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Abstract: Multifractal detrended fluctuation analysis (DFA) can extract multi-scaling behavior and
measure long-range correlations in climatic time series. In this study, with the help of multifractal
DFA, we investigated the scaling behavior of daily minimum/maximum temperatures during the
years 1989–2019 from 34 meteorological stations in Bangladesh. We revealed spatial patterns, to-
pographic impacts and global warming impacts of long-range correlations embedded in small and
large fluctuations in temperature time series. Meanwhile, we developed a multifractal DFA-based
algorithm to dynamically determine thresholds to discriminate extreme and non-extreme events
in climate systems and applied it to analyze the frequency and trends of temperature extremes in
Bangladesh. Compared with widely-used percentile thresholds, the extreme climate events captured
in our algorithm are more reliable since they are determined dynamically by the climate system itself.

Keywords: scaling behavior; small and large fluctuations; thresholds of climate extremes; multifractal
detrended fluctuation analysis

1. Introduction

Climate change and its environmental, economic, and social consequences are widely
recognized as a major set of interconnected problems facing human societies. Its impacts
and costs will be large, serious, and unevenly spread globally for decades. In the 21st
century, global climate change and its impacts will be more widespread, rapid, and inten-
sifying than many people expected. The latest IPCC AR6 report indicated that without
significant carbon emissions reduction over the next twenty years, the global mean tem-
perature would be expected to reach or exceed 1.1 ◦C of warming since the industrial
revolution [1]. Faster warming leading to extreme climate events further strengthening in
terms of frequency, intensity, impact range, and duration will cause serious damage to both
the natural ecosystem and the socioeconomic system.

Due to significant self-memory features in climate evolution [2], various observed
climate data, arising from climate change and related fields, provide a huge amount
of interconnected multifractal information. Detrended fluctuation analysis (DFA) can
systematically eliminate local trend components of different orders of nonstationary climatic
time series so as to detect scaling structure, self-similarity, and long-range correlation.
Compared with traditional methods (e.g., autocorrelation, spectral analysis, and Hurst
analysis), the advantage of the DFA method is to distinguish the inherent trends and
long-range fluctuations in nonstationary climatic time series [3,4]. Currently, DFA is
becoming a mainstream tool in climatic time analysis: Kurnaz (2004) found that DFA of
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daily maximum temperatures could distinguish different climate types [5]. Orun and
Kocak (2009) used DFA to investigate daily temperatures at 52 meteorological stations in
Turkey and found that all of the scaling exponents were larger than 0.5, indicating that
these temperature data had long-range correlations [6]. Pierini and Telesca (2010) used DFA
to investigate the 1860–2006 monthly rainfall time series recorded in five weather stations
in the middle of Argentina [7]. They found that the associated DFA scaling exponents
ranged between 0.54 and 0.58, and the weak persistence of the inner dynamics of rainfall
meant that the dynamics of rainfall in middle Argentina were mainly driven by external
factors. As a complex system always displays multi-scaling structures and DFA can only
estimate a single scaling exponent statistically, multifractal DFA was proposed to reveal
multifractal/multi-scaling characteristics. Kalamaras et al. (2017) used multifractal DFA to
investigate the daily temperature time series from one single weather station in Greece and
found that it exhibited a multifractal structure and was insensitive to local fluctuations with
large magnitudes [8]. Gómez-Gómez et al. (2021) used MF-DFA to analyze daily maximum,
minimum, and mean temperatures from ten weather stations in Spain and found that all
these temperature variables had multifractal natures and that coastal regions had higher
complexity of minimum and mean temperatures than the mainland regions [9].

In this study, with the help of multifractal DFA, we investigated the scaling behavior
of daily minimum/maximum temperature data from 1989–2019 from 34 meteorological
stations in Bangladesh. We revealed spatial patterns, topographic distance from the coast,
global warming impacts of scaling behavior, and long-range correlations embedded in small
and large fluctuations in temperature time series in Bangladesh. Moreover, we developed
a multifractal DFA-based method to dynamically determine thresholds to discriminate
extreme and non-extreme temperature events and used it to analyze the frequency and
trends of temperature extremes in Bangladesh. Compared with widely-used percentile
thresholds [10,11], extreme climate events captured in our method are more reliable since
they are determined dynamically by the climate system and delete local trend impacts.

