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Abstract: The extended Kawahara (Gardner Kawahara) equation is the improved form of the
Korteweg–de Vries (KdV) equation, which is one of the most significant nonlinear evolution equations
in mathematical physics. In that research, the analytical solutions of the conformable fractional ex-
tended Kawahara equation were acquired by utilizing the Jacobi elliptic function expansion method.
The given expansion method was applied to different fractional forms of the extended Kawahara
equation, such as the fraction that occurs in time, space, or both time and space by suitably changing
the variables. In addition, various types of fractional problems are exhibited to expose the realistic
application of the given method, and some of the obtained solutions were illustrated in two- or
three-dimensional graphics as proof of the visualization.
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1. Introduction

The famous Korteweg–de Vries (KdV) equation has been known since 1895 when it
was first obtained by Korteweg and de Vries in their research on long waves in shallow
water [1]. The KdV equation and its variations play a remarkable and operational role in
modelling and explicating many facts that appear in many subdivisions of science, such as
fluids, Bose–Einstein condensates (BECs), plasma physics, shallow water waves, capillary–
gravity water waves, quark–gluon plasma waves (like solitons), nuclear waves (like soliton),
and in electrical networks, etc. [2]. Therefore, solving fractional KdV equations in the sense
of different fractional derivatives has attracted scientists, and they have found solutions for
the time, space, or space-time fractional KdV equation utilizing different techniques and
methods [3–16]. The general form of the fractional KdV equation is

Dα
t u + cuDβ

x u + bDβ
x Dβ

x Dβ
x u = 0, 0 < α, β ≤ 1

where b and c are the coefficients of dispersion and nonlinear terms, respectively. Since
KdV equations and its variations are used for the modelling of weakly nonlinear and
dispersive long waves, the balance between the dispersion term (wave broadening) and
the nonlinear term (wave steepening) leads to the origination of solitons (solitary waves).
Therefore, when a higher order of nonlinearity is considered to identify the solitons at
critical values, the following fractional modified KdV equation (mKdV equation) and
combined fractional KdV-mKdV equation or fractional extended Korteweg de Vries (eKdV)
equation, respectively, arise [2]:

Dα
t u + au2Dβ

x u + bDβ
x Dβ

x Dβ
x u = 0, 0 < α, β ≤ 1

Dα
t u +

(
cu + au2

)
Dβ

x u + bDβ
x Dβ

x Dβ
x u = 0, 0 < α, β ≤ 1.
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In these equations, if α = 1 and 0 < β < 1, the equations are space fractional; if
0 < α < 1 and β = 1, the equations are time fractional or they are named space-time
fractional equations. There are several ways to solve these types of fractional evolution
equations in the literature [17–26]. Up to this point, we have reviewed the effects of
nonlinearity terms on wave construction; however, in some circumstances, a higher order
dispersion effect could be needed. For that purpose, a higher-order KdV equation with
an additional derivative term of the fifth order was first introduced by Kawahara in 1972
to give an equation which describes solitary wave propagation in media. After that, the
modified Kawahara equation was obtained, while the derivative of the fifth order for the
dispersion was added to the modified KdV equation. For the explained values of α and
β, the following equation is named the space-time (sometimes space or sometimes time)
fractional Kawahara equation

Dα
t u + cuDβ

x u + bDβ
x Dβ

x Dβ
x u− λDβ

x Dβ
x Dβ

x Dβ
x Dβ

x u = 0, 0 < α, β ≤ 1

and the following equation is called as the space-time (sometimes space or sometimes time)
fractional modified Kawahara equation

Dα
t u + au2Dβ

x u + bDβ
x Dβ

x Dβ
x u− λDβ

x Dβ
x Dβ

x Dβ
x Dβ

x u = 0, 0 < α, β ≤ 1

where a, b, and λ are arbitrary constants that occurs in many branches of physics, such as
shallow water waves, plasma waves, capillary–gravity water waves, and water waves with
surface tension. Numerous types of methods have been used for resolving these equations
for the different values of the fractional derivatives α and β [27–33].

