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Abstract: Extensive research was conducted on the transmission dynamics of tuberculosis epidemics
during its reemergence from the 1980s to the early 1990s, but this global problem of investigating
tuberculosis spread dynamics remains of paramount importance. Our study utilized a fractional-
order delay differential model to study tuberculosis transmission, where the time delay in the model
was attributed to the disease’s latent period. What is more, this model accounts for endogenous
reactivation, exogenous reinfection, and treatment of tuberculosis. The model qualitative properties
and the basic reproduction number were analyzed. The primary goal of the study was to recover
the important dynamic parameters of tuberculosis. Our understanding of these complex processes
leverages the efficacy of efforts for controlling the disease, forecasting future dynamics, and applying
further appropriate strategies to prevent its spread.The calibration itself was carried out via mini-
mization of a quadratic cost functional. Computational simulations demonstrated that the algorithm
is capable of working with noisy real data.
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caputo derivative
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1. Introduction

Tuberculosis, the highly infectious disease caused by the bacterium Mycobacterium
tuberculosis (MTB), remains a significant health challenge worldwide, particularly in
developing countries. This contagious disease is a major cause of mortality and continues
to pose a serious threat to public health. MTB can easily spread via respiratory contact
as an infected individual coughs, sneezes, spits, or speaks. The disease is characterized
by various symptoms, including high fever accompanied by chills, chronic cough, night
sweats, nail clubbing, weight loss, and fatigue. As TB is a life-threatening disease, it is
crucial to identify and treat the illness at an early stage, to prevent further transmission and
improve patient outcomes. The current global situation demands greater efforts towards
TB awareness, prevention, and treatment strategies, particularly in countries with high
incidence rates.

TB is a highly prevalent infectious disease and is responsible for a significant number
of deaths worldwide. It is considered the second leading cause of death caused by an
infectious disease globally. Only in 2019, almost 1.2 million people died from TB, and more
than 10.3 million people were infected worldwide. The disease primarily affects the lungs,
but it can also spread to other parts of the body, such as the circulatory system, central
nervous system, genital–urinary system, joints, bones, and skin. Hence, it is important
to diagnose and treat TB promptly, to prevent the spread of the disease and mitigate its
impact on affected individuals.
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Studying disease dynamics remains crucial. TB exhibits complex dynamics, such as
latency periods, super-spreading events, and the development of drug resistance. Thus,
modeling the disease spread provides us with an understanding of these complex processes.
Having gained knowledge about the dynamics, this could be used for predicting the spread
within a population over time. Needless to say, this could help public health authorities
formulate appropriate strategies to control the spread. What is more, using models, the
effect of various interventions on disease dynamics could be assessed, including vaccination,
treatment, quarantine, etc. All these factors motivated us to perform the current study,
where we formulate a compartmental ODE model, suggest an algorithm to calibrate it, and
we fit the model to real-world data.

One of the most powerful approaches for modeling and subsequently controlling
such a disease is mathematical modeling. A large class of models focus on transmission
dynamics, which explain how waves develop, spread, and evanesce. Mathematical models,
as important tools in the study of infectious diseases, provide valuable insights into disease
transmission and control. Researchers have developed numerous models to study the
dynamics of TB. These models can help to identify effective strategies for preventing
the spread of TB and reducing its impact on public health. By analyzing data on TB
transmission and disease progression, mathematical models can also help to predict future
trends in TB incidence and guide public health interventions. These models are essential
for understanding the complex dynamics of TB and developing evidence-based policies to
combat the disease.