2. Study Area and Data

Bangladesh is located in South Asia, bordering India and Myanmar, with an area of
about 147,500 square kilometers. As Bangladesh is located on the delta plain at the lower
reaches of the Ganges, Jamuna, and Meghna rivers in the northeast of the South Asian
subcontinent, its terrain is flat, and its river network is dense, leading to low ability to cope
with climate disasters. Bangladesh has been rated as the most vulnerable country in the
world by the IPCC. The increasing severity and frequency of extreme climate events have
caused serious losses to the socioeconomic development of Bangladesh [12,13]. Agriculture
is the backbone of Bangladesh’s economy and always faces large-scale heavy rainfalls,
high temperatures, and hurricanes [12,14,15]. The destruction of the agricultural sector
by extreme weather events will directly affect the production and life of the people of
Bangladesh. Bangladesh has 34 meteorological stations in Bangladesh (Figure 1). The daily
observation of maximum and minimum temperatures observed at these meteorological
stations from 1989 to 2019 was collected from the Bangladesh Meteorological Department
(BMD) in Dhaka.
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Figure 1. Location of 34 meteorological stations in Bangladesh. 
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Figure 1. Location of 34 meteorological stations in Bangladesh.

3. Multifractal Detrended Fluctuation Analysis

The detrended fluctuation analysis (DFA) retrieves intrinsic self-similarity and detects
scaling and long-range correlation characteristics of fluctuations in the presence of possible
trends without knowing their origin and shape [16]. Since the classic DFA can only deal
with monofractal time series, its multifractal extension (multifractal DFA) was invented to
determine more than one scaling exponent (multifractal) embedded in the time series [17].
The algorithm of multifractal DFA is as follows:

For a time series {xk} with length N, its cumulative deviation is

y(i) =
i

∑
k=1

(xk − x), i = 1, 2, . . . , N

where x is the mean value of {xk}. We divided the cumulative deviation sequence {y(i)}
into non-overlapping segments of size s, that is Ns =

(
N
s

)
. Since the sequence length N

is not always an integer multiple of the time scale s, a small amount of data information
at the end of the time series cannot be fully utilized. Therefore, the same segmentation
procedure is repeated starting from the opposite end so that 2Ns segments can be obtained.
In each segment, the data is locally detrended by a linear, quadratic, cubic, or higher-order
polynomial regression yv(i). Then the mean squared residual for each segment is

F2(v, s) =
1
s

s

∑
i=1
{y[(v− 1)s + i]− yv(i)}2, v = 1, 2, · · · , Ns

F2(v, s) =
1
s ∑s

i=1{y[N − (v− Ns)s + i]− yv(i)}2, v = Ns + 1, Ns + 2, · · · , 2Ns.

After that, the mean squared residual of all segments is accumulated and averaged:

Fq(s) =
{

1
2Ns

∑2Ns
v=1

[
F2(v, s)

] q
2
} 1

q

where q is often called the moment parameter. The fluctuation function Fq(s) can be used to
examine self-similarity structures as it performs a fluctuation measure at different segment
sizes. Typically, Fq(s) will increase with the segment size s. If Fq(s) and s are in a power-law
correlation, i.e.,

Fq(s) ∝ sh(q)
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it means that the fluctuations in small segments are related to the fluctuations in large
segments in a power-law fashion. The scaling exponent h(q) may be estimated statistically
through the log-long plots of Fq(s) vs. s for each given q. The scaling exponent index h(q) is
often called a generalized Hurst index. If h(q) is dependent on q, then the time series {xk}
shows changes in multifractal nature, especially when h(q) < 0.5 and {xk} is anti-correlated;
when h(q) = 0.5, {xk} is white noise; and when h(q) > 0.5, {xk} is long-range correlated [18].
When q = 2, the multifractal DFA is reduced to the regular DFA, and the associated h(2) is
just the Hurst index [3].