Furthermore, by combining the modified Kawahara and the Kawahara equations, we
obtain the Extended Kawahara equation (sometimes the Gardner Kawahara equation),
which could be employed for examining various nonlinear structures in optical fibers, the
physics of plasma, etc., close to the decisive values of the appropriate physical arguments
that make the coefficients of dispersions and nonlinearity closed to zero [2]. So far, the
solutions of the extended Kawahara equation have been obtained by using the traditional
tanh method, the Jacobian elliptic function method, the sech square method, and Weier-
rtrass elliptic function method [2], ansatz method [34–36], the septic B-spline collocation
method [36], and the method of lines [36]. On the other hand, solutions for the fractional
extended Kawahara equation have never been researched so far, as indicated in the paper
by El-Tantawy et al. [2].

Consequently, in this research paper, we develop an expansion method based upon the
JEFs for analytical solutions of the conformable time-space fractional extended Kawahara
equation in the general form

Dα
t u + (cu + au 2)Dβ

x u + bDβ
x Dβ

x Dβ
x u− λDβ

x Dβ
x Dβ

x Dβ
x Dβ

x u = 0, 0 < α, β ≤ 1 (1)

where a, c, and λ are nonzero constants and b is arbitrary constant. Dα
t and Dβ

x typify the
fractional derivative of the two-variable function u(x, t) in the conformable sense with
respect to time variable t and space variable x, respectively. The equation given in (1)
is the most generalized structure of the fractional extended Kawahara equation in the
researched literature, and solutions for this equation are investigated for the first time using
the Jacobian elliptic function expansion method. Using this method, a large number of
solutions have been researched since Jacobi elliptic functions comprise different types of
functions, such as trigonometric, hyperbolic, complex, and rational functions. When the
fractional orders α and β are both equal to one, the fractional equation transforms into the
integer order ordinary differential equation, and therefore, the method given in this paper
also involves solutions for this equation.

The remainder of the paper is systematized as indicated here: In the second section,
the Jacobian elliptic functions (JEFs) and their useful properties are discussed; the definition
and rudimentary features of the fractional derivative in the conformable sense are also
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presented. In the third section, the expansion method based upon Jacobi elliptic functions
is introduced and used to attain analytical solutions for the space-time fractional extended
Kawahara equation in the conformable sense, and these solutions are listed and exhibited
in a table. In the fourth section, variable types of problems are provided to testify the
applicability of the given method, and a number of the solutions obtained are illustrated by
both two- and three-dimensional graphics. The paper is concluded in the last section.

2. Preliminaries

In this part of the paper, we give necessary definitions and theorems that are utilised within
the process of solving the presented conformable fractional extended Kawahara equation.

First, we begin with introducing elementary Jacobi elliptic functions (JEFs), which are
given as

snξ = sn(ξ; m), cnξ = cn(ξ; m), dnξ = dn(ξ; m).

Here the variable m symbolizes the modulus of the elliptic function, and it takes a
value between 0 and 1. Jacobi elliptic functions are doubly periodic functions, and they
have their own relationships, similar to the trigonometric and hyperbolic functions:

sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1,
sn’ξ = cnξ dnξ, cn’ξ = −snξ dnξ, dn’ξ = −m2cnξ snξ

Moreover, there are nine more elliptic functions that are formed by the basic ones,
namely, nc, ns, nd, sd, sc, cd, ds, dc, and cs. Another explanation for the notation can be
obtained from the definition stated in [37]. Furthermore, the differential properties of JEFs
are also shown in Table 1.

Table 1. The derivatives of twelve JEFs.

1 (cn)′(ξ) = −snξdnξ (sn)′(ξ) = cnξdnξ (dn)′(ξ) = −m2snξdnξ
2 (cd)′(ξ) =

(
m2 − 1

)
sdξndξ (sd)′(ξ) = cdξndξ (nd)′(ξ) = m2sdξcdξ

3 (nc)′(ξ) = scξdcξ (sc)′(ξ) = dcξncξ (dc)′(ξ) =
(
1−m2)scξncξ

4 (cs)′(ξ) = −dsξnsξ (ns)′(ξ) = −csξdsξ (ds)′(ξ) = −csξnsξ

In addition, the similarity mentioned above is not coincidental since Jacobian elliptic
functions convert into trigonometric functions when the elliptic modulus m→ 0, and they
turn into hyperbolic functions when m→ 1 as it can be seen in Table 2 explicitly [38].

Table 2. The behavior of JEFs when m→ 0 and m→ 1 .

