
Citation: Alsheekhhussain, Z.;

Ibrahim, A.G.; Jawarneh, Y.

Topological Properties of Solution

Sets for τ-Fractional

Non-Instantaneous Impulsive

Semi-Linear Differential Inclusions

with Infinite Delay. Fractal Fract. 2023,

7, 545. https://doi.org/10.3390/

fractalfract7070545

Academic Editor: Gani Stamov

Received: 20 May 2023

Revised: 9 July 2023

Accepted: 12 July 2023

Published: 15 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Topological Properties of Solution Sets for τ-Fractional
Non-Instantaneous Impulsive Semi-Linear Differential
Inclusions with Infinite Delay †

Zainab Alsheekhhussain 1,* , Ahmed Gamal Ibrahim 2 and Yousef Jawarneh 1

1 Department of Mathematic, College of Science, Ha’il University, Hail 55476, Saudi Arabia;
y.jawaneh@uoh.edu.sa

2 Department of Mathematics, College of Sciences, Cairo University, Giza 12613, Egypt;
agamal2000@yahoo.com

* Correspondence: za.hussain@uoh.edu.sa
† 2010 Mathematics Subject Classication. Primary 26A33, 34A08 Secondary 34A60.

Abstract: The knowledge of fractional calculus can be useful in developing models that allow us to
better understand and manage some phenomena. In the present paper, we study the topological
structure of the mild solution set for a semi-linear differential inclusion containing the τ-Caputo frac-
tional derivative in the presence of non-instantaneous impulses and an infinite delay. We demonstrate
that this set is non-empty and an Rδ-set. We use a recent result regarding the existence of solutions
for τ-Caputo fractional semi-linear differential inclusions. Unlike many results, we do not suppose
that the generating semigroup is compact. An illustrative example is given as an application of our
results.

Keywords: non-instantaneous impulses; τ-caputo derivative; semi-linear differential inclusions; mild
solutions; Rδ-sets

1. Introduction

The subject of fractional calculus has many applications in industry, fluid flows,
dynamic systems in control theory, electrical circuits with fractance, generalized voltage
dividers, viscoelasticity, multipoles with fractional-order multipoles in electromagnetism,
electrochemistry, tracers in fluid flows, biological models of neurons, engineering, polymer
science, organic dielectric materials, viscoelastic materials, engineering, rheology, diffusive
transport, electrical, networks, electromagnetic theory and physics [1–12].

Impulsive differential inclusions (IDIs) are good tools for describing events where
states change rapidly at specific times and have many applications in physics and biol-
ogy. Differential equations with impulses were considered for the first time by Milman
and Myshkis [13], and this was then followed by a period of active research on this
subject. When the action of impulses continues on a finite interval, they are called non-
instantaneous impulses. For recent papers on fractional differential inclusions (FDIs) with
non-instantaneous impulses, we refer to [14–22].

It is known that the set of solutions or mild solutions for a differential inclusion (i.e.,
the right-hand side is a multi-valued function) is typically not a singleton. Motivated
by this fact, many scientists have proven, under suitable conditions, that the set of so-
lutions or mild solutions for different differential inclusions is an Rδ-sets, meaning that
this set is a homotopy equivalent to a point from the perspective of algebraic topology.
Therefore, this topic is very important and is reasonable and practical to study. Among these
studies we mention the following: DeBlasi [23], Papageorgiou [24] and Zhou et al. [25]
considered differential inclusions; Gabor et al. [26], Djebali et al. [27], Zhang et al. [28]
and Ma et al. [29] studied IDIs; Alsheekhhussain et al. [30] and Wang et al. [31] looked

Fractal Fract. 2023, 7, 545. https://doi.org/10.3390/fractalfract7070545 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7070545
https://doi.org/10.3390/fractalfract7070545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/ 0000-0002-6198-5646
https://doi.org/10.3390/fractalfract7070545
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7070545?type=check_update&version=2


Fractal Fract. 2023, 7, 545 2 of 26

at semi-linear FDIs with non-instantaneous impulses; and Zhou et al. [32,33] considered
fractional stochastic differential inclusions.

For other contributions on the same subject see, for instance, refs. [34–36] and the
references therein.

In refs. [37–41] the authors demonstrated that the solution set for different kinds of
FDIs is compact.

Almeida [42] introduced the concept of the τ-Caputo fractional derivative that gener-
alized the Caputo fractional derivative. Jarad et al. [43] presented some properties for this
definition. Suechoei et al. [44] applied the results in [42,43] and investigated the existence
and stability of mild solutions for fractional semi-linear differential inclusions containing
τ-Caputo fractional derivatives.

To date, there is no work in the literature regarding the study of the topological
properties of a mild solution set for semi-linear differential inclusions containing τ-Caputo
fractional derivatives, with infinite delay and a linear infinitesimal generator of a semi
group of operators which are not compact.

Motivated by this fact and the aforementioned works, we prove in the present work
that the mild solution set, ΣF ,τ

Ψ (−∞, b], for the following problem:
cDγ,τ

si ,ωx(ω) ∈ Tx(ω) + F(ω, xρ(ω,xω)), a.e. ω ∈ ∪i=m
i=0 (si, θi+1],

x(θ+i ) = Υi(θi, x(θ−i )), i = 1, . . . . . . m,
x(ω) = Υi(ω, x(θ−i )), ω ∈ ∪i=m

i=1 (θi, si],
x(ω) = Ψ(ω), ω ∈ (−∞, 0],

(1)

is non-empty and an Rδ-set, where γ ∈ (0, 1), τ : J → R is continuously differentiable
and an increasing function with τ́(t) 6= 0, ∀t ∈ J, cDγ,τ

si ,ω is the τ-Caputo derivative of
order γ with a lower limit at si [42], T is the infinitesimal generator of a C0-semigroup
{T(ω) : ω ≥ 0} defined on a real Banach space E, B is a phase space, F : J × B →
2E − {φ} is a multifunction, ρ : J× B→ (−∞, b], τ ∈ C1(J) is an increasing function with
τ′(t) 6= 0, ∀t ∈ J, 0 = s0 < θ1 ≤ s1 < θ2 ≤ s2 < . . . < sm < θm+1 = b, Υi : [θi
si]× E→ E and Ψ ∈ B is fixed with Ψ(0) = 0. Furthermore, for any ω ∈ (−∞, b] and any
x : (−∞, b] → E with x|(−∞,0]

∈ B, xω is an element in B defined by (xω)(θ) = x(ω + θ);
θ ∈ (−∞, 0].

It is worth noting that Alsheekhhussain et al. [30] recently demonstrated that the mild
solution set for a similar type for Problem (1) is non-empty and an Rδ-set in the special
cases where τ(t) = t; t ∈ J, ρ(w, xw) = w and the delay is finite.

It is important to mention that, due to the presence of non-instantaneous impulses and
an infinite delay that depends on the function ρ in the considered problem, there are many
difficulties in the proofs that are different from similar previous works, and we will use
an appropriate technique to overcome these difficulties. Therefore, many of the strategies
used in this paper are novel.

The following is a summary of this study’s key contributions.

- A new class of differential inclusions (the right-hand side is a multi-valued function)
is formulated containing τ-Caputo derivatives in the presence of non-instantaneous
impulses and infinite delay in infinite-dimensional Banach spaces.

- We prove that the mild solution set for Problem (1), ΣF,τ
Ψ (−∞, b], is non-empty and an

Rδ-set.
- Our work generalizes what was conducted by Wang et al. [31], in which Problem (1)

was considered without delay (ρ(w, xw) = 0) and τ(t) = t, ∀t ∈ J, and by Al-
sheekhhussain et al. [30], in which a similar type for Problem (1) was considered in spe-
cial cases where τ(t) = t, ∀t ∈ J, ρ(w, xw) = w with finite delay.
Moreover, this work generalizes Theorem 4.1 in [44] when the right-hand side is
a multi-valued function in the presence of both non-instantaneous impulses and
infinite delay.
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- This work is novel and interesting because the linear part is an operator that generates
a non-compact semi-group, the non-linear part is a multi-valued function, and the
studied problem contains the τ-Caputo derivative with non-instantaneous impulses
and infinite delay.

- Our technique helps any researcher interested in extending the results in [23–30,32,33]
to cases where the right-hand side is a multi-valued function in the presence of both
non-instantaneous impulses and infinite delay, while the left-hand side contains the
τ-Caputo derivative.

For the directions of future work, we suggest proving that the set of solutions for the
considered problems in [19,37–41] is non-empty and an Rδ-set.

In Section 2, we collate concepts and known results which will be used later. In Section 3,
the non-emptiness and compactness of ΣF,τ

Ψ (−∞, b] is proven. Section 4 demonstrates that
ΣF,τ

Ψ (−∞, b] is an Rδ-set. An example is presented in Section 5 to illustrate the applicability of
the obtained results.

2. Preliminaries and Notation

Let Pck(E) denote the family of non-empty, convex and compact subsets of E; Pcc(E)
is the family of non-empty closed convex subsets of E; AC(J, E) is the Banach space of
absolutely continuous functions from J to E; and Γ is the Euler gamma function, whereby

AC1,τ(J, E) := {x : J → E, [
1

τ′(t)
d
dt
] x ∈ AC(J, E)}.