In this study, we used multifractal DFA to analyze daily temperatures in Bangladesh
and then revealed multifractal features of its climate evolution. By comparing the difference
in the fluctuation functions Fq(s) of daily temperature extremes of 34 meteorological stations
generated by linear, quadratic, and cubic polynomial regressions, we found that the impacts
of the order of polynomial regressions on the generalized Hurst index are very slight.
Figure 2 demonstrates an example of fluctuation functions Fq(s) (q = −2, 2) of daily
temperature extremes at the Dinajpur meteorological station of Bangladesh, where the
segment size s ranges from 23 to 210. It is clear that the three fluctuation function curves
are almost parallel to each other, indicating that the calculated generalized Hurst indices
are almost the same. In this study, we chose quadratic polynomial regression and mainly
focused on spatial patterns of generalized Hurst index distribution in Bangladesh.
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Figure 2. Fluctuation functions after detrending by first/second/third-order regression polynomials
for daily minimum temperatures with (a) q = −2, (b) q = 2; and for daily maximum temperatures at
Dinajpur with (c) q = −2, (d) q = 2.

4. Multifractal Features of Daily Temperatures in Bangladesh

In this section, we revealed multifractal structures of climate evolution in Bangladesh
during 1989–2019 and analyzed global warming impacts on Bangladesh. In order to
avoid the effects of seasonal cycles, we deseasonalized the daily minimum/maximum
temperature time series from 34 meteorological stations in Bangladesh first.

4.1. Daily Minimum Temperatures

We calculated generalized Hurst indices h(q) of daily minimum temperatures at all
meteorological stations in Bangladesh. Figure 3 demonstrates generalized Hurst indices
h(q) at eight stations: Dinajpur, Barisal, Cox’s Bazar, Bhola, Bogra, Chandpur, Chittagong,
and Chuadanga. If the value of h(q) is independent of q, it implies that the climatic time
series exhibits a monofractal feature; otherwise, it exhibits a multifractal feature. From
Figure 3, it is clear that the daily minimum temperatures at all stations in Bangladesh
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exhibited multifractal features and that generalized Hurst indices h(q) decayed quickly for
q < 0 and slowly for q > 0.
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Figure 3. Generalized Hurst indices h(q) of daily minimum temperatures at eight meteorological
stations: (a) Dinajpur, (b) Barisal, (c) Cox’s Bazar, (d) Bhola, (e) Bogra, (f) Chandpur, (g) Chittagong,
and (h) Chuadanga.

We applied the multifractal DFA to the deseasonalized daily minimum temperature
data in Bangladesh during 1989–2019 and then obtained the distribution of generalized
Hurst indices h(q) for different values of q in the whole of Bangladesh (Figure 4); Figure 4d,h
demonstrate the distribution of mean generalized Hurst indices for q ∈ [−3,−1] and
q ∈ [1, 3] with step 0.1, respectively. All generalized Hurst indices h(q) are larger than 0.7,
indicating the presence of a strong persistent long-range positive correlation over the whole
of Bangladesh, i.e., it means that a relatively large value in the daily minimum temperature
time series is most likely to be followed by other large values. Such strong persistence of the
inner dynamics of daily minimum temperatures implies that historical climatic oscillation
modes in each meteorological station have a larger probability of reappearing in the future,
resulting in the future evolution of extremely low temperatures at each meteorological
station being determined largely by local historical climate change, i.e., the dynamics of
extremely low temperatures are driven mainly by internal factors.