JEF m→0 m→1 JEF m→0 m→1

1 snξ sin ξ tanhξ 7 dcξ sec ξ 1
2 cnξ cos ξ sechξ 8 ncξ sec ξ cosh ξ
3 dnξ 1 sechξ 9 scξ tan ξ sinhξ
4 cdξ cos ξ 1 10 nsξ csc ξ cothξ
5 sdξ sin ξ sinhξ 11 dsξ csc ξ cschξ
6 ndξ 1 cosh ξ 12 csξ cot ξ cschξ

Since Khalil et al. [39] brought the definition for “the conformable fractional derivative”
into the literature, this uncomplicated fractional derivative has become very popular among
mathematicians, physicians, and other scientists due to its dependence just on the well-
known definition of the usual derivative. Therefore, in this paper, the conformable fractional
derivative is integrated into the extended Kawahara equation. Now, in the final part of this
section, we introduce this new fractional derivative:
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Definition 1 ([39]). Suppose f : R+ ∪ {0} → R is a function, then the fractional derivative of
the α-th order in conformable sense of the function f is specified by the limit

Tα( f )(t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
, t > 0, α ∈ (0, 1] .

When f is differentiable of the α-th order in some (0, α) and lim
t→0+

f (α)(t) occurs, then

we can identify f (α)(0) = lim
t→0+

f (α)(t).

Theorem 1 ([39]). Suppose α ∈ (0, 1] and f , g are conformable differentiable of order α at the point
t > 0. Then, the following 6 expressions are satisfied for all f and g:

1. Linearity: Tα(k f + lg) = kTα( f ) + lTα(g) ∀ k, l ∈ R.
2. Tα( f ) = 0 i f f is a constant f unction.

3. Tα

(
tk
)
= ktk−α ∀k ∈ R.

4. If the function g is α-differentiable, then Tα(g)(t) = t1−α dg
dt .

Theorem 2 ([40]). Suppose that g, h : R+ → R are conformable differentiable functions of the
order α, where α ∈ (0, 1] and f (t) = h(g(t)). Then the composite function h(t) is conformable
differentiable of order α and for all t with t 6= 0 and g(t) 6= 0, we get

Tα( f )(t) = Tα(h)(g(t)).Tα(g)(t).g(t)α−1

If t = 0, we have
Tα( f )(0) = lim

t→0
Tα(h)(g(t)).Tα(g)(t).g(t)α−1.

This theorem is called the chain rule for the fractional derivative of the conformable
type.

Additionally, since the definition of the conformable fractional derivative is very
accustomed to the definition of the usual integer order derivative, there is an apparent
correlation between the two definitions. In the definition of the conformable fractional
derivative, when the fractional order α equals one, the fractional derivative converts into
the first order usual derivative.

3. The Solution Method (JEF Expansion Method)

In this part of the paper, we take into consideration the time-space conformable
fractional extended (Gardner) Kawahara Equation (1). To obtain analytical solutions for
this equation, we use the well-known Jacobi elliptic function (JEF) expansion method.
Literally, in the Jacobi elliptic function (JEF) expansion method, the solutions of the given
problems are investigated in terms of these functions. The JEF expansion method has
been used several times to attain solutions for multifarious classes of equations either of
the integer order or the fractional order [13,26,31,41–44]. In the solution process, before
applying the mentioned expansion method, the fractional extended Kawahara equation is
transformed into an integer order ordinary differential equation in a new variable by using
a suitable transformation to change the variables.

Now, using the transformation

ξ = k
tα

α
+ l

xβ

β
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such that k and l arbitrary nonzero constants, and utilizing the statement of the Theorem 2,
fractional extended Kawahara Equation (1) is modified into an integer order ordinary
differential equation (ODE) given by

k
du
dξ

+ clu
du
dξ

+ alu2 du
dξ

+ bl3 d3u
dξ3 − λl5 d5u

dξ5 = 0. (2)

The principal notion of the expansion method based upon elliptic functions of the
Jacobi type is to attain the solutions u(ξ) formed as

u(ξ) = ∑N
j=0 cjFj(ξ).

Here, the constants N and cj for j = 0, 1, . . . , N are supposed to be selected and decided
according to the situation. The function F is the solution for the following nonlinear ODE
(Jacobi elliptic equation)

(dF/dξ)2(ξ) = PF4(ξ) + QF2(ξ) + R. (3)

where ξ is a variable depending on both x and t, where P, Q, and R are constants. Further
information about the solutions of the elliptic Equation (3) can be found in Ref. [45].