Definition 1 ([42]). The τ-Caputo fractional derivative is of order γ, where the lower limit at a,
for a function g ∈ AC1,τ(J, E) , is defined by cDγ,τ

a+ g(t) := Dγ,τ
a+ [g(t)− g(a)], t ∈ J,

AC1,τ(J, E) := {x : J → E, [
1

τ′(t)
d
dt
] x ∈ AC(J, E)},

where
Dγ,τ

a+ g(t) :=
1

τ′(t)
d
dt

I1−γ,τ
a+ g (t), t ∈ J,

and

Iγ,τ
a+ g(t) :=

∫ t

0

(τ(t)− τ(s))γ−1τ′(s)
Γ(γ)

g(s)ds, t ∈ J.

Remark 1. If τ(t) = t, we obtain the Caputo fractional derivative, and if τ(t) = ln t, we obtain
the Caputo–Hadamard fractional derivative. Moreover, Almeida [42] presented an application of the
τ-Caputo fractional derivative in population growth.

Definition 2 ([44]). Let h : J → E and T be the infinitesimal generator of a C0−semigroup
{T(θ) : θ ≥ 0}. The function x ∈ C(J, E) is called a mild solution for the problem{ cDγ,τ

0,ωx(ω) = Tx(ω) + h(ω), ω ∈ J,
x(0) = x0 ∈ E,

if

x(ω) = Kτ
1 (ω, 0)(x0) +

∫ ω

0
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)h(υ)dυ, ω ∈ J,

where for 0 ≤ υ ≤ ω,

Kτ
1 (ω, υ) =

∫ ∞

0
ξγ(θ)T(τ(ω)− τ(υ))γθ)dθ,
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Kτ
2 (ω, υ) = γ

∫ ∞

0
θξγ(θ)T(τ(ω)− τ(υ))γθ)dθ,

ξγ(θ) =
1
γ

θ
−1− 1

γ wγ(θ
− 1

γ ) ≥ 0,

and

wγ(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−γn−1 Γ(n γ + 1)
n!

sin(nπγ), θ ∈ (0, ∞).

Notice that
∫ ∞

0 ξγ(θ)dθ = 1.

Lemma 1 ([44]). The operators Kτ
1 (ω, υ) and Kτ

2 (ω, υ) have the following properties:

1. Kτ
1 (ω, ω) is the identity operator for ω ≥ 0.

2. For any 0 ≤ υ ≤ ω, Kτ
1 (ω, υ) and Kτ

2 (ω, υ) are bounded linear operators with ||Kτ
1 (ω, υ)x|| ≤

M||x|| and ||Kτ
2 (ω, υ)x|| ≤ M

Γ(γ) ||x||, ∀x ∈ E.

3. For any 0 ≤ υ ≤ ω1 ≤ ω2 ≤ b and any x ∈ E,

lim
ω1→ω2

||Kτ
1 (ω1, υ)x− Kτ

1 (ω2, υ)x|| = 0, and lim
ω1→ω2

||Kτ
2 (ω1, υ)x− Kτ

2 (ω1, υ)x|| = 0.

4. If any t > 0, T(t) is compact, then Kτ
1 (ω, υ) and Kτ

2 (ω, υ) are compact for ω, υ > 0.

Next, let I0 = {0, 1, . . . , m}, I1 = {1, 2, .., m} and consider the vectors spaces

PC(J, E) : = {u : J → E : u|Ji
∈ C(Ji, E), i ∈ I0 and u(θ+i ),

u(θi) = u(θ−i ) which are finite for each i ∈ I1},

and
Bb := {x : (−∞, b]→ E such that x0 ∈ B, x|J ∈ PC(J, E)},

where J0 = [0, θ1] and Ji = (θi , θi+1]. A semi-norm on Bb is defined by ||x||Bb = ||x0||B +
supυ∈J ||x(υ)||. Moreover, let

H := {x ∈ Bb : x0(θ) = 0, ∀θ ∈ (−∞, 0]}.

It is known that (H, ||.||H) and (PC(J, E), ||.||PC(J,E)) are Banach spaces where ||x||H =
supω∈J ||x(ω)||, ||x||PC(J,E) = supω∈J ||x(ω)||, and the Hausdorff measure of non-
compactness on PC(J, E) is defined by

χPC(D) := max
i∈I0

χi(D| Ji
),

where D ⊆ PC(J, E) is bounded and χi is the Hausdorff measure of non-compactness on
C(Ji, E) and

D|Ji
= {x∗ : Ji → E : x∗(ω) = x(ω), ω ∈ Ji and x∗(θi) = x(θ+i ), x ∈ D}.

It can be easily seen that the Hausdorff measure of non-compactness on H can be
given by

χH(D) := max
i∈I0

χi(D| Ji
),

where D ⊆ H is bounded.

Definition 3 ([45,46]). A phase space is a vector space B whose elements are functions x :
(−∞, 0]→ E equipped with a semi-norm ||.||B such that

1. If x : (−∞, b] → E is such that x|J ∈ PC(J, E) and x0 ∈ B, then for any ω ∈ [0, b], the
next properties hold:
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(i) xω ∈ B;
(ii) η > 0 exists with ||x(ω)|| ≤ η||xω ||B;
(iii) There is a continuous function L1 : [0, ∞)→ [0, ∞) and a locally bounded function

L2 : [0, ∞)→ [0, ∞) such that

||xω ||B ≤ L1(ω) sup{||x(υ)|| : υ ∈ [0, ω]}+ L2(ω)||x0||B. (2)

(iv) The function ω → xω is continuous from J to B.

2. B is complete.

Following arguments used in the proof of Lemma 3.3 in ([47]), we have the next lemma.

Lemma 2. Let ρ : J × B → (−∞, b] be continuous, Ψ ∈ B− {0} and set R(ρ_) = ρ(J × B) ∩
(−∞, 0]. Assume that:

(Hρ) The function ω → Ψω is continuous from R(ρ_) to B, and there exists a bounded
continuous function jΨ : R(ρ)→ (0, ∞), such that

||Ψω ||B ≤ jΨ(ω)||Ψ||B, ∀ω ∈ R(ρ−).

Then, for any x : (−∞, b]→ E, such that x0 = Ψ and x|J ∈ PC(J, E), one has

||xω ||B ≤ ξ1 sup{||x(υ)|| : υ ∈ [0, max{0, ω]}+ ξ2||Ψ||B, ω ∈ R(ρ−) ∪ J, (3)

where ξ1 = sup{L1(υ) : υ ∈ J} and ξ2 = sup{L2(υ) : υ ∈ J}+ sup{jΨ(υ) : υ ∈ R(ρ−)}.

Proof. Let ω ∈ J. Due to (2), it follows that

||xω ||B ≤ L1(ω) sup{||x(υ)|| : υ ∈ [0, ω]}+ L2(ω)||x0||B
≤ ξ1 sup{||x(υ)|| : υ ∈ [0, ω]}+ L2(ω)||Ψ||B.

If ω ∈ R(ρ−), then by (Hρ), one has

||xω ||B ≤ ||Ψω ||B ≤ sup{jΨ(υ) : υ ∈ R(ρ−)||Ψ||B.

By combining the last two inequalities, we arrive at (3).

Remark 2 ([47], Remark 3.2). (Hρ) is satisfied if Ψ is continuous and bounded.

Definition 4. A function z ∈ Bb is said to be a mild solution of (1) if there is g ∈ L1(J, E) with
g(ω) ∈ F(ω, zρ(ω,xω)) absolutely everywhere, such that

z(ω) =



Ψ(ω), ω ∈ (−∞, 0]
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)g(υ)dυ, ω ∈ [0, θ1]

Υi(ω, z(θ−i )), ω ∈ ∪i∈I1(θi, si],
Kτ

1 (ω, si)Υi(si, z(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)g(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

Notice that this solution function is continuous on (θi, θi+1], i = 1, . . . , m.
We will use the next lemmas later.

Lemma 3 (([48], p. 350) (Mazur’s lemma)). Let (X, ‖ · ‖) be a normed vector space and let
(un)n∈N be a sequence in X that converges weakly to u0 ∈ X; then, there is a sequence (vn)n∈N
such that vn is a convex combination of un, un+1, . . . .., uk(n) and vn converges strongly to u0.

Lemma 4 ([49], Corollary 3.3.1 and Proposition 3.5.1). Let W ∈ Pcc(E) and R : W → Pck(E)
be a closed multifunction which is χ-condensing, where χ is a non-singular measure of non-
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compactness defined on E. Then, Fix(R) is non-empty. Moreover, if γ is monotone and Fix(R) is
bounded, then it is compact.

Lemma 5 (([50], Theorem 1) (generalized Young’s inequality)). Suppose r > 0, a : J → [0, ∞)
is locally integrable and g : J → [0, L] is non-decreasing continuous function, L > 0, and
u : J → [0, ∞) is locally integrable with

u(t) ≤ a(t) + g(t)
t∫

0

(t− s)r−1u(s)ds , ∀t ∈ J.

Then,

u(t) ≤ a(t) +
t∫

0

[
∞

∑
n=1

(g(t)Γ(r))n

Γ(nr)
(t− s)nr−1a(s)]ds, t ∈ J.

Definition 5 ([51]). A subset D of a metric space Y is said to be contractible if there is a point
x0 ∈ D and a continuous function Z : [0, 1]× D → D, such that Z(0, x) = x and Z(1, x) =
x0, ∀x ∈ D.

Definition 6 ([51]). A metric space Y is called an Rδ-set if Y = ∩∞
n=1Kn, where (Kn) is a

decreasing sequence of non-empty compact contractible subsets.