The generalized Hurst indices of daily minimum temperatures in Bangladesh reached
the maximum in southeast Bangladesh, demonstrating the strongest long-range positive
correlation during 1989–2019. Southeast Bangladesh is known as the Chittagong hill
tracts, which are much higher than the rest of Bangladesh (i.e., alluvial plain). High
elevation differences reduced the impacts of external factors on climate in Chittagong
hill tracts and then resulted in strong long-range correlations embedded in the daily
minimum temperature time series. The generalized Hurst indices reached minima in the
northern border and coastal areas of Bangladesh. The minimum temperature fluctuations
in Bangladesh were mainly caused by the influence of atmospheric circulation in South Asia
and topographic differences between land and sea. The Himalayas and the Qinghai-Tibet
Plateau block the cold airflow in the central hinterland of the Eurasian continent, resulting
in more impacts on minimum temperature fluctuations in the northern border than the rest
of Bangladesh. Since the southern coastal regions of Bangladesh are adjacent to the Bay of
Bengal, minimum temperature fluctuations in coastal regions are suppressed by the heat
capacity of the oceans. Therefore, the smallest generalized Hurst indices appeared in the
northern border and coastal areas of Bangladesh.
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(f) q = 2, (g) q = 3, (h) q ∈ [1, 3].

The scaling behavior of the daily minimum temperature in Bangladesh during 1989–2019
demonstrated two different spatial patterns (Figure 4), i.e., the distribution patterns of h(q)
for different negative (or positive) values of q were almost the same, But the distribution
patterns of h(q) for negative values of q were very different from these for positives values
of q. Since segments with large fluctuations and small fluctuations in time series determine
the values of Fq(s) (q > 0) and Fq(s) (q < 0) in multifractal DFA, respectively, these two
spatial patterns are associated with the scaling behavior of small and large fluctuations
embedded in the daily minimum temperature, respectively.

Figure 5 shows the relationship between different topographic factors and generalized
Hurst indices in Bangladesh. By statistical hypothesis testing of linear regression, longitude,
latitude, elevation, and distance from the coast have statistically significant impacts with a
significance level (p-value) much less than 0.05 (Figure 5). During 1989–2019, longitude was
positively linearly correlated with generalized Hurst indices in Bangladesh. Both latitude
and distance from the coast were negatively linearly correlated. This is linked with the
fact that whatever the location of the meteorological station, the distance from the coast
increased roughly as the latitude decreased. Elevation seemingly has impacts on gener-
alized Hurst indices; unfortunately, the flat terrain in the whole of Bangladesh prevents
an unambiguous conclusion. The scaling behavior of both small and large fluctuations in
the daily minimum temperature was revealed by generalized Hurst indices with moment
parameters q < 0 and q > 0, respectively. In terms of R2, latitude and distance from the
coast had greater impacts on the scaling behavior of small fluctuations, while longitude
had greater impacts on that of large fluctuations.
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Finally, we investigated the impacts of global warming on long-range correlations of
daily minimum temperatures in Bangladesh (Figure 6). In order to achieve this, we divided
the whole period [1989–2019] into two periods: [1989–2004] and [2005–2019]. By statistical
hypothesis testing of linear regression, the difference in generalized Hurst indices during
the two time periods passed a statistical significance test, and the related significance
levels (p values) were 7.7505× 10−7 (q = −3), 1.6932× 10−5 (q = −2), 0.072598 (q = −1),
0.037662 (q = 1), 0.019166 (q = 2), and 0.004338 (q = 3). In the case of the moment parameter
q < 0, global warming led to an increase in the values of generalized Hurst indices in the
southeast and southwest edges of Bangladesh and a reduction in the values in the northeast
regions of Bangladesh (Figure 6c), meaning that due to global warming, the long-range
correlation in small fluctuations embedded in daily minimum temperatures was increased
in the southeast and southwest edges of Bangladesh and reduced in the northeast regions of
Bangladesh (Figure 6c). Similarly, in the case of q > 0, global warming led to an increase in
the long-range correlation in large fluctuations embedded in daily minimum temperatures
in coastal Bangladesh and a reduction in northern Bangladesh (Figure 6f).