Firstly, since balancing wave broadening (dispersion term) and wave steepening (the
nonlinear term) leads to the creation of solitons (solitary waves), we attain the balance
as N = 2 (the homogeneous balance between the term u2 du

dξ and the term d5u
dξ5 ,). Hence,

second-degree solutions of the ODE (2) are given explicitly as

u(ξ) = c0 + c1F(ξ) + c2F2(ξ).

By differentiating this function five times and replacing the necessary expressions by
Equation (3), we have

u′(ξ) = (c1 + 2c2F)F′,
u′′′ (ξ) =

(
c1Q + 6c1PF2 + 8c2QF + 24c2PF3

)
F′,

u(5)(ξ) =
(

c1Q2 + 12c1PR +
(
32c2Q2 + 144c2PR

)
F + 60c1PQF2+

+480c2PQF3 + 120c1P2F4 + 720c2P2F5)F′.

After that, by substituting these expressions into Equation (2), two possibilities occur:
in the former case F′ = 0; therefore, the first solution is obtained for c0 = arbitrary constant,
c0 = c1 = 0. In the latter case, a polynomial of the fifth order in the function F is attained,
and then since the RHS of the obtained equation is zero, by adjusting the coefficients of
each order to be zero also, the following nonlinear equations system is found

kc1 + clc0c1 + alc2
0c1 + bl3c1Q− λl5c1Q2 − 12λl5c1PR = 0

2kc2 + clc2
1 + 2clc0c2 + 2alc0c2

1 + 2alc2
0c2 + 8bl3c2Q− 32λl5c2Q2 − 144λl5c2PR = 0

3clc1c2 + alc3
1 + 6alc0c1c2 + 6bl3c1P− 60λl5c1PQ = 0

2clc2
2 + 4alc2

1c2 + 4alc0c2
2 + 24bl3c2P− 480λl5c2PQ = 0

5alc1c2
2 − 120λl5c1P2 = 0

2alc3
2 − 720λl5c2P2 = 0

Finally, solving this algebraic system yields c0 = ∓(4AQ− B)−C, c1 = 0, c2 = ∓12AP,
and c0 = arbitrary constant, c1 = c2 = 0, such that

24λl5
(

3PR−Q2
)
= k +

(
b2l/10λ

)
− cl

[
∓(4AQ− B) +

C
2

]
. (4)
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Here, A = l2
√

5λ/2a, B = b/
√

10λa, and C = c/2a. Therefore, solutions for
Equation (2) become

u = ∓(4AQ− B)− C∓ 12APF2 and u = c0.

In the final step, since we have solutions for Equation (2), we use the solution ta-
ble of the Jacobi elliptic equation to exhibit some of the solutions of this equation in a
table [13,31], and we present these solutions in Table 3. Using Table 3 and by taking the
inverse transformation from ξ to the variables x and t, we obtain JEF solutions for the
time-space conformable fractional extended Kawahara Equation (1). For further solutions,
the reader can check the extended solution table (Table 2) in [31].

Table 3. JEF Solutions of Equation (2) for particular values of P, Q, and R.

