,5 > 0 such that

1iminf lub|2dx > 6 > 0. (38)

n—=0 JBg,(y1)

In fact, suppose that Case 2 does not occur. Hence, for any R > 0, we get

lim sup lul|?dx = 0.
" RS Br(vh)

Thus, Lemma 2.4 in [37] implies that u}, — 0in L¥(R3), s € (2,2%). In view of (6), we
see that
lim (Ip * G(ul))G(ul)dx = 0. (39)

n—-+oo JR3

Moreover, we infer from Lemma 2 and (37) that

lim E (u n) = lim Ep(vn) = Ex(vr) < cp (40)
and
lim (Ey)" (u S Jlim (Ex)'(on) — (Ex)'(02) = 0. (41)

By virtue of (39) and (41), we see

0= lim ((Ey) (1}, ul) = lim (/R3 |(—A)%u},|2dx+/Rs K(x)(u}ydx—A/RB |u}1|23dx>.

n—oo n—o0
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Since {u}} is bounded in H%(IR3), then we can suppose that up to a subsequence,
asn — oo,

/RS|( )3u |2dx+/ ul)2dx = x, A/ Il [Pidx — x 42)
for some x > 0. If x > 0, in view of (5), we obtain
I By + [, KCE) 03t = By = Sl 2 g
This together with (42) gives that

3 2 1
x> S,%“)F%, forany A € [,

5 1].
However, (40) implies that
Ch > hm E/\( )

= lim |2dx+/ D)?dx —i/ |ub| % dx 43

n—o0 2% JRr3 n (43)
3
> sz
2 35

By using similar argument as in Lemmas 10, 12 and 13, we show that

a3
mé‘o < 555”‘
Combining with (43) and Lemma 16, we obtain
3 wy 3 —2a 1
ou a5 <oy <md, < Ls2A"%", forallA € [5,1].
3 3 2
which is a contradiction. Thus, x = 0. From (42), we conclude that ||u|| H®?) = 0 that is,

vy — v in HY(R®) and Lemma 17 holds with x = 0 if Case 2 does not occur.
In the following, we suppose that Case 2 is true, that is (38) holds. Then, up to a
sub-sequence, we obtain

20l = oo, (- +23) = @ £0, (EY)w! =0.

Indeed, consider @ := ul(-+z.). Note that {ul} is bounded. Then together
with (38), we deduce that u}, — w! # 0. Therefore, it follows from u} — 01in H%(R?) that
{zl} is unbounded, up to a subsequence, |z},| — +o0. Now we shall prove (ES)' (w!) = 0.

It suffices to prove that <(E§\°)’(u/\%), ) — 0 for any ¢ € C§°(R3).
According to (41), we obtain

[(EL (1), ) = (Ex(2), ) = (Ex (1), )] < 0n (V)] g )
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which implies |(E) (u}), ¥)| = on(D[[$ ]| g (3)- Note that

(Ep(ub), p(- —z5))
_ / / <u;<x>w%(y»(w(xfzi)ﬂp(yfz%,))dxdy
R3 JR3

|x —y 32

+ [ K g~z = A [ (1« Gluk))gudp(x — 2 )dx
A / \u1|22*2u1 () (x — z1)dx (44)
= /R3 /]RS 7”" ))|gl£§f) 71P(y))dxdy+/ K(x—i—z}l)@(x)tp(x)dx

2 [ 5*G(un>>g<un>w< X)dx = A [k 2] (x) g )
= o (1) 9l sy so)-

Since |z}| — +o0 and ¥ € CP(R3), we have
/R K(x +23) — Kol () (x)dx — 0. (45)

Combining (44) and (45), we obtain that for any ¢ € C(R3), <(Eé\o)’(@), ) — 0.
By (K») and v, — v, in L7 (R3), we can see

/R (K(x) — Keo) (1} = 0. (46)

It follows immediately from (40) and (46) that

Ex(up) = cx = Ex(va),  Ea(vn) — Ex(v2) = E&(uy) — 0. (47)
Set u2(-) := ul(-) — w'(- — z}), then u2 — 0 in H%(IR3). Noting that ;Z — wl #£0,
we obtain
/RaK(x)|u%|2dx:/R K(x)|u}z|2dx—|—/ K(x + 21) | (x)[2dx
—2/ (x +zh)ul (x + 2w (x)dx (48)
_/ |vn\2dx—/RBK(x)|v,\|2dx—/RsKoo\wHde—i—on(l).