Remark 3 ([52], Example 1.2.12). An Rδ-set does not need to be contractible. For more on Rδ-sets,
we refer the reader to [53].

3. The Compactness of ΣF,τ
Ψ (−∞, b]

This section shows that ΣF,τ
Ψ (−∞, b] is non-empty and compact in Bb.

Let x ∈ Bb with

x(ω) =

{
Ψ(ω), ω ∈ (−∞, 0],
x(ω), ω ∈ [0, b].

(4)

Then, a function x ∈ Bb with x(ω) = Ψ(ω); ω ∈ (−∞, 0] belongs to ΣF,τ
Ψ (−∞, b] if and

only if the function x verifies the integral equation:

x(ω) =



0, ω ∈ (−∞, 0]
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)g(υ)dυ, ω ∈ [0, θ1]

Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)g(υ)dυ, ω ∈ ∪i∈I1(si, θi+1],

where g ∈ L1(J, E) with g(ω) ∈ F(ω, xρ(ω,xω)) almost everywhere.

Theorem 1. Suppose the following conditions hold:
(HT) T : D(T) ⊆ E → E is a linear closed operator generating an equicontinuous semi-

group {T(ω) : ω ≥ 0} of bounded linear operators, and M ≥ 1, such that supω≥0 ||T(ω)||
≤ M.

(HF) F : J × B→ Pck(E), such that
(HF1) for every z ∈ B, the multifunction ω −→ F(ω, z) admits a strongly measurable

selection, and for almost every ω ∈ J, the multifunction z −→ F(ω, z) is upper semi-continuous.
For (HF2), there exists a function ϕ ∈ LP(I,R+)(P > 1

γ ) such that, for any z ∈ B

‖F(ω, z)‖ ≤ ϕ(ω) (1 + ‖z‖B), a.e. ω ∈ J.
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For (HF3), there is a β ∈ LP([0, b], E), p > 1
γ such that, for every bounded subset D ⊂ B,

we have
χE(F(ω, D)) ≤ β(ω) sup

θ∈(−∞,0]
χE{z(θ) : z ∈ D}, a.e. for ω ∈ J. (5)

(H) for any i = 1, .., m, Υi : [θi, si] × E → E is uniformly continuous on bounded sets,
Υi(ω, .); ω ∈ J maps the bounded sets to relatively compact subsets, and σi > 0 with

||Υi(ω, x)|| ≤ σi||x||, ∀x ∈ E. (6)

Then, ΣF,τ
Ψ (−∞, b] is not void and a compact subset of Bb, provided that

M(σ +
ξ1

Γ(γ)
||ϕ||Lp(J,R+)κηb) < 1, (7)

and
4M

Γ(γ)
κηb||β||LP(J, R+) < 1 (8)

where κ = (maxυ∈[0,b] τ′(υ))
1

p−1 and ηb = M
Γ(γ) (

p−1
γp−1 )

p−1
p (τ(b)− τ(0))γ− 1

p .

Proof. Let x ∈ H. Due to (HF1), g ∈ L1(J, E) with g(ω) ∈ F(ω, xρ(ω,xω)) almost every-
where; therefore, we can define a multifunction Φ on H as y ∈ Φ(x) if and only if

y(ω) =



0, ω ∈ (−∞, 0]
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)g(υ)dυ, ω ∈ [0, θ1],

Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)g(υ)dυ, ω ∈ ∪i∈I1(si, θi+1],

(9)

where x is defined by (3). Notice that if x is a fixed point for Φ, then x is a solution for
Problem (1).

Step 1. Let

υ =
M||x0||+ M(1+ξ2||Ψ||B)

Γ(γ) ||ϕ||Lp(J,R+)κηb

1− [M(σ + ξ1
Γ(γ) ||ϕ||Lp(J,R+)κηb)]

, (10)

and Dν = {z ∈ PC(J, E) : ||z|| ≤ υ}. We show that Φ(Dν) ⊆ Dν. Note that, due to (3),
for any ω ∈ J and any x ∈ H, one has

||xρ(ω,xω)||B ≤ ξ1ν + ξ2||Ψ||B. (11)
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Let x ∈ Dυ and y ∈ Φ(x). Then, g ∈ L1(J, E) with g(ω) ∈ F(ω, xρ(ω,xω)) almost
everywhere, such that y satisfies (9). Using (HF2), Lemma (1), (9), (11) and Holder’s
inequality, it follows for ω ∈ (0, θ1] that

||y(ω)|| ≤ M||x0||+
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)

∫ ω

0
(τ(ω)− τ(υ))γ−1τ′(υ)ϕ(υ)dυ

≤ M||x0||+
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)
||ϕ||Lp(J,R+) ×

(
∫ ω

0
(τ(ω)− τ(υ))

(γ−1)p
p−1 (τ′(υ))

p
p−1 dυ)

p−1
p (12)

≤ M||x0||+
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)
||ϕ||Lp(J,R+)κ ×

(
∫ ω

0
((ω)− τ(υ))

(γ−1)p
p−1 τ′(υ)dυ)

p−1
p

≤ M||x0||+
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)
||ϕ||Lp(J,R+)κηb.

Next, by (6), one has

sup
i=1.,2,..,m

sup
ω∈[θ1,si ]

||Υi(ω, x(θ−i ))|| ≤ συ. (13)

Moreover, as in (12), on has, for θ ∈ (si, θi+1], i ∈ I1,

||y(ω)|| ≤ M συ +
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)
||ϕ||Lp(J,R+)κηb. (14)

Combining (10) and (12)–(14), we obtain

||y||H ≤ M||x0||+
M(1 + ξ2||Ψ||B)

Γ(γ)
||ϕ||Lp(J,R+)κηb

+υM(σ +
ξ1

Γ(γ)
||ϕ||Lp(J,R+)κηb)

= υ.

Step 2. Φ has a closed graph on Dν.
Assume that xn, yn ∈ Dν with yn ∈ Φ(xn); n ≥ 1, xn → x ∈ Dν and yn → y ∈ Dν.

Then, gn ∈ L1(J, E); n ≥ 1 with gn(ω) ∈ F(ω, (xn)ρ(ω,(xn)ω)) almost everywhere, such that

yn(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gn(υ)dυ, ω ∈ [0, θ1],

Υi(ω, xn(θ
−
i )), ω ∈ ∪i∈I1(θi si],

Kτ
1 (ω, si)Υi(si, xn(θ

−
i ))

+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)gn(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

(15)

Due to (HF2) and (11), we obtain

||gn(υ)|| ≤ ϕ(υ)(1 + ξ1ν + ξ2||Ψ||B), a. e. υ ∈ J. (16)

Then, (gn) is bounded in LP(J, E), and thus, there is a subsequence of (gn) denoted,
again, by (gn) such that gn ⇀ g ∈ LP(J, E). From Lemma 3 (Mazur’s Lemma), we can find
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a sequence (zn)n≥1 such that each zn is a convex combination of gn, gn+1, . . . ., gk(n) and
that zn converges strongly to g in LP(J, E). Let

ỹn(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)zn(υ)dυ, ω ∈ [0, θ1],

Υi(ω, xn(θ
−
i )), ω ∈ ∪i∈I1(θi si],

Kτ
1 (ω, si)Υi(si, xn(θ

−
i ))

+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)zn(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

By (16), for every ω ∈ J, υ ∈ (0, ω] and every n ≥ 1, one has

||(τ(ω)− τ(υ))γ−1τ′(υ)zn(υ)|| ≤ (τ(ω)− τ(υ))γ−1τ′(υ) ϕ(υ) ∈ LP((0, ω],R+).

Since Υi(ω, .) is uniformly continuous on bounded sets, by Lebesgue’s dominated
convergence theorem, it yields ỹn(ω)→ y0(ω); ω ∈ J, where

y0(ω) =



0, ω ∈ (−∞, 0]
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)g(υ)dυ, ω ∈ [0, θ1],

Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)g(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

Note that (ỹn) is a subsequence of (yn), such that y = y0.
Next, by (3), for any ω ∈ R(ρ−) ∪ J, one has

lim
n→∞

||(xn)ω − xω || = ||(xn − x)ω ||

≤ lim
n→∞

ξ1||xn − x||
H
+ ξ2||(xn − x)0||B (17)

= 0.

Then, by the continuity of ρ on J × B, it yields limn→∞ ρ(ω, (xn)ω) = ρ(ω, xω); hence,
by the second axiom of Definition (2), limn→∞ ||xρ(ω,(xn)ω) − xρ(ω,xω)|| = 0. Consequently,
again by (17), we obtain

lim
n→∞

||(xn)ρ(ω,(xn)ω) − xρ(ω,xω)||B
≤ lim

n→∞
||(xn)ρ(ω,(xn)ω) − xρ(ω,(xn)ω)||+ lim

n→∞
||xρ(ω,(xn)ω) − xρ(ω,xω)||

≤ ξ1 lim
n→∞

||xn − xω ||H (18)

= 0.

Thus, from (18) and the upper semi-continuity of F(ω, .); a. e. ω ∈ J, it follows that
g(ω) ∈ F(ω, xρ(ω,xω)) almost everywhere, and hence, y ∈ Φ(x).

Step 3. Φ(x) is compact for any x ∈ Dν.
Let yn ∈ Dν with yn ∈ Φ(x); n ≥ 1. Using the same arguments in step 3, there is a

convergent subsequence of (yn) converging in Dν, proving that Φ(x) is relatively compact.
Note that step 3 implies that Φ(x) is closed, and therefore it is compact.