4.2. Daily Maximum Temperatures

We calculated generalized Hurst indices h(q) of daily minimum temperatures at all
meteorological stations in Bangladesh. Figure 7 demonstrates generalized Hurst indices
h(q) at eight stations. It is clear that daily maximum temperatures in Bangladesh exhibited
multifractal features, especially as generalized Hurst indices h(q) decay quickly for q < 0
and slowly for q > 0.

We applied multifractal DFA to the deseasonalized daily maximum temperature data
from 1989–2019 and then obtained the distribution of generalized Hurst indices h(q) for
different negative and positive values of q in the whole of Bangladesh (Figure 8). Similar
to the daily minimum temperature, the generalized Hurst indices of daily maximum
temperatures in the whole of Bangladesh were also larger than 0.7 (Figure 8). Such strong
persistence implies that historical climatic oscillation modes in each meteorological station
have a larger probability of reappearing in the future, resulting in the future evolution of
extremely high temperatures at each meteorological station being determined largely by
local historical climate change, i.e., the dynamics of extremely high temperature is driven
mainly by internal factors. Since the distribution patterns of h(q) for different negative
and positive values of q were almost the same (Figure 8), the scaling behavior of small
and large fluctuations embedded in daily maximum temperatures shared almost the same
spatial pattern. The difference in generalized Hurst indices associated with small and



Fractal Fract. 2023, 7, 540 8 of 15

large fluctuations was about 0.16, reflecting that long-range positive correlations of small
fluctuations in daily maximum temperatures were higher than that of large fluctuations.
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and (h) Chuadanga.
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Figure 8. Distribution of (mean) generalized Hurst indices of daily maximum temperatures for
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Figure 9 shows the relations between different topographic factors and generalized
Hurst indices in Bangladesh. Clearly, these relations were not as strong as those of daily
minimum temperatures in terms of R2. Longitude, latitude, and distance from the coast
had impacts on generalized Hurst indices in Bangladesh, but uncertain variability was
large (Figure 9). Very roughly, longitude was negatively correlated with generalized Hurst
indices in Bangladesh, and latitude and distance from the coast were positively linearly
correlated. Noticing that the scaling behavior of both small and large fluctuations in the
daily maximum temperature was associated with generalized Hurst indices with moment
parameters q < 0 and q > 0, respectively, it is clear that due to relatively low R2, longitude,
latitude, and distance from the coast had smaller impacts on the scaling behavior of small
fluctuations than that of large fluctuations during 1989–2019, but these impacts still passed
a statistical significance test (see p-value in Figure 9)
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We investigated the impacts of global warming on the long-range correlation of daily
maximum temperatures in Bangladesh (Figure 10). In order to achieve this aim, we divided
the whole period [1989–2019] into two periods: [1989–2004] and [2005–2019]. The difference
of generalized Hurst indices during the two time periods passed a statistical significance
test, and the related significance levels (p values) were 0.019067 (q = −3), 0.022923 (q = −2),
0.000869 (q = −1), 0.001149 (q = 1), 3.7931× 10−6 (q = 2), and 0.003397 (q = 3). Under global
warming impacts, the long-range correlation embedded in daily maximum temperatures
was reduced over the whole of Bangladesh (Figure 10c,f). Moreover, the long-range
correlation in large fluctuations embedded in daily maximum temperatures was reduced
more than that of small fluctuations (Figure 10c,f).
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5. Dynamical Thresholds for Temperature Extremes

Extreme temperature events are events in which the number or statistical value sig-
nificantly deviates from its average temperature state over a specific period [19]. The
widely-used ETCCDI climate extreme indices [20] utilize fixed percentile thresholds to
roughly determine extreme temperature events. Although various statistical models (e.g.,
Gumbel distribution and generalized extreme value distribution) may model occurrence
frequency and return periods of extreme temperature events, these models still need to
use fixed percentile thresholds to discriminate extreme and non-extreme events [21]. Ex-
treme temperature events are only the outlier components in a climate system [21], so
their existence cannot significantly affect essential dynamical characteristics of the climate
system itself. Due to the difference in dynamical climate evolution among meteorological
stations, consistent percentile removal of extreme values may lead to small changes in
dynamic mechanisms at some stations and large changes at others. Therefore, it is not a
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good approach to apply consistent percentile thresholds (e.g., 5%) to discriminate extreme
and non-extreme events at all meteorological stations.