From (48), Brezis-Lieb Lemma, Lemma 2.6 in [35] and Lemma 2.9 in [38], we deduce that

Ex(u%) = Ex(un) — ®p(up) — El(w!) +04(1),
EX(u%) = @) (u)) — EX(w') +04(1),
(B (u2), ) = (Ej(vn), ) — (Ej(0a), ¥) — ((EL) (@), 9) + 04(1) = 0,(1).

Therefore, together with (47), we obtain
Ex(vn) = Ex(vp) + E& (i) + 0u(1) = Ex(02) + E& (@) + EL () + 04 (1).
It follows from (37) and Lemma 16 that
E (1) = cx — Ex(up) — EG(w') < cn.

Please notice that one of Case 1 and Case 2 is true for v2. If Case 1 holds, then
Lemma 17 holds with [ = 1. If Case 2 occurs, we repeat the above arguments. By iterating
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this process we have sequences of {z@} C R3 such that |2,| — +oo, \z@ —zi| — o0 for
i#jand u) = - w1 — z{fl) with j > 2 satisfying
W, = 0in HL(R3), (EX) (w)) =0
and ‘ )
HUHH%_I?((RS) - ”U)\H%—I}HR% ._ 25‘:1 Ha)](' - Z]”)”%—Il"é(Rﬂ
= llon —0p = Ejog @/ (- = 20) | g m3) + 0n (1), (49)
Ex(vn) — Ex(0p) — L) E& () — ES(u},) = 0u(1).
In view of {v,} is bounded in H%(R3), (49) yields that the iteration stops at some

I. That is, ufj’l — 0in HI"Q(JR?). From (49), it is easy to check that (iv) and (v) are true.
The proof is complete. [J

Lemma 18. For almost every A € [1,1], let {v,} be a bounded (PS)., sequence of E,. Then there
exists a subsequence {v, } converges to a nontrivial vy € HY(R3) \ {0} satisfying

Ex(vy) =cn, (Ep)'(vp) =0,

Proof. From Lemma 17, up to a sub-sequence, there exists vy € H%(R?), nontrivial critical
points w/, j = 1,...,1 of E}, 1 € NU{0} and {z,} C R® with |z},| — +c0, 1 <j <1
such that l
E\(@©) =0, vy =0y Ea(on) = Ex(oa) + ) E&(w)).
j=1
Together with (37), we infer that if [ # 0,

l .
cy = lim Ej(0n) = Ex(vp) + Z;Ego(w]) > m,,
]:
which contradicts with Lemma 16. Therefore, this lemma follows. [

Proof of Theorem 2. Taking a sequence {A,} C [}, 1] satisfying A, — 1, from Lemma 15,
there is a sequence of nontrivial critical points v,, (we may still denote by {v,}) for E,,
and E, (vs) = c),. Now, we prove that {v, } is bounded. It follows from (8) and > 2a
that for every 7 € R,

g(t)T—2G(1) > g(t)T — %G(T) > 0.

Combining (E} (vn),vs) = 0and 3 < 4a we infer that

>Cy,

NI—=

1
- E;\n(vn),vn>

2t
1 A A | *
:EHU”H2;(R3) + Z” /RS(Iﬁ * G(vy))[g(vn)vn —2G(vy)]dx + <3 - 4>/\n /IR<3 |’()n‘2v¢dx

:E/\n (Un )