Step 4. We demonstrate that the subsets Z|Ji
(i ∈ I0) are equicontinuous, where

Z = Φ(Dv) and

Z|Ji
= {y∗ ∈ C(Ji, E) : y∗(ω) = y(ω), ω ∈ Ji, y∗(θi) = y(θ+i ), y ∈ Φ(x), x ∈ Dv}.
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Case 1. Suppose i = 0, y∗ ∈ Z|J0
. Then, there is x ∈ Dυ and g ∈ Lp([0, θ1], E) with

g(ω) ∈ F(ω, xρ(ω,xω)) almost everywhere, such that

y∗(ω) = Kτ
1 (ω, 0)x0 +

∫ ω

0
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)g(υ)dυ, ω ∈ [0, θ1].

Let t1, t2 be 0 ≤ t1 < t2 ≤ θ1. Then, by the second statement of Lemma 1, it follows that

‖y∗(t2)− y∗(t1)‖
≤ ||Kτ

1 (t2, 0)x0 − Kτ
1 (t1, 0)x0||

+||
∫ t2

0
(τ(t2)− τ(υ))γ−1τ′(υ)Kτ

2 (t2, υ)g(υ)dυ

−
∫ t1

0
(τ(t1)− τ(υ))γ−1τ′(υ)Kτ

2 (t1, υ)g(υ)dυ||

≤ ||Kτ
1 (t2, 0)x0 − Kτ

1 (t1, 0)x0||

+
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)

∫ t2

t1

(τ(t2)− τ(υ))γ−1τ′(υ)ϕ(υ)dυ (19)

+
M(1 + ξ1ν + ξ2||Ψ||B)

Γ(γ)

×
∫ θ1

0
|(τ(t2)− τ(υ))γ−1 − (τ(t1)− τ(υ))γ−1|τ′(υ)ϕ(υ)dυ

+||
∫ θ1

0
(τ(t1)− τ(υ))γ−1τ′(υ)||Kτ

2 (t2, υ)g(υ)− Kτ
2 (t1, υ)g(υ)|| dυ.

=
i=4

∑
i=1

Ii.

Due to the third statement of Lemma (1), lim
t2→t1

I1 = 0. For I2, we have

lim
t2→t1

I2 =
M(1 + υ)

Γ(γ)
lim

t2→t1

∫ t2

t1

(τ(t2)− τ(υ))γ−1τ′(υ)ϕ(υ)dυ

≤ κM(1 + υ)

Γ(γ)
||ϕ||LP([J,R+) lim

t2→t1
(
∫ t2

t1

(τ(t2)− τ(υ))
P(γ−1)

P−1 τ′(υ)dυ)
P−1

P = 0.

For I3, using the Holder’s inequality, we have

lim
θ2→θ1

I3 =
M(1 + υ)

Γ(γ)
×

lim
t2→t1

∫ t1

0
|(τ(t2)− τ(υ))γ−1 − (τ(t1)− τ(υ))γ−1|τ′(υ)ϕ(υ)dυ .

≤ κM(1 + υ)

Γ(γ)
‖ϕ‖LP

(J,R+)
×

[ lim
t2→t1

∫ t1

0
|(τ(t2)− τ(υ))γ−1 − (τ(t1)− τ(υ)γ−1)

p
p−1 |τ′(υ)dυ]

p−1
p .

Notice that ω = γ−1
1− 1

P
∈ (−1, 0). Then, for τ(υ) < τ(t1) < τ(t2), we have (τ(t1)−

τ(υ))ω ≥ (τ(t2)− τ(υ))ω. Applying Lemma 3 in [54] and keeping in mind that P−1
P ∈

(0, 1), we obtain
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|
[
(τ(t1)− τ(υ))ω

] P−1
P −

[
(τ(t2)− τ(υ))ω

] P−1
P |

≤
[
(τ(t1)− τ(υ))ω − (τ(t2)− τ(υ))ω

] P−1
P .

Then,

|(τ(t1)− τ(υ))γ−1 − (τ(t2)− τ(υ))γ−1|

≤
[
(τ(t1)− τ(υ))ω − (τ(t2)− τ(υ))ω

] P−1
P .

This leads to

|(τ(t1)− τ(υ))γ−1 − (τ(t2)− τ(υ))γ−1|
P

P−1

≤ (τ(t1)− τ(υ))ω − (τ(t2)− τ(υ))ω.

Therefore,

lim
t2→t1

I3

≤ κM(1 + ξ1ν + ξ2||Ψ||B)
Γ(γ)

‖ϕ‖LP
(J,R+)

×

[ lim
t2→t1

∫ t1

0
((τ(t1)− τ(υ))ω − (τ(t2)− τ(υ))ω)τ′(υ)dυ]

p−1
p

≤
κM(1 + ξ1ν + ξ2||Ψ||B)‖ϕ‖LP

(J,R+)

Γ(γ)
×

[ lim
t2→t1

1
ω + 1

[(τ(t1)− τ(0))ω+1

+(τ(t2)− τ(t1))
ω+1 − (τ(t1)− τ(0))ω+1]

P−1
P

= 0.

Next, for any υ ∈ [0, θ], one has

(τ(t1)− τ(υ))γ−1τ′(υ)||Kτ
2 (t2, υ)− Kτ

2 (t1, υ)||g(υ)

≤ 2M(ν + 1)
Γ(γ)

(τ(t1)− τ(υ))γ−1τ′(υ)ϕ(υ) ∈ LP(J,R+).

Moreover, for any υ ∈ [0, θ1], the equicontinuity of {T(θ) : θ > 0 leads to

lim
t2→t1

(τ(t1)− τ(υ))γ−1τ′(υ)||Kτ
2 (t2, υ)g(υ)− Kτ

2 (t1, υ)g(υ)||

= (τ(t1)− τ(υ))γ−1τ′(υ)×

lim
θ2→θ1

∫ ∞

0
θξγ(θ)||(T(τ(t2)− τ(υ))γθ)g(υ)− T(τ(t1)− τ(υ))γθ)g(υ)||dθ

= 0.

Therefore, by Lebesgue’s dominated convergence theorem, lim
t2→t1

I4 = 0. Then, Relation

(19) implies lim
t2→t1

‖y∗(t2)− y∗(t1)‖ = 0.
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Case 2. Assume i = 1, y∗ ∈ Z|J1
. Then, there is x ∈ Dυ and g ∈ Lp([θ1, θ2], E) with

g(θ) ∈ F(θ, xρ(θ,xθ)
) almost everywhere, such that

y∗(θ) =


Υ1(θ, x(θ−1 )), θ ∈ (θ1, s1],
Kτ

1 (θ, s1)Υ1(s1, x(θ−1 ))

+
∫ θ

s1
(τ(θ)− τ(υ))γ−1τ′(υ)Kτ

2 (θ, υ)g(υ)dυ, θ ∈ (s1, θ2],
(20)

where y∗(θ1) = limθ→→θ1 y∗(θ). Let θ1 < t1 ≤ t2 ≤ s1. From (20) and the uniform
continuity of Υ1 on bounded subsets, this yields

lim
t2→t1
‖y∗(t2)− y∗(t1)‖ = lim

t2→t1

∥∥Υ1(t2, x(θ−1 ))− Υ1(t2, x(θ−1 ))
∥∥ = 0.

Let s1 < t1 ≤ t2 ≤ θ2. Then

lim
t2→t1
‖y∗(t2)− y∗(t1)‖

≤ lim
t2→t1

∥∥Kτ
1 (t2, s1)Υ1(s1, x(θ−1 ))− Kτ

1 (t1, s1)Υ1(s1, x(θ−1 ))
∥∥

+||
∫ t2

s1

(τ(t2)− τ(υ))γ−1τ′(υ)Kτ
2 (t2, υ)g(υ)dυ

−
∫ t1

s1

(τ(t1)− τ(υ))γ−1τ′(υ)Kτ
2 (t1, υ)g(υ)dυ||.

By the second statement of Lemma (1) and by using similar arguments as in the first
case, one can show that lim

t2→t1
‖y∗(t2)− y∗(t1)‖ = 0.

Therefore, Z|Ji
is equicontinuous for any i ∈ I0.

Step 5. Let D1 = convΦ(Dυ), Dn = convΦ(Dn−1), n ≥ 2, and D = ∩n=1Dn. Notice
that D is closed, bounded, convex and Φ(D) ⊂ D. In this step, we demonstrate that D is
compact. By the generalized Cantor’s intersection property [55], it is enough to show that

lim
n→∞

χH(Dn) = 0. (21)

Let ε > 0. Due to Lemma 5 in [56], there is a sequence (yk)k≥1 in Φ(Dn−1) such that

χHΦ(Dn−1) ≤ 2χH{yk : k ≥ 1}+ ε.