The SIR (susceptible-infected-removed) compartment model, first suggested in 1927 [1],
is considered the first contemporary attempt to model the spread of an infectious disease.
Later, many extensions and generalizations were developed. Compartment models are
heavily used in modeling epidemics [2,3]. We mention a small part of these studies, dedi-
cated primarily to tuberculosis. In 1962, a TB model was suggested by [4], and a couple of
years later, a compartment model was proposed in [5]. In [6], the authors developed a two-
stratum model for TB dynamics, distinguishing between fast and slow progressors to active
disease. This model highlighted the importance of latency in TB transmission dynamics. An
age-structured model was used to differentiate between primary infection and reinfection
in TB transmission in [7]. The study underlined the significance of age-related factors and
reinfection in TB epidemiology. In the paper in [8], the authors used a compartmental ODE
model to simulate the spread of TB under different treatment strategies. They concluded
that the WHO’s DOTS strategy could significantly reduce TB incidence and mortality. In
the study in [9], the authors used a stochastic compartmental model to demonstrate the
potential impact of treating latent TB infection. This work underscored the importance of
considering latency in TB control efforts. The authors of [10] incorporated drug resistance
into a TB model, showing that less fit drug-resistant strains can persist and eventually
predominate under standard treatment policies, which was an important contribution to
understanding the dynamics of drug-resistant TB. In [11], a compartmental model was used
to simulate the spread of extensively drug-resistant TB in South African hospitals. They
found that implementing infection control measures could greatly reduce transmission. A
complex multi-compartment model that included HIV co-infection and various forms of
drug-resistant TB was used in [12]. This model was used to analyze different control strate-
gies, demonstrating the necessity of including these factors in models used in high-burden
settings. The authors of [13] used compartmental models to inform policy decisions related
to TB control in South Africa. They demonstrated the potential of model-based analysis
for guiding resource allocation and intervention planning in a high-burden setting. In [14],
the authors developed a model to estimate the global burden of latent multidrug-resistant
TB. They found that the number of individuals with latent MDR-TB is substantial and
increasing, highlighting the need for new tools and strategies for diagnosing and treating
latent MDR-TB. The study in [15] presented a six-compartment deterministic model, to
analyze the effects of vaccination on TB dynamics within a population, establishing local
asymptotic stability when the effective reproduction number is less than one. The results
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underscored the significance of reducing contact with infected individuals and increasing
the vaccination rate with an effective vaccine, demonstrating these as key strategies for
decreasing the TB burden in a population. A random differential equation system was
applied to a mathematical model of tuberculosis transmission in [16], investigating the
randomness of disease spread by analyzing expected compartment sizes and coefficients of
variations. The sensitivity of the basic reproduction number to parameter changes was also
explored, using the forward normalized sensitivity index, with simulations conducted to
assess random dynamics of disease transmission.

A more detailed review of mathematical approaches to the modeling and control of
TB disease performed over the past century can be found in [17]. Some of the recent studies
include [18], where seasonal effects are included, and [19], where a fractional-order TB
model with age structure was considered. TB models with vaccination effectiveness were
considered in [20].

In the study of [21], a mathematical model was studied for the co-infection of tubercu-
losis and COVID-19 using the Atangana–Baleanu fractal–fractional operator, considering
compartments for recovery from both diseases. They confirmed the existence and unique-
ness of a model solution through a fixed-point approach, investigated the Ulam–Hyers
stability, and validated the model using Lagrange interpolation polynomial in a numerical
scheme, comparing different values of fractional and fractal orders. In [22], the authors
proposed a mathematical model for investigating the impact of COVID-19 on TB, providing
evidence that TB patients have a higher chance of contracting SARS-CoV-2. Using stability
analysis, optimal control theory, and sensitivity analysis, they highlighted the system’s
endemic equilibrium point, bifurcation behavior, and the key role of the transmission
rate in controlling the dynamics of both diseases, confirming that controlling this rate can
mitigate COVID-19 and TB infections. In [23], a deterministic mathematical model for
the co-infection of COVID-19 and TB was formulated and analyzed, to understand the
co-dynamics and impact of each disease within a population, while considering factors
such as vaccine efficacy and vaccination rate. Obviously, when the basic reproduction
numbers for both diseases are below one, the population reaches a stable disease-free
state; however, the authors also found that, while COVID-19 incidence decreases with
co-infection prevalence, the burden of tuberculosis on the human population increases,
emphasizing the importance of controlling both diseases for community health. In many
studies, besides co-infection with COVID-19, the co-dynamics of TB with HIV, diabetes,
smoking, etc. was considered

TB progresses through two main mechanisms: primary infection, which occurs when
the disease develops after the initial infection; and endogenous reactivation, which happens
when the disease emerges many years after the initial infection [24]. In cases of primary
infection, progressive TB can either arise as a continuation of the initial infection or as
an endogenous reactivation of a latent focus. The prolonged latency period associated
with TB infection creates additional uncertainty about when the disease may become
active. As a result of endogenous reactivation, the disease transitions from the latent to the
infectious compartment.

Individuals who have been previously infected with TB and are in a latent state could
become infected again through a process known as exogenous reinfection, where they
contract the disease from another infectious individual [25]. This is particularly common
in individuals with compromised immune systems. In this case, the infection is caused
by organisms that are not normally present in the body but that have entered from the
environment. Therefore, the two key factors in a tuberculosis model that contribute to new
infections are the rates of endogenous reactivation and exogenous reinfection. These terms
are crucial for understanding the spread of the disease and its impact on the population.