1 2
ZE”UHH %(RS)’
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which means that {v; } is bounded in H (R3). Hence, by Theorem 1.1 in [32], we obtain that

lim E(v,)

n—o0

~ lim {EM (on) + 221 URS(I,g ¥ G(0n))G(0n))dx + 25 L |vn2;dx} }

n—oo

=limc, =c
n—oo A L

and

lim (E'(vy,), )

n—oo

= tim (B3, o) 90 + (= )| [ (s> Gon)gConp + [ o 2oupis | |

n—oo

:0,

which implies that {v,, } is a bounded (PS)., sequence of E. Hence, in view of Lemma 18,
there is a nontrivial critical point vy € for E with E(vg) = ¢;.
At last, we prove there is a ground state solution to Equation (1). Let

=inf{E(u) :u #0, E'(u) = 0}.

It is easy to see that 0 < m < E(vg) = ¢; < +oo. For any v satisfying E'(v) = 0 and
0 > 0, we see that ||u||Hﬁ(R3) > 0. While, it follows from (Kj), J(v) = 0 and (8) that

E(v) = E(v) —
1
- 6a—3 Jrs

2(6041—3) /R3(I/3 * G(v))[4ag(v)v — (6a + B)G(v)]dx + % /R3 0|2 dx,

[aK(x) 4+ (VK(x), x)]0*dx
+

which implies m > 0. Suppose m = 0, then one has a critical point sequence {v, } of E with
E(v,) — 0. Consequently,

hm |on || =0. (50)

L2 (R3)

Similar as (20), we infer that

[, s = Gong(on)on < ellonliity +Cellonl o

which implies that
lim | (Ig* G(vn))g(vn)vn =0,

n—oo JR3

as € — 0. Combining with (50) and (E'(v,), v,) = 0, we obtain lim, ||UnHH;§(R3) =0,
which contradicts with [|v,|| He(R?) = @ Therefore, 0 < m < +oco. Then let {v,} be a
sequence such that E'(v,) = 0, E(v,) — m. Similarly, we observe that {v, } is bounded.
Using a similar proof of Lemma 18, we infer that there is v € H}(R?) satisfying E'(v) = 0,
E(v) =m. O

5. Conclusions

The main purpose of this paper is to study the existence of ground state solution for
the fractional Choquard equation with critical Sobolev exponent. To prove Theorem 1, we
first establish a key inequality

1— 19604—3

Eeo(1) 2 Exo(ttg) + —p=——Jeo(0) +£(0) [ KeorPx+(9) [ Jufax.  (51)
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Using (51), we can prove Lemmas 8-9, which investigate some properties of Ile.
Then we show 71 = Ceo := inf,, .o maxy~o Eco(11g). We use the general mini-max principle
Proposition 2.8 in [36] to obtain a Cerami sequence for the functional Ec, with Joo(v,) — 0,
where Ew, Joo(vn) are given in (10) and (12), respectively. Finally, we conclude that c« is

3

achieved by using an important estimate coo < §53".
Next, we aim to find ground state solution to Equation (1). Due to the potential is not
a constant, we use Jeanjean’s monotonicity trick. Define a family of functional

_1 AV ul 2y4x 2 2 %
Ex(u) = > R3(|( A)2ul” + K(x)u”)dx > [/R3(Iﬁ*G(u))G(u)dx+ 2 /R3 |u|“edx|.
We show that

¢y = Inf max Ex(u(7)) > max{E;(0), Ex(e)}

forall A € [4,1], where

I = {ueC([0,1], Hg(R%)) : u(0) = 0,u(1) = e}.

Together with Jeanjean’s monotonicity trick, we obtain a bounded sequence {u,} C
HY%(R3) such that
Ex(un) = ¢y, Ej(un) — 0.

To prove that the above sequence {v, } satisfies the (PS) condition, we consider the
following limit problem

(=A)*u + Keou = A(Ig * G(u))g(u) + AMu>~2u, inR3

and conclude that ¢, < m,. Then we can obtain a global compactness result, i.e., Lemma 17,
which implies that there exists a nontrivial critical point v for E.

In the proof, the restriction on « is very crucial, we do not know whether the solution
can still exist for « € (0, %) This is a question that we need to further consider.
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