= 2 max
i∈I0

χi{yk|Ji
: k ≥ 1}+ ε, (22)

where χi is the Hausdorff measure of non-compactness on C(Ji, E). As a result of step 4,
the set Φ(Dυ)|Ji

(i ∈ I0) is equicontinuous, and hence, χi{yk|Ji
: k ≥ 1} = supθ∈Ji

χE{yk(θ) :

k ≥ 1}. Then, (22) becomes

χH(Dn) ≤ 2 sup
θ∈[0,b]

χE{yk(θ) : k ≥ 1}+ ε. (23)

Suppose xk ∈ Dn−1 such that yk ∈ Φ(xk), k ≥ 1. Then, for any k ≥ 1, there exists
gk ∈ L1(J, E) with gk(ω) ∈ F(ω, xρ(ω,(xk)ω

) almost everywhere, and

yk(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gk(υ)dυ, ω ∈ [0, θ1],

Υi(ω, xk(θ
−
i )), ω ∈ ∪i∈I1(θi si],

Kτ
1 (ω, si)Υi(si, xk(θ

−
i ))

+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)gk(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

(24)
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Using (HF3) to obtain υ ∈ J for almost everywhere,

χE{gk(υ) : k ≥ 1} ≤ χ{F(υ, (xk)ρ(υ,(xk)υ)) : k ≥ 1}
≤ β(υ) sup

θ∈(−∞,0]
χ{xk(ρ(υ, (xk)υ) + θ) : k ≥ 1}

≤ β(υ) sup
δ∈(−∞,υ]

χ{xk(δ) : k ≥ 1} (25)

≤ β(υ) sup
δ∈[0,υ]

χ{xk(δ) : k ≥ 1}

≤ β(υ)χH(Dn−1) = γ(υ).

In addition, from (HF3), ||gk(ω)|| ≤ ϕ(ω) (1 + ξ1ν + ξ2||τ||B), ∀ k ≥ 1, and for
almost ω ∈ J, {gk : k ≥ 1} is integrably bounded. In view of Theorem 4.2.1 in [49] or
Lemma 4 in [57], there is a compact set Kε ⊆ E, a measurable set Jε ⊂ J, with measures less
than ε, and a sequence of functions {zε

k} ⊂ LP(J, E) for all υ ∈ J, {zε
k(s) : k ≥ 1} ⊆ Kε and

||gk(υ)− zε
k(υ)|| < 2γ(υ) + ε, for all k ≥ 1, and all υ ∈ J − Jε. (26)

By using the properties of χ, (25), (26) and Minkowski’s inequality, it follows that

χ{
∫

J0−Jε

(τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)(gk(υ)− zε

k(υ))dυ : k ≥ 1}

≤ 2M
Γ(γ)

∫
J0−Jε

(τ(ω)− τ(υ))γ−1τ′(υ)(2γ(υ) + ε)dυ

≤ 2M
Γ(γ)

∫
J0−Jε

(τ(ω)− τ(υ))γ−1τ′(υ)(2β(υ)χPC(J,E)(Dn−1) + ε)dυ (27)

≤ 2M
Γ(γ)

[2κηb||β||LP(J, R+) χPC(J,E)(Dn−1)

+ε
∫

J0−Jε

(τ(ω)− τ(υ))γ−1τ′(υ)dυ]

≤ 2M
Γ(γ)

[2κηb||β||LP(J, R+) χPC(J,E)(Dn−1) +
ε(τ(b)− τ(0))γ

γ
],

and

χ{
∫

Jε

(τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gk(υ)dυ : k ≥ 1}

≤ 2M
Γ(γ)

∫
Jε

(τ(ω)− τ(υ))γ−1τ′(υ)χ{gk(υ) : k ≥ 1}dυ

≤ 2M
Γ(γ)

∫
Jε

(τ(ω)− τ(υ))γ−1τ′(υ)γ(υ)dυ (28)

≤ 2M
Γ(γ)

χPC(J,E)(Dn−1)
∫

Jε

(τ(ω)− τ(υ))γ−1τ′(υ)β(υ)dυ

≤ 2κM
Γ(γ)

χPC(J,E)(Dn−1) ||β||Lp(J,R+)(
∫

Jε

(τ(ω)− τ(υ))
(γ−1)p

p−1 dυ)
p−1

p .

Note that

χ{
∫

J0−Jε

(τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)zε

k(υ))dυ : k ≥ 1} = 0, (29)
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and ∫
J0

τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gk(υ)dυ

≤
∫

Jε

τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gk(υ)dυ (30)

+
∫

J−Jε

τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)(gk(υ)− zε

k(υ))dυ

+
∫

J−Jε

τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)zε

k(υ)dυ.

Then, the inequalities in (27)–(30) lead to

χ{
∫

J0

(τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gk(υ)dυ : k ≥ 1}

≤ 2κM
Γ(γ)

χPC(J,E)(Dn−1) ||β||Lp(J,R+)(
∫

Jε

(τ(ω)− τ(υ))
(γ−1)p

p−1 dυ)
p−1

p (31)

+
2M

Γ(γ)
[2κηb||β||LP(J, R+) χPC(J,E)(Dn−1) +

ε(τ(b)− τ(0))γ

γ
].

Taking into account that ε is arbitrary, it follows from (31) that

χ{
∫

J0

(τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gk(υ)dυ : k ≥ 1}

≤ 4M
Γ(γ)

κηb||β||LP(J, R+) χPC(J,E)(Dn−1). (32)

Next, since Υi(ω, .) maps bounded sets to relatively compact sets, and since Kτ
1 is

linear and bounded,

χ{Kτ
1 (ω, si)Υi(si, xk(θ

−
i )) : k ≥ 1} = 0, ∀i = 1, .., m. (33)

Through (24), (32) and (33), it yields that,

χ{yk(θ) : k ≥ 1}

≤ 4M
Γ(γ)

κηb||β||LP(J, R+) χPC(J,E)(Dn−1), ∀θ ∈ J.

This relation with (23) implies

χH(Dn) ≤
4M

Γ(γ)
κηb||β||LP(J, R+) χPC(J,E)(Dn−1), ∀n ≥ 1.

One can obtain the following after a few steps.

χH(Dn) ≤ (
4M

Γ(γ)
κηb||β||LP(J, R+))

n−1χPC(J,E)(D1), ∀n ≥ 1. (34)

Using (15) and (34), we obtain (23). Applying Lemma (4) to conclude this, the fixed
points for the multifunction Φ : D → Pck(D) are non-empty. Moreover, as in step 1, one can
prove that, Fix(Φ) is bounded. By Lemma (4), again, Fix(Φ) is compact in H, and hence,
ΣF

τ (−∞, b] is no-empty and a compact subset of Bb.



Fractal Fract. 2023, 7, 545 15 of 26

4. ΣF,τ
Ψ (−∞, b] Is an Rδ-Set

Consider the multi-valued function F̃ : J × B→ Pck(E) which is defined by

F̃ (t, u) =

{
F(t, u), ||u|| < υ,
F(t, υu

||u|| ), ||u|| ≥ υ, (35)

where υ is defined by (13). Since F̃ = F on Dυ, the solution set of mild solutions for
Problem (1) is equal to the solution set of mild solutions for the problem:

cDγ,τ
si ,θ

x(θ) ∈ Tx(θ) + F̃(θ, xρ(θ,xθ)
), a.e. θ ∈ ∪i=m

i=0 (si, θi+1],
x(θ+i ) = Υi(θi, x(θ−i )), i ∈ I1
x(θ) = Υi(θ, x(θ−i )),∪i∈I1(θi, si],
x(t) = Ψ, t ∈ (−∞, 0].

(36)

Obviously, F̃ satisfies (HF1) and almost for t ∈ J,

||F̃ (t, u)|| ≤
{

ϕ(t)(1 + ||u||) ≤ ϕ(t)(1 + υ) = ξ(t), ||u|| < υ,
ϕ(t)(1 + || υu

||u|| ||) = ϕ(t)(1 + υ) = ξ(t), ||u|| ≥ υ.

Thus, we can assume, without loss of generality, that F satisfies the following condition:
(HF2)

∗ is a function ξ ∈ LP(I,R+)(P > 1
γ ) such that, for every z ∈ Θ,

‖F(t, z)‖ ≤ ξ(t), a.e. t ∈ J. (37)

We recall the following lemma (see [18,22]).

Lemma 6. Assume that the multi-valued function F satisfies (HF1) and (HF2)
∗. Then, there is

{Fn}∞
n=1, Fn : J × B→ Pck(E) satisfying
(i) Every Fn (t, .) is almost continuous for t ∈ J.
(ii) Fn+1(t, u) ⊆ Fn(t, u) , coF(t, {y ∈ B : ||y− u||B ≤ 31−n}), ∀ n ≥ 1 and ∀ (t, u) ∈

J × B.
(ii) F(t, u) = ∩n≥1Fn(t, u).
(iv) For every n ≥ 1, there exists a selection zn : J × B → E of Fi such that Υn(., u) is

measurable for any u ∈ B and zn(t, .); t ∈ J is locally Lipschitz.

Remark 4. From (iv) in Lemma 6, for t ∈ J, zn(t, .), n ≥ 1, is almost continuous.

By the symbol ΣFn ,τ
Ψ (−∞, b], we denote the set of mild solutions to the following

fractional neutral impulsive semi-linear differential inclusions with finite delay:
cDγ,τ

si ,ωx(ω) ∈ Tx(ω) + Fn(ω, xρ(ω,xω)), a.e. ω ∈ ∪i=m
i=0 (si, θi+1],

x(θ+i ) = Υi(θi, x(θ−i )), i ∈ I1,
x(ω) = Υi(ω, x(θ−i )), θ ∈ ∪i∈I1(θi, si],
x(t) = Ψ, t ∈ (−∞, 0].

(38)

From Theorem (1) and Lemma (6), we obtain the following theorem.

Theorem 2. Under the assumptions of Theorem 1 after replacing (HF2) with (HF2)∗, there is a
natural number N0 such that ΣFn ,τ

Ψ (−∞, b]; n ≥ N0 is non-empty and compact in Bb.