Noticing that extreme temperature events always deviate from the mainstream evolu-
tion of climate systems, their impacts on the long-range correlation of the whole climate
system can be very limited. By utilizing multifractal DFA, we have proposed a dynamical
threshold algorithm to divide a temperature time series into extreme and non-extreme
events according to their inherent characteristics rather than artificially distinguishing
them. The main idea of our dynamic threshold algorithm lies in the fact that the fluctuation
functions in multifractal DFA measure the long-range correlation of system evolution over
a certain period, so it is hardly affected by extreme values. When extreme values from
temperature time series are removed gradually, if the correlation coefficients between the
newly generated and original fluctuation functions are almost equal to one (e.g., >99.8%),
the removed extreme values just represent temperature extreme events. In detail:

Given a temperature time series S = {xi, I = 1,2, . . . ,n } with measurement accuracy d,
in most cases, d is taken as 0.1 ◦C.

Step 1. Denote the maximal value and the minimal value in S by xmax and xmin, respectively.
Initialize two thresholds

Tmax = xmax − d and Tmin = xmin + d.

Step 2. The data larger than Tmax are removed from the time series S and the remaining time
series become

Smax = {xi, xi < Tmax and xi ∈ S}

and we removed data less than Tmin from the time series S and the remaining time series is

Smin = {xi, xi > Tmin and xi ∈ S}.

Step 3. For the time series Smax, Smin, and S, the multifractal DFA is used to obtain three fluctuation
functions: Fmax

q (s), Fmin
q (s) and Fq(s). Since temperature extremes lead to large fluctuations in

time series, only a positive value of q is a token here.
Step 4. Calculate the correlation coefficient between Fmax

q (s) (or Fmin
q (s)) and Fq(s). If the

correlation is greater than 1− ε, then replace Tmax and Tmin by Tmax − d and Tmin + d, respectively,
and go to Step 2. Otherwise, terminate the iteration and output two thresholds Tmax and Tmin.

Different from the widely-used ETCCDI climate extreme indices, which use 1%, 5%,
or 10% as thresholds, our dynamical threshold algorithm has the key parameter ε, which
measures the correlation between fluctuation functions of the original time series and
the residual after removing extreme values. The key parameter ε is suggested to take a
small value (e.g., 0.001, 0.002, or 0.003); otherwise, the removal of extreme values from
the temperature time series will lead to essential changes in inherent characteristics. In
order to guarantee that identified extreme events have the same level of slight impacts on
climate fluctuations at all meteorological stations, the same key parameter ε must be used
to discriminate extreme and non-extreme events at each station, resulting in the percentile
thresholds at each station in our algorithm being very different. Therefore, our algorithm
dynamically determines thresholds of temperature extremes.

5.1. Extreme Low-Temperature Events in Bangladesh

Applying our dynamic threshold algorithm with ε = 0.002 to 1989–2019 daily mini-
mum temperatures observed at 34 meteorological stations of Bangladesh, we determined
the thresholds of extreme low-temperature events (Figure 11a). Numerical thresholds for
extremely low temperatures had obvious regional differences and ranged from ~8.8 ◦C
in western Bangladesh to ~15 ◦C in coastal Bangladesh. Northwestern Bangladesh had
the lowest thresholds due to the influence of winter monsoons, sea-land distribution, and
atmospheric circulation in South Asia. Coastal Bangladesh had the highest numerical
thresholds due to the low latitude, a warming ocean, and huge ocean heat capacity. Per-
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centile thresholds were different for each meteorological station and ranged from 5% to
5.64% (Figure 11b).
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During 1989–2019, the occurrence frequency of extreme low-temperature events grad-
ually decreased from northwest to southeast (Figure 11c). The regional difference was
small: northwestern Bangladesh had the highest frequency (20 extreme events per year),
while southeastern Bangladesh had the lowest frequency (18 extreme events per year).
Since the tropical sea temperature from the lower latitudes had a more significant influ-
ence on coastal Bangladesh, a large number of extreme cold events occurred only when
winter winds were unusually strong, so the frequency of extreme cold events in coastal
Bangladesh was relatively small. Annual trends of extreme low-temperature events in
most parts of Bangladesh showed a downward trend (Figure 11d), which is consistent with
global warming. But in coastal Bangladesh, the annual trend of extreme low-temperature
events had an upward trend.