P Q R Solutions

1 m2 −
(
1 + m2) 1

u1,1 = ±B± 4A
(
1 + m2)− C∓ 12Am2sn2ξ

u1,2 = ±B± 4A
(
1 + m2)− C∓ 12Am2cd2ξ

2 −m2 2m2 − 1 1−m2 u2 = ∓
(
4A

(
2m2 − 1

)
− B

)
− C± 12Am2cn2ξ

3 −1 2−m2 m2 − 1 u3 = ∓4A
(
2−m2)± B− C± 12Adn2ξ

4 1 −
(
1 + m2) m2 u4,1 = ±B± 4A

(
1 + m2)− C∓ 12Ans2ξ

u4,2 = ±B± 4A
(
1 + m2)− C∓ 12Adc2ξ

5 1−m2 2m2 − 1 −m2 u5 = ∓
(
4A

(
2m2 − 1

)
− B

)
− C∓ 12A

(
1−m2)nc2ξ

6 m2 − 1 2−m2 −1 u6 = ∓
(
4A

(
2−m2)− B

)
− C± 12A

(
1−m2)nd2ξ

7 1−m2 2−m2 1 u7 = ∓
(
4A

(
2−m2)− B

)
− C∓ 12A

(
1−m2)sc2ξ

8 m4 −m2 2m2 − 1 1 u8 = ∓
(
4A

(
2m2 − 1

)
− B

)
− C∓ 12A

(
m4 −m2)sd2ξ

9 1 2−m2 1−m2 u9 = ±B± 4A
(
m2 − 2

)
− C∓ 12Acs2ξ

10 1 2m2 − 1 −m2 + m4 u10 = ±B∓ 4A
(
2m2 − 1

)
− C∓ 12Ads2ξ

11 − 1
4

1+m2

2 − (1−m2)
2

4
u11 = ±B∓ 2A

(
1 + m2)− C± 3A(mcnξ∓ dnξ)2

12 1
4

−2m2+1
2

1
4 u12 = ±B∓ 2A

(
1− 2m2)− C∓ 3A(nsξ∓ csξ)2

13 1−m2

4
1+m2

2
1−m2

4 u13 = ±B∓ 2A
(
1 + m2)− C∓ 3A

(
1−m2)(ncξ∓ scξ)2

14 1
4

m2−2
2

m4

4 u14 = ±B∓ 2A
(
m2 − 2

)
− C∓ 3A(nsξ∓ dsξ)2

15 m2

4
m2−2

2
m2

4
u15,1 = ±B∓ 2A

(
m2 − 2

)
− C∓ 3Am2(snξ∓ icnξ)2

u15,2 = ±B∓ 2A
(
m2 − 2

)
− C∓ 3A m2dn2ξ

1−m2snξ∓cnξ

16 1
4

1−2m2

2
1
4

u16,1 = ±B∓ 2A
(
1− 2m2)− C∓ 3A(mcnξ∓ idnξ)2

u16,2 = ±B∓ 2A
(
1− 2m2)− C∓ 3A

(
snξ

1∓cnξ

)2

17 m2

4
m2−2

2
1
4 u17 = ±B∓ 2A

(
m2 − 2

)
− C∓ 3Am2

(
snξ

1∓dnξ

)2

18 m2−1
4

1+m2

2
m2−1

4 u18 = ±B∓ 2A
(
1 + m2)− C∓ 3A

(
m2 − 1

)( dnξ
1∓msnξ

)2

19 1−m2

4
1+m2

2
1−m2

4 u19 = ±B∓ 2A
(
1 + m2)− C∓ 3A

(
1−m2)( cnξ

1∓snξ

)2

20 (1−m2)
2

4
1+m2

2
1
4 u20 = ±B∓ 2A

(
1 + m2)− C∓ 3A

(
1−m2)2

(
snξ

dnξ∓cnξ

)2

21 m2

4
m2−2

2
1
4 u21 = ±B∓ 2A

(
m2 − 2

)
− C∓ 3Am2 cn2ξ

1−m2∓dnξ

Moreover, by utilizing the outcomes of Table 2, we can obtain the well-known trigono-
metric and hyperbolic function solutions of Equation (2) in Table 4.

Table 4. The solutions of Equation (2) for the values of the elliptic modulus m.

m→0 m→1

1 u = −C± B± 4A u = −C± B± 8A∓ 12Atanh2ξ
u = −C± B∓ 4A

2 u = −C∓ B∓ 4A u = −C∓ (4A− B)± 12Asech2ξ

3 u = −C± B± 4A u = −C∓ 4A± B± 12Asech2ξ
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Table 4. Cont.

m→0 m→1

4
u = −C± B± 4A∓ 12Acsc2ξ u = −C± B± 8A∓ 12Acoth2ξ
u = −C± B± 4A∓ 12Asec2ξ u = −C± B∓ 8A

5 u = −C± B± 4A∓ 12Asec2ξ u = −C∓ (4A− B)
6 u = −C± B± 4A u = −C∓ (4A− B)
7 u = −C∓ (8A− B)∓ 12Atan2ξ u = −C∓ (4A− B)
8 u = −C± (4A + B) u = −C∓ (4A− B)
9 u = −C± B∓ 8A∓ 12Acot2ξ u = −C± B∓ 4A∓ 12Acsch2ξ