Proof. We can use similar arguments to the ones used in the proof of Theorem (1) to
demonstrate this theorem. Therefore, we focus on the differences. Let ε > 0 and N0 be
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a natural number with 2ηb M
Γ(γ) ||β||LP(J, R+)3

1−n < ε, ∀n ≥ N0. Fix n0 ≥ N0 and define a

multi-operator Φn0 : H → 2H as follows: y ∈ Φn0 if and only if

y(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gn0(υ)dυ,

ω ∈ [0, θ1],
Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi, si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)gn0(υ)dυ, ω ∈ ∪i∈I1(si, θi+1]

where gn0 ∈ L1(J, E) such that gn0(ω) ∈ F(ω, xρ(ω,xω)) almost everywhere. Using similar
arguments as the ones in the proof of Theorem (1), the values of Φn0 are convex com-
pact and Φn0(Dv) ⊆ Dv. Moreover, Φn0 is closed and Φn0(Dυ) is equicontinuous. Let

Dn0 =
∞⋂

r=N0

Dr,n0 , where D1,n0 = convΦn0(Dv) and Dr+1,n0 = convΦn0(Dr,n0), r ≥ 2. To

show the compactness of Dn0 , it suffices to show that lim
r→∞

χH(Dr,n0) = 0. As in step 5 in

Theorem (1), we have

χH(Dr,n0) ≤ 2 sup
ω∈[0,b]

χE{yk(ω) : k ≥ 1}+ ε, (39)

where, for any k ≥ 1, we have

yk(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gn0

k (υ)dυ, ω ∈ [0, θ1],
Υi(ω, xk(θ

−
i )), ω ∈ ∪i∈I1(θi , si],

Kτ
1 (ω, si)Υi(si, xk(θ

−
i ))

+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)gn0
k (υ)dυ, ω ∈ ∪i∈I1(si, θi+1],

and xk ∈ Dr−1,n0 , yk ∈ Φ(xk), k ≥ 1 and gn0
k ∈ L1(J, E), such that gn0

k (ω) ∈ Fn0

(ω, (xk )ρ(ω,(xk)ω)) almost everywhere, Note that, due to Remark 4.2 in [31], it follows
for almost everywhere that υ ∈ J,

χE{gn0
k (υ) : k ≥ 1} ≤ χ{Fn0(υ, (xk)ρ(υ,(xk)υ)) : k ≥ 1}

≤ β(υ) sup
θ∈(−∞,0]

χ{xk(ρ(υ, (xk)υ) + θ) : k ≥ 1}+ 31−n0

≤ β(υ) sup
δ∈(−∞,υ]

χ{xk(δ) : k ≥ 1}+ 31−n0 (40)

≤ β(υ) sup
δ∈[0,υ]

χ{xk(δ) : k ≥ 1}+ 31−n0

≤ β(υ)[χH(Dr−1,n0) + 31−n0 ].

By using the arguments in (27)–(33), from (40), it yields

χH(Dr,n0) ≤
4M

Γ(γ)
κηb||β||LP(J, R+)χH (Dr−1,n0)

+
4M

Γ(γ)
κηb||β||LP(J, R+)3

1−n0

≤ 4M
Γ(γ)

κηb||β||LP(J, R+)χH (Dr−1,n0) + 2ε, ∀n ≥ 1. (41)

Since ε is arbitrary, Relation (41) becomes

χχH (Dr,n0) ≤
4M

Γ(γ)
κηb||β||LP(J, R+)χH (Dr−1,n0).
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Similar to the proof of Theorem (1), we can show that lim
r→∞

χχH (Dr,n0) = 0, and hence

by the generalized Cantor’s intersection property, the set Dn0 is non-empty and compact
in H. Similar to Theorem (1), the set ΣFn ,τ

Ψ (−∞, b] is non-empty and a compact subset in
Bb.

Theorem 3. Suppose that the assumptions of Theorem (2) hold. Then, ΣF ,τ
Ψ (−∞, b] = ∩∞

n=N0

ΣFn ,τ
Ψ (−∞, b].

Proof. Due to (ii) in Lemma (6), one can conclude that ΣF,τ
x0 [0, b] ⊆ ∩∞

r=N0
ΣFr ,τ

x0 [0, b]. Let

x ∈ ∩∞
n=N0

ΣFn ,τ
x0 [0, b]. Then, for any n ≥ N0, there exists gn ∈ L1(J, E) such that gn(ω) ∈

Fn(ω, xρ(ω,xω)), for ω ∈ J and

x(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)gn(υ)dυ, ω ∈ [0, θ1],

Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi, si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)gn(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

almost everywhere.
Using similar arguments to the ones in step 2, in the proof of Theorem (1), we can show

that there is a subsequence (zn)n≥1 of (gn)n≥1 that converges to g for almost everywhere.
We also have

x(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)zn(υ)dυ, ω ∈ [0, θ1],

Υi(ω, x(θ−i )), ω ∈ ∪i=m
i=1 (θi , si],

Kτ
1 (ω, si)Υi(si, x(θ−i ))

+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)zn(υ)dυ, ω ∈ ∪i=m
i=1 (si, θi+1].

(42)

Next, using Lemma 5, (ii), for ω ∈ J, we obtain

zn(ω) ∈ coF(ω, {y ∈ B : ||y− xρ(ω,xω)|| ≤ 31−n}), ∀n ≥ N0.

which implies the upper semi-continuity of F(ω, .) almost everywhere, to g(ω) ∈ F(ω,
xρ(ω,xω)) for ω ∈ J almost everywhere. By taking the limit in (42) and applying the
dominated convergence theorem, it yields

x(ω) =



0, ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)g(υ)dυ, ω ∈ [0, θ1],

Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi, si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)g(υ)dυ, ω ∈ ∪i∈I1(si, θi+1].

This means that x ∈ ∑F,τ
Ψ (−∞, b].

Theorem 4. In addition to the assumptions of Theorem (2), if the following condition holds:

(Hρ)∗ for any i ∈ I1, v, y ∈ H and any υ ∈ [si, θi+1], we have

||yρ(υ,yυ) − vρ(υ,vυ)||B ≤ sup
ς∈[si , υ]

||y(ς)− v(ς)||E. (43)

Then, ∑F,τ
Ψ (−∞, b] is an Rδ-set.
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Proof. Thanks to Theorems (1)–(3), it is enough to prove that ∑Fn ,τ
Ψ (−∞, b], n ≥ N0 is

contractible. Let n ≥ N0 be a fixed natural number. Consider the the following impulsive
semi-linear differential equation:

cDγ,τ
si ,ωx(ω) ∈ Tx(ω) + zn(ω, xρ(s,xs)), a.e. ω ∈ ∪i=m

i=0 (si, θi+1],
x(θ+i ) = Υi(θi, x(θ−i )), i ∈ I1,
x(ω) = Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi, si],
x(t) = Ψ, t ∈ (−∞, 0].

(44)

Due to Lemma (6) and Remark (5), zn(., u); u ∈ E is measurable, and ω ∈ J, zn(t, .) is
almost continuous. As the multi-valued F satisfies (F2)

∗ and (F3), using similar arguments
to the ones in the proof of Theorem (2), the fractional differential in Equation (44) has a
mild solution y ∈ ∑Fn ,τ

Ψ (−∞, b]. Then,

y(ω) =



Ψ(ω), ω ∈ (−∞, 0]
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)zn(υ, yρ(υ,yυ))dυ, ω ∈ [0, θ1],

Υi(ω, y(θ−i )), ω ∈ ∪i∈I1(θi, si],
Kτ

1 (ω, si)Υi(si, y(ω−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)zn(υ, yρ(υ,yυ))dυ, ω ∈ ∪i=m
i=1 (si, θi+1].

(45)

Let v ∈ ∑Fn ,τ
Ψ (−∞, b] be another mild solution for (44). Then,

v(ω) =



Ψ(ω), ω ∈ (−∞, 0]
Kτ

1 (ω, 0)Ψ(0) +
∫ ω

0 (τ(ω)− τ(υ))γ−1τ′(υ)Kτ
2 (ω, υ)zn(υ, vρ(υ,xυ))dυ,

ω ∈ [0, θ1],
Υi(ω, v(θ−i )), ω ∈ ∪i∈I1(θi, υi],
Kτ

1 (ω, si)Υi(si, v(θ−i ))
+
∫ ω

si
(τ(ω)− τ(υ))γ−1τ′(υ)Kτ

2 (ω, υ)zn(υ, vρ(υ,xυ))dυ,
ω ∈ ∪i∈I1(si, θi+1].