5.2. Extreme High-Temperature Events in Bangladesh

Applying our dynamic threshold algorithm with ε = 0.002 to 1989–2019 daily maxi-
mum temperatures observed at 34 meteorological stations of Bangladesh, we determined
the threshold for extreme high-temperature events in Bangladesh (Figure 12a). The thresh-
olds for extremely high temperatures in Bangladesh had small regional differences. In most
regions of Bangladesh, thresholds were above 34 ◦C and gradually decreased from west to
east, showing a meridional distribution. Western Bangladesh had the highest threshold for
extreme high-temperature events. The seasonal movement of the barometric zone and the
southwest monsoons of the Indian Ocean led to high temperatures in summer and then a
high threshold of extremely high temperatures. Coastal Bangladesh is influenced by huge
ocean heat capacity, so the summer temperature in this region was slightly lower, leading
to the low threshold of extremely high temperature. Percentile thresholds were different
for each meteorological station and ranged from 5% to 9.92% (Figure 12b).

Frequency distribution patterns of extreme high-temperature events in Bangladesh
were almost consistent with that of extreme high-temperature thresholds (Figure 12c).
Western Bangladesh had the highest frequency (up to 36 extreme events per year), while
coastal Bangladesh had the lowest frequency (~18 extreme events per year), demonstrat-
ing that high-temperature events occurred more frequently than low-temperature events
during 1989–2019. Western Bangladesh is affected by the South Asian summer southwest
monsoons and the Indian Depression, so the frequency of extremely high temperatures in
western Bangladesh was relatively high. The climate in coastal Bangladesh is affected by
huge ocean heat capacity, resulting in the frequency of extreme high-temperature events
being relatively low. Between 1989 and 2019, there was an increase in annual extreme



Fractal Fract. 2023, 7, 540 13 of 15

high-temperature events in most areas of Bangladesh (Figure 12d). The largest upward
trend occurred in coastal Bangladesh. Only near the northwest and southeast borders of
Bangladesh did annual extreme high-temperature events show a downward trend.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 13 of 15 
 

 

5.2. Extreme High-Temperature Events in Bangladesh 
Applying our dynamic threshold algorithm with 𝜖 = 0.002 to 1989–2019 daily max-

imum temperatures observed at 34 meteorological stations of Bangladesh, we determined 
the threshold for extreme high-temperature events in Bangladesh (Figure 12a). The thresh-
olds for extremely high temperatures in Bangladesh had small regional differences. In 
most regions of Bangladesh, thresholds were above 34 °C and gradually decreased from 
west to east, showing a meridional distribution. Western Bangladesh had the highest 
threshold for extreme high-temperature events. The seasonal movement of the barometric 
zone and the southwest monsoons of the Indian Ocean led to high temperatures in sum-
mer and then a high threshold of extremely high temperatures. Coastal Bangladesh is in-
fluenced by huge ocean heat capacity, so the summer temperature in this region was 
slightly lower, leading to the low threshold of extremely high temperature. Percentile 
thresholds were different for each meteorological station and ranged from 5% to 9.92% 
(Figure 12b). 

  
(a) (b) (c) (d) 

Figure 12. (a) Numerical thresholds; (b) percentile thresholds; (c) mean occurrence frequency; and 
(d) annual trend of extreme high-temperature events in Bangladesh during 1989–2019. 