10 u = −C± B± 4A∓ 12Acsc2ξ u = −C± B∓ 4A∓ 12Acsch2ξ

11 u = −C± B± A u = −C± B∓ 4A± 12Asech2ξ
u = −C± B∓ 4A

12 u = −C± B∓ 2A∓ 3A(cscξ ∓ cotξ)2 u = −C± B± 2A∓ 3A(cothξ ∓ cschξ)2

13 u = −C± B∓ 2A∓ 3A(secξ ∓ tanξ)2 u = −C± B∓ 4A

14 u = −C± B± 4A∓ 12Acsc2ξ
u = −C± B± 4A u = −C± B± 2A∓ 3A(cothξ ∓ cschξ)2

15 u = −C± B± 4A u = −C± B± 2A∓ 3A(tanhξ ∓ isechξ)2

u = −C± B± 2A∓ 3A sech2ξ
1−tanhξ∓sechξ

16
u = −C± B± A u = −C± B± 2A∓ 3A((1∓ i)sechξ)2

u = −C± B∓ 2A∓ 3A
(

sinξ
1∓cosξ

)2
u = −C± B± 2A∓ 3A

(
sinhξ

1∓coshξ

)2

17 u = −C± B± 4A u = −C± B± 2A∓ 3A
(

sinhξ
1∓coshξ

)2

18 u = −C± B± A u = −C± B∓ 4A
19 u = −C± B∓ 2A∓ 3A

(
cosξ

1∓sinξ

)2 u = −C± B∓ 4A

20 u = −C± B∓ 4A∓ 3A
(

sinξ
1∓cosξ

)2 u = −C± B∓ 4A

21 u = −C± B± 8A u = −C± B± 2A + 3Asechξ

4. Demonstrations and Applications

In this part of the paper, we present distinctive sorts of examples of conformable
fractional extended Kawahara Equation (1), which are either time, space, or space-time
fractional. The solutions of these examples are supported by tables, and some of them will
be illustrated using 2D or 3D graphics, which have been sketched using Mathematica 13.2.

Example 1. Let us think about the conformable time fractional extended Kawahara Equation (1) for
the coefficients a = −10, b = 20, c = 40, λ = −1, α = 0.2, and β = 1; that is

D1/5
t u− 10u2ux + 20uxxx + uxxxxx = 0 (5)

When m→ 0 , on the left-hand side of the condition (4) 3PR−Q2 is equal to −1 for
the different values of P, Q, and R in some cases in Table 3, and Q is either −1 or 2 for this
case. This condition is satisfied for k = −56 and l = 1; then, the transformation given in
Section 3 becomes ξ = −280 5

√
t + x. Therefore, the solutions of the Equation (5) are

u = ∓(2Q− 2) + 2∓ 6PF2

such that A = 1/2, B = 2, and C = −2. When m→ 0 in Table 4, the solution u7 becomes
u7 = 2∓

(
2 + 6tan2ξ

)
.

In this case, we demonstrate these solutions for 0 ≤ t ≤ 0.0001 and 0 ≤ x ≤ 0.0001 in
Figures 1 and 2, respectively.
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Figure 1. Three-dimensional graph of obtained solution 𝑢 (𝑥, 𝑡) = 6tan −𝑥 − 280√𝑡  when 𝑚 →0. 
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(
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when m→ 0 .

Moreover, Figures 3 and 4 exemplify the referred solutions in the 2-dimensional
graph for the space variable changing between 0 and 20 at the fixed time t = 1. By
analyzing Figures 3 and 4, we can observe that the wavelengths do not change, and the
wave amplitudes reach up to infinity when x approaches infinity.
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Example 2. Let us think about the conformable space fractional extended Kawahara Equation (1)
for the determined coefficients a = −10, b = 20, c = 40, λ = −1, α = 0.5 and β = 1;

ut +
(

40u− 10u2
)

D1/2
x u + 20D1/2

x D1/2
x D1/2

x u + D1/2
x D1/2

x D1/2
x D1/2

x D1/2
x u = 0. (6)

When m→ 1 , on the left-hand side of the condition (4), 3PR−Q2 is equal to −1 for
the different values of P, Q, and R in some cases in Table 3, and Q is either 1 or −2 for this
case. This condition is satisfied for k = −216 and l = 1; then, the transformation given in
Section 3 becomes ξ = −216t + 2

√
x. Thus, the analytical solutions of Equation (6) are in

the form
u = ∓(2Q− 2) + 2∓ 6PF2

such that A = 1/2, B = 2, and C = −2. When m→ 1 in Table 4, the solutions u4 become
u4 = 2∓

(
6 + 6coth2ξ

)
. In that case, we exemplify given solutions for x ∈ [0, 0.1] at

0 ≤ t ≤ 0.1 and at 0 ≤ t ≤ 0.005 in Figures 5 and 6, separately. Furthermore, Figures 7 and 8
exemplify the referred solutions in the 2-dimensional graph for space variable changing of
0 ≤ x ≤ 1 at t = 0.01.
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Example 3. Take the conformable time-space fractional extended Kawahara Equation (1) under the
consideration for the coefficients a = 10, b = 10, c = 20, λ = 1, α = 0.5 and β = 0.25;