(46)

By the second axiom of Definition 2, the function s→ yρ(s, ys); s ∈ [0, θ1] is continuous,
and hence the subset {yρ(s,ys) : s ∈ [0, θ1]} is compact. Similarly, {vρ(s, vs), s ∈ [0, θ1]}
is compact, and consequently, Q(θ1) = {yρ(s,ys) : s ∈ [0, θ1]} ∪ {vρ(s,vs) : s ∈ [0, θ1]} is
compact in B. Hence, [0, θ1]× Q(θ1) is compact in [0, θ1]× B. Therefore, by Lemma (6),
there exists ςθ1 such that, for any s ∈ [0, θ1] and any v1, v2 ∈ Q(θ1),

||zn(s, v1)− zn(s, v2)|| ≤ ςθ1 ||v1 − v2||B. (47)

Therefore, by (2) and (43)–(47), we can obtain for ω ∈ [0, θ1],

||y(ω)− v(ω)||

≤ M
Γ(γ)

∫ ω

0
(τ(ω)− τ(υ))γ−1τ′(υ)||zn(υ, yρ(υ, yυ))− zn(υ, vρ(υ, vυ))||dυ

≤
Mςθ1

Γ(γ)

∫ ω

0
(τ(ω)− τ(υ))γ−1τ′(υ)||yρ(υ, yυ) − vρ(υ, vυ)||Bdυ

≤
Mςθ1

Γ(γ)

∫ ω

0
(τ(ω)− τ(υ))γ−1τ′(υ)ξ1 sup

ς∈[0, υ]

||y(ς)− v(ς)||Edυ. (48)
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Since both y and v are continuous on [0, θ1], there exists δ ∈ [0, θ1] with ||y(δ) −
v(δ)|| = supω∈[0, θ1]

||y(ω)− v(ω)||. Therefore, by (48), it yields that

sup
θ∈[0, θ1]

||y(ω)− v(ω)||

= ||y(δ)− v(δ)||

≤ Mςδ

Γ(γ)

∫ δ

0
(τ(ω)− τ(υ))γ−1τ′(υ)ξ1 sup

ς∈[0, υ]

||y(ς)− v(ς)||dυ (49)

≤ Mςδ

Γ(γ)

∫ δ

0
(τ(ω)− τ(υ))γ−1τ′(υ)ξ1 sup

ς∈[0, θ1]

||y(ς)− v(ς)||dυ.

Applying Lemma (5) it follows, from (49), that y = v on [0, θ1], and thus, y = v on
[θ1, s1]. Using similar arguments, we can confirm that y = v on [s1, θ2]. We continue the
same processes to show that y = v on [0, b].

Next, we prove that ∑Fn ,τ
Ψ (−∞, b] is a homotopy equivalent to y. We have to define

a continuous function Hn : [0, 1]× ∑Fn ,τ
Ψ (−∞, b] → ∑Fn ,τ

Ψ (−∞, b] with Hn (0, x) = x and
Hn(1, x) = y, ∀x ∈ ∑Fn ,τ

Ψ (−∞, b]. Consider the partition D = {0, 1
m+1 , 2

m+1 , . . . .., m+1
m+1 = 1}

and let x ∈ ∑Fn ,τ
Ψ (−∞, b] be a fixed element. Then, there exists υ ∈ L1(J, E) with υ(ω) ∈

Fn(ω, xρ(ω, xω)) almost everywhere, such that

x(ω) =



Ψ(ω), ω ∈ (−∞, 0],
Kτ

1 (ω, 0)x0 +
∫ ω

0 (τ(ω)− τ(s))γ−1τ′(s)Kτ
2 (ω, s)υ(s)ds,

ω ∈ [0, θ1],
Υi(ω, x(θ−i )), ω ∈ ∪i∈I1(θi, si],
Kτ

1 (ω, si)Υi(si, x(θ−i ))
+
∫ ω

si
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)υ(s)ds,
ω ∈ ∪i∈I1(si, θi+1].

(50)

(i) Let λ ∈ [0, 1
m+1 ]. Put a1

λ = b− λ(m + 1)(b− sm). As a result of the above discussion,
there is a unique mild solution x1

λ ∈ ∑Fn ,τ
Ψ (−∞, b] for the following problem:{

cDγ,τ
a1

λ ,ω
u(ω) = Tu(ω) + zn(ω, uρ(ω,u(ω)), ω ∈ (a1

λ, b],

u(ω) = x(ω), ω ∈ (−∞, a1
λ].

(51)

Note that a1
0 = b and

x1
λ(ω) =


x(ω), ω ∈ (−∞, a1

λ],
Kτ

1 (ω, a1
λ)x(a1

λ)
+
∫ ω

a1
λ
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)zn(s, (x1
λ)ρ(s, (x1

λ)s)
)ds,

ω ∈ (a1
λ, b].

(52)

(ii) Let λ ∈ [ 1
m+1 , 2

m+1 ]. Put a2
λ = θm − (λ− 1

m+1 )(m + 1)(θm − sm−1). By arguing as in
case (i), there is a unique mild solution x2

λ ∈ ∑Fn ,τ
Ψ (−∞, b] for the impulsive semi-linear

differential equation:
x(ω) = x(ω), ω ∈ (−∞, a2

λ]
cDγ,τ

a2
λ ,ω

x(ω) = Tx(ω) + zn(ω, xρ(ω,x(ω))), ω ∈ (a2
λ, θm],

x(ω) = Υm(ω, x(θ−m )), θ ∈ (θm, sm],
cDγ,τ

sm ,θ x(ω) = Tx(ω) + zn(ω, xρ(ω,x(ω))), θ ∈ (sm, θm+1].



Fractal Fract. 2023, 7, 545 20 of 26

Note that

x2
λ(ω) =



x(ω), ω ∈ (−∞, a2
λ],

Kτ
1 (ω, a2

λ)x(a2
λ)

+
∫ ω

a2
λ
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)zn(s, (x2
λ)ρ(s,(x2

λ)s)
)ds,

ω ∈ (a2
λ, θm],

Υm(ω, x2
λ(θ
−
m )), ω ∈ (θm, sm],

Kτ
1 (ω, sm)Υm(sm, x2

λ(θ
−
m ))

+
∫ ω

sm
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)zn(s, (x2
λ)ρ(s,(x2

λ)s)
)ds,

ω ∈ (sm, θm+1].

(iii) Continuing to the (m + 1)th step, we obtain λ ∈ [ m
m+1 , 1]. Put am+1

λ = θ1 − (λ −
m

m+1 )(m + 1)θ1, and let xm+1
λ ∈ ∑Fn ,τ

x0
[0, b] be the unique mild solution for the impul-

sive semi-linear differential equation:
x(ω) = x(ω), t ∈ (−∞, am+1

λ ],
cDγ,τ

am+1
λ ,ω

x(ω) = Tx(ω) + zn(ω, xρ(ω,x(ω))), ω ∈ (am+1
λ , θ1],

x(ω) = Υi(ω, x(θ−i )), ω ∈ ∪i=m
i=1 (θi, si],

cDγ,τ
si ,ωx(ω) = Tx(ω) + zn(ω, xρ(ω,x(ω))), ω ∈ ∪i=m

i=1 (si, θi+1].

Notice that am+1
1 = 0 and

xm+1
λ (ω) =



x(t), t ∈ (−∞, am+1
λ ],

Kτ
1 (ω, am+1

λ )x(am+1
λ )

+
∫ ω

am+1
λ

(τ(ω)− τ(s))γ−1τ′(s)Kτ
2 (ω, s)zn(s, (xm+1

λ )ρ(s, (x2
λ)s)

)ds,

ω ∈ (am+1
λ , θ1]

Υi(ω, xm+1
λ (θ−i )), ω ∈ ∪i∈I1(ti, si]

Kτ
1 (ω, si)lΥi(ω, xm+1

λ (θ−i ))

+
∫ ω

si
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)zn(s, (xm+1
λ )ρ(s, (x2

λ)s)
)ds,

ω ∈ ∪i=m
i=1 (si, ωi+1].

(53)

Now, we define Hn at (λ, x) by

Hn(λ, x) =



x1
λ, λ ∈ [0, 1

m+1 ]

x2
λ, λ ∈ ( 1

m+1 , 2
m+1 ]

.

.

.

.

.
xm+1

λ , λ ∈ ( m
m+1 , m+1

m+1 ].

(54)

From (51) and (53), we obtain Hn(0, x) = x1
0 = x, and from (53) and (54), we obtain

Hn(1, x) = xm+1
1 = y.

Now, we only need to prove the continuity of Hn. Let (σ, w ), (δ, υ) ∈ [0, 1] ×
∑Fn ,τ

Ψ (−∞, b]. If σ = δ = 0, then, by (54), limw→υ Hn(σ, w) = limw→v w = v = Hn(δ, v).
If σ, δ ∈ (0, 1

m+1 ], then Hn(σ, w) = w1
σ and Hn(δ, υ) = υ1

δ, where

w1
σ(ω) =


w(ω), ω ∈ (−∞, a1

σ],
Kτ

1 (ω, a1
σ)w(a1

σ)
+
∫ ω

a1
σ
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)zn(s, (w1
σ)ρ(s,(w1

σ)s)
)ds,

ω ∈ (a1
σ, b],

(55)
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and

υ1
δ(ω) =


v(ω), ω ∈ (−∞, a1

δ],
Kτ

1 (ω, a1
δ)υ(a1

δ)
+
∫ ω

a1
δ
(τ(ω)− τ(s))γ−1τ′(s)Kτ

2 (ω, s)zn(s, (υ1
σ)ρ(s,(υ1

σ)s)
)ds,

ω ∈ (a1
δ, b],

(56)

where a1
σ = b− σ(m + 1)(b− sm) and a1

δ = b− δ(m + 1)(b− sm). Obviously, limσ→δ a1
σ =

a1
δ, and hence

lim
σ→δ
w→υ

Hn(σ, w)(ω) = Hn(δ, υ)(ω), ∀ω ∈ (−∞, a1
δ].

By (55) and (56), and by arguing as above, we obtain

lim
σ→δ
w→υ

Hn(σ, w)(ω) = Hn(δ, υ)(ω), ∀ω ∈ (−∞, b].