Frequency distribution patterns of extreme high-temperature events in Bangladesh 
were almost consistent with that of extreme high-temperature thresholds (Figure 12c). 
Western Bangladesh had the highest frequency (up to 36 extreme events per year), while 
coastal Bangladesh had the lowest frequency (~18 extreme events per year), demonstrat-
ing that high-temperature events occurred more frequently than low-temperature events 
during 1989–2019. Western Bangladesh is affected by the South Asian summer southwest 
monsoons and the Indian Depression, so the frequency of extremely high temperatures in 
western Bangladesh was relatively high. The climate in coastal Bangladesh is affected by 
huge ocean heat capacity, resulting in the frequency of extreme high-temperature events 
being relatively low. Between 1989 and 2019, there was an increase in annual extreme 
high-temperature events in most areas of Bangladesh (Figure 12d). The largest upward 
trend occurred in coastal Bangladesh. Only near the northwest and southeast borders of 
Bangladesh did annual extreme high-temperature events show a downward trend. 

6. Conclusions 
Multifractal DFA can extract multi-scaling behavior in climatic time series and then 

characterize long-range correlations embedded in small and large fluctuations of time se-
ries. In this study, with the help of multifractal DFA, we investigated the scaling behavior 
of daily minimum/maximum temperature data during 1989–2019 from 34 meteorological 
stations in Bangladesh. We found the following: 
 The scaling behavior of the daily minimum temperatures in Bangladesh during 1989–

2019 demonstrated two different spatial patterns, which corresponded to small and 
large fluctuations in daily minimum temperatures, respectively. Longitude, latitude, 

Figure 12. (a) Numerical thresholds; (b) percentile thresholds; (c) mean occurrence frequency; and
(d) annual trend of extreme high-temperature events in Bangladesh during 1989–2019.

6. Conclusions

Multifractal DFA can extract multi-scaling behavior in climatic time series and then
characterize long-range correlations embedded in small and large fluctuations of time
series. In this study, with the help of multifractal DFA, we investigated the scaling behavior
of daily minimum/maximum temperature data during 1989–2019 from 34 meteorological
stations in Bangladesh. We found the following:

â The scaling behavior of the daily minimum temperatures in Bangladesh during
1989–2019 demonstrated two different spatial patterns, which corresponded to small
and large fluctuations in daily minimum temperatures, respectively. Longitude,
latitude, and distance from the coast had significant impacts on scaling behavior with
relatively high R2 values. Moreover, their impacts on the scaling behavior of small
fluctuations were larger than that of large fluctuations. Under global warming impacts,
the long-range correlation embedded in daily minimum temperatures increased in
coastal Bangladesh and increased in northern Bangladesh.

â The scaling behavior of the daily maximum temperatures in Bangladesh during
1989–2019 demonstrated only one single spatial pattern. Longitude, latitude, and
distance from the coast had some impacts on scaling behavior, but R2 values were
low. Under global warming impacts, the long-range correlation in both small and
large fluctuations embedded in daily maximum temperatures was reduced in the
whole of Bangladesh.

Extreme temperature events are only the outlier components in a climate system, so
their existence cannot significantly affect essential dynamical characteristics of the climate
system itself. Due to the difference in dynamical climate evolution among meteorological
stations, traditional consistent percentile removal of extreme values may lead to small
changes in dynamic mechanisms at some stations and large changes at others. Compared
with widely-used percentile thresholds, extreme climate events captured by our algorithm
are more reliable since identified extreme events are determined directly by the climate
system, and they have the same level of slight impacts on observed climate fluctuations at
all meteorological stations. Applying our algorithm to analyze the evolution of extreme
climate events in Bangladesh revealed that trends of extreme low-temperature events
showed a downward trend, but there was an upward trend in coastal Bangladesh; trends
of extreme high-temperature events showed an upward trend, with the largest trends
occurring in coastal Bangladesh.
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Although this study focuses only on Bangladesh, analysis and our proposed algorithm
can be easily extended to reveal spatial patterns, topographic impacts, and global warming
impacts of the scaling behavior (or long-range correlations) of climate evolution and related
extreme events in other countries and regions.
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