D1/2
t u + 10

(
2u + u2

)
D1/4

x u + 10D1/4
x D1/4

x D1/4
x u− D1/4

x D1/4
x D1/4

x D1/4
x D1/4

x u = 0. (7)
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When m→ 0 , on the left-hand side of the condition (4), 3PR−Q2 is equal to −1 for
the different values of P, Q, and R in some cases in Table 3, and Q is either −1 or 2 for this
case. This condition given by (4) is satisfied for k = 36 and l = 1; then, the transformation
becomes ξ = 72

√
t + 4 4

√
x. Therefore, the solutions for Equation (7) are

u = ∓(−1 + 2Q)− 1∓ 6PF2

such that A = 1/2, B = 1, and C = 1. When m→ 0 in Table 4, the solution u9 becomes
u9 = −1∓

(
3 + 6cot2ξ

)
. In this situation, we demonstrate these solutions for x ∈ [0, 0.05]

and t ∈ [0, 0.1] in Figures 9 and 10, separately. Moreover, Figures 11 and 12 illustrate the
referred solutions in the 2-dimensional graph for the space variable changing of 0 ≤ x ≤ 500
at time t = 1. By analyzing Figures 11 and 12, we can clearly observe that the wavelengths
increase, and the wave amplitudes reach up to infinity when x approaches infinity. Thus,
the wave frequency increases for values of x close to zero.
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Figure 12. Two-dimensional graph of the solution u9(x, 1) =
(
−4− 6cot2(72 + 4 4

√
x
))

.

Example 4. Let us take the conformable time-space fractional extended Kawahara Equation (1)
under the consideration for λ = 1, a = 10, b = 10, c = 20, β = 0.5 and α = 0.5;

D1/2
t u + 10

(
2u + u2

)
D1/2

x u + 10D1/2
x D1/2

x D1/2
x u− D1/2

x D1/2
x D1/2

x D1/2
x D1/2

x u = 0. (8)

When m→ 1 , on the left-hand side of the condition (4), 3PR−Q2 is equal to −1 for
the different values of P, Q, and R in some cases in Table 3, and Q is either 1 or −2 for this
case. This condition is satisfied for k = −4 and l = 1; then, the transformation given in
Section 3 becomes ξ = −8

√
t + 2
√

x. Hence, the solutions of Equation (8) are

u = ∓(2Q− 1)− 1∓ 6PF2

such that A = 1/2, B = 1, and C = 1. When m→ 1 in Table 4, the solution u3 be-
comes u3 = −1∓

(
1 + sech2ξ

)
. In that case, we demonstrate some of these solutions

for 0 ≤ x ≤ 10 and 0 ≤ x ≤ 50 at 0 ≤ t ≤ 1 in Figures 13 and 14, separately. Further-
more, Figures 15 and 16 exemplify the referred solutions in the 2-dimensional graph for
x ∈ [0, 100] at time t = 1.
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Eventually, in this section, four problems of distinguishable types (either space frac-
tional or time fractional or both) have been solved, and some of the solutions have been
illustrated both in 2-dimensional and 3-dimensional graphics for different values of the
fractional orders α and β. Naturally, the effects of the values of the fractional orders on
the solutions could be seen as the changes in the wave width, wave length, and wave
amplitude together with the positions of the waves with respect to time.

5. Conclusions

In this full paper, an expansion method based upon JEFs is introduced to acquire
analytical solutions for all the time, space, and space-time conformable fractional extended
(Gardner) Kawahara equations. Here, the fractional extended Kawahara Equation (1) is
given in its most general form in the literature, and hence, this presented method is the
first method used for obtaining analytical solutions for the equation. The proposed method
has numerous benefits: it is direct, quick, and simple. The primary benefit of the proposed
method is because of the fact that the solutions are composed of 12 JEFs, solutions are
discovered in a comprehensive structure, which contains the well-known functions, such
as trigonometric, hyperbolic, complex, and rational functions. Furthermore, because of the
relationship between JEFs and these functions, the solutions of a variety of methods, such
as tanh, sech, and sine-cosine ansatz methods, are handled at the same time by using this
single method. Moreover, it is obviously clear that the solutions can represent the solitary
waves in some of the examples.
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