This leads to the continuity of Hn(., .), when σ, δ ∈ [0, 1
m+1 ]. Using similar arguments,

one can prove the continuity of Hn(., .) on [0, 1]×∑Fn ,τ
Ψ (−∞, b], and consequently the set

∑Fn ,τ
Ψ (−∞, b] is contractible. This completes the proof.

5. Example

Example 1. Let E = L2([0, π],R), J = [0, 1], m = 1, s0 = 0, ω1 = 1
2 , s1 = 3

4 , ω2 = 1.
For every x : J → E = L2([0, π], R), the x(ω, ω); ω ∈ J, ω ∈ [0, π] denotes the value of
x(ω) at ω, and x(ω + θ, ω) denotes the value of (xω)(θ) at ω. Let $ : (−∞, 0] → (−∞, 0] be
continuous with L =

∫ 0
−∞ $(s)ds < ∞, and

B$ : = {u : (−∞, 0]→ E : u is bounded

and measurable on [−r, 0]; ∀r > 0, and
∫ 0

−∞
$(s) sup

ω∈[s.0]
||x(ω)||ds < ∞}.

It is known that B$ is a Banach space where ||x||B$ =
∫ 0
−∞ $(s) supω∈[s.0] ||x(ω)||ds [58].

We show that B$ satisfies the assumptions of Definition (2). In fact, let t ∈ [0, 1] and
x : (−∞, b] → E with x|J ∈ PC(J, E) and x0 ∈ B$. We have∫ 0

−∞
$(s) sup

ω∈[s, 0]
||xt(ω)||ds =

∫ 0

−∞
$(s) sup

ω∈[s, 0]
||x(t + ω)||ds

=
∫ −t

−∞
$(s) sup

ω∈[s, 0]
||x(t + ω)||ds +

∫ 0

−t
$(s) sup

ω∈[s.0]
||x(t + ω)||ds

≤
∫ −t

−∞
$(s)[ sup

δ∈[t+s, 0]
||x(δ)||ds + sup

δ∈[0, t]
||x(δ)||]ds

+
∫ 0

−t
$(s) sup

δ∈[0, t]
||x(δ)||ds

≤
∫ 0

−∞
$(s) sup

δ∈[s, 0]
||x(δ)||ds +

∫ 0

−∞
$(s) sup

δ∈[0, t]
||x(δ)||ds

≤ ||x0||B$ + L sup
δ∈[0, t]

||x(δ)||,
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which means xt ∈ B$ and ||xt||Bγ ≤ ||x0||B$ + L supδ∈[0,t] ||x(δ)||. Moreover,

||xt||Bγ =
∫ 0

−∞
$(s) sup

ω∈[s.0]
||xt(ω)||ds

=
∫ 0

−∞
$(s) sup

ω∈[s.0]
||x(t + ω)||ds

≥ ||x(t)||
∫ 0

−∞
$(s)ds = ||x(t)||L.

Therefore, ||x(t)|| ≤ 1
L ||x(t)||. Finally, if ν1, ν2 ∈ [0, 1], then

lim
ν1→ν2

||xν1 − xν2 ||B$ = lim
ν1→ν2

∫ 0

−∞
$(s) sup

ω∈[s, 0]
||x(ν1 + ω)− x(ν2 + ω)||ds

= 0.

Therefore, B$ is a phase space satisfying all assumptions of Definition (2). For more
information about this phase space, see [58].

Next, we define an operator T : D(T) ⊆ L2[0, π]→ L2[0, π] given by

Tx(ω, ω) = − ∂2

∂ω2 x(ω, ω),

with the absolutely continuous domain D(T) = {u ∈ L2[0, π] : u, u′, and u′′ ∈ L2[0, 1],
u(ω, 0) = u(ω, π) = 0}.

It is known that [25], T generates an equicontinuous semi-group {T(ω) : ω ≥ 0}. In
addition,

Tu =
∞

∑
n=1

n2 < u, un > un, u ∈ D(T), (57)

where un(y) =
√

2 sin ny, n ∈ N is the orthonormal set of eigenvalues of T. Moreover,
for any u ∈ L2[0, 1], we have

T(ω)(u) =
∞

∑
n=1

e−n2ω < u, un > un.

Moreover, for any u ∈ L2([0, π],R),

T
−1
2 u =

∞

∑
n=1

1
n
< u, un > un,

and

T
1
2 u =

∞

∑
n=1

n < u, un > un,

where the domain of T
1
2 is given by

D(T
1
2 ) = {u ∈ L2([0, π],R) :

∞

∑
n=1

n < u, un > un ∈ L2([0, π],R)}.

Next, we define ρ : J × Bw → R by

ρ(ω, ϕ) = ω− σ(ϕ(0)), (58)

where σ : E→ [0, ∞) is continuous.
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Next, we define F : J × B$ → Pck(E) as

F(t, x) = {z ∈ E : z(s) =
e−rt

√
s2

1 + s2
2 supω∈(−∞,0] ||x(ω)||

υ
Z, s = (s1, s2) ∈ Ω}, (59)

where r ∈ (1, ∞). Then, for every τ ∈ B$, t→ F(t, τ) is strongly measurable, and for any
t ∈ J, F(t, ) is upper semi-continuous. Moreover,

||F(t, x)|| = sup
z∈F(t,x)

||z||E = sup
z∈F(t, ψ)

[
∫

Ω
||z(s)||2ds]

1
2

=
e−rt||x||
(1 + ||x||) [

∫
Ω
(s2

1 + s2
2)|ds]

1
2

≤ e−rt||x|| < e−rt(||x||+ 1).

In addition, let ω ∈ J, ψ1, ψ2 ∈ B$ and z1 ∈ F(t, ψ1). Then,

z1 =
e−rt

√
s2

1 + s2
2 supω∈(−∞,0] ||ψ1(ω)|| ω

υ
, ω ∈ Z.

Set z2 =
e−rt
√

s2
1+s2

2 supω∈(−∞,0] ||ψ2(ω)|| ω

υ . Obviously, z2 ∈ F(t, ψ2) and

||z1 − z2|| ≤ e−rt[ sup
ω∈(−∞, 0]

||ψ1(ω)|| − sup
ω∈(−∞, 0]

||ψ2(ω)||][
∫

Ω
|s|ds]

1
2

= e−rt sup
ω∈(−∞, 0]

(||ψ1(ω)|| − ||ψ2(ω)||)

≤ e−rt sup
ω∈(−∞, 0]

||ψ1(ω)− ψ2(ω)||,

which yields

h(F(t, ψ1), F(t, ψ2)) ≤ e−rt sup
ω∈(−∞,0]

||ψ1(ω)− ψ2(ω)||, ∀t ∈ J, ψ1, ψ2 ∈ B$.

By (52), it follows that, for any bounded subset, D, of B$, one has

χ(F(t, D)) ≤ e−rt sup
ω∈(−∞, 0]

χ{ψ(ω) : ψ ∈ D}.

Then, (HF1), (HF2) and (HF3) are satisfied where ϕ(ω) = β(ω) = e−rω; ω ∈ J.
Now, we define Υ1 : [ω1, s1]× E→ E by:

Υ1(ω, x) = κω1Π(x), (60)

where Π : E→ E is a linear bounded compact operator. By applying Theorems (1) and (4),
the mild solution set for the following problem:

cDγ,τ
si ,ωx(ω) ∈ Tx(ω) + F(ω, xρ(ω,xω)), a.e. ω ∈ [0, 1

2 ] ∪ ( 3
4 , 1],

x(ω+
1 ) = Υ1(ω1, x(ω−1 )),

x(ω) = Υ1(ω, x(ω−1 )), ω ∈ ( 1
2 , 3

4 ],
x(ω) = Ψ(ω), ω ∈ (−∞, 0].

is a non-empty and Rδ-set, where A, F, ρ and Υi are given b (57)–(60).
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6. Discussion and Conclusions

It is known that the set of mild solutions with the same initial point for a differential
inclusion is typically not a singleton. Therefore, it is useful and interesting to investigate
the topological structure of this set. Many researchers have performed this for different
types of differential inclusions, proving that it is an Rδ-set and homotopically equivalent
to a point (see, for instance, [25,26,28,30–33,36–41]). None of these works addressed the
topological properties of the mild solution set for non-instantaneous impulsive semi-linear
differential inclusions involving a τ-Caputo fractional derivative with infinite delay in
infinite-dimensional Banach spaces.

In this paper, we have proven that the mild solution set for a non-instantaneous
impulsive semi-linear differential inclusion involving a τ-Caputo fractional derivative
with infinite delay in infinite-dimensional Banach spaces is non-empty and an Rδ-set.
This work is novel and interesting because the linear part is an operator that generates a
non-compact semi-group, while the non-linear part is a multi-valued function, and the
studied problem contains the τ-Caputo derivative with non-instantaneous impulses and
infinite delay. Moreover, our methodology is based on the properties of both multi-valued
functions, measures of non-compactness and the infinitesimal generators of a C0-semigroup.
This study generalizes the work of Wang et al. [31], in which Problem (1) was considered
without delay and τ(t) = t, ∀t ∈ J. Furthermore, it generalizes Theorem (4.1) in [44] when
the right-hand side is a multi-valued function in the presence of both non-instantaneous
impulses and infinite delay. In addition, our technique could be used to extend the results
reported in [14–22] when the Caputo derivative is replaced with a τ-Caputo fractional
derivative and in [25,28–30,32,33,36–41], when the considered problems involve a τ-Caputo
fractional derivative with impulsive effects and infinite delay. This could be a proposal for
future work.
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