Moreover, in mathematical models, the time lag or delay is a crucial factor that
determines the duration of the latent period and the time taken to identify individuals with
active TB and start treatment. Delays in the treatment of latent TB can arise due to a variety
of factors related to the patient’s clinical and demographic characteristics, as well as the
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healthcare system. In order to ensure timely diagnosis and treatment of active TB, both
the healthcare system and the patient must play a role in identifying and managing the
disease. The healthcare system should develop effective case finding strategies, to reduce
delays in the diagnosis of active TB, while patients should be aware of the symptoms of TB
and seek medical attention promptly if they suspect they might have the disease. A model
accounting for treatment was proposed in [26]. The effects of treatment were also discussed
in [27].

We follow models of endogenous reactivation and exogenous reinfection [28] and
treatment [29], and their fractional-order counterparts [30,31], respectively.Commonly,
mathematical models utilize integer-order derivatives to describe the dynamics of systems.
However, these conventional models have certain drawbacks, as they do not take into
account the learning process and memory effects. On the other hand, fractional models
are more suitable, as they can accurately capture these factors and produce more realistic
outcomes. This is because fractional derivatives enable models to account for non-local
interactions and long-range memory effects that are often present in natural systems. There-
fore, incorporating fractional derivatives into models can provide a better understanding of
the real-world phenomena being studied. In recent years, there has been a growing interest
in non-integer-order biological systems, which are better suited to natural phenomena
compared to integer-order systems, as they can account for the memory and hereditary
properties of dynamical systems. Fractional-order models, unlike integer-order models,
can capture nonlocal relations in time and space through power-law memory kernels.
This is due to the fact that the fractional-order derivative provides a greater degree of
freedom and is consistent with the reality of interactions, allowing for an exact expression
of nonlinear phenomena. Many biological systems involve long-range space interactions
and/or temporal memory, and the presence of both fractional order and time delay in a
mathematical model can significantly increase the complexity of the observed behavior.

Not many papers, however, have discussed the question of the proper calibration
of the proposed models, especially with real data [32]. In [33,34] we calibrated SIR-type
fractional-order epidemiological models with time-dependent parameters, fitted to real
COVID-19 data. Here, we adopt a different approach.

Motivated by the aforementioned studies, we enhanced the described models with
endogenous reactivation, exogenous reinfection and treatment compartment, equipping
them with fractional-order derivatives and a time lag. This is one of the two main novelties
of the study. The resulting models are described in the next section. Section 3 covers some
basic concepts of the fractional calculus required for the following exposition. Section 4 is
dedicated to the solution to the direct problem and a basic analysis. The inverse problem
is thoroughly described in Section 5, which is the second main novelty. The numerical
computations are given in Section 6, while the last section concludes the paper.

2. Problem Formulation

Research on the spread of infectious diseases is a field of study that has been around
for a long time and has led to the development of the scientific area known as mathematical
epidemiology. Mathematical epidemiology is a discipline that creates models to aid in the
comprehension of epidemics and the development of strategies for the control of infectious
diseases. These models have found broad application in fields such as biology, ecology,
and chemistry [35]. They allow us to understand underlying processes and forecast the
behavior of an epidemic.

In this section, we first propose a classical integer-order derivative model. As men-
tioned, to compose the model, we primarily follow [30,31].

2.1. Integer-Order Model

The total population considered N(t) is divided into five compartments, plus one
additional: the susceptible class S(t), the exposed E(t), the infectious I(t), the treated T(t),
and the recovered class R(t). Here, we also consider the deceased class D(t), which is
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composed of only deceased individuals from TB infection. The per capita mortality rate is
ξ, which acts in all compartments. The vital dynamics is complemented by the constant
birth rate Λ, which increases those susceptible. The infection spreads via mass action, where
the effective transmission coefficient is β, and this is modeled with a bilinear incidence
rate. A fraction c ∈ (0, 1) of the newly contaminated population undergoes rapid infection
progression and directly enters the infected class, where they become infectious, i.e., can
infect susceptible individuals through contact. The rest of the contaminated join the exposed
class, where they are not yet infectious. A new infection may arise in a latent individual
due to the latency period with length k−1, where k is the endogenous reactivation rate. The
portion ρ ∈ (0, 1) denotes the share of (exogenous) reinfection from the new infections.

The treatment rate h describes the rate at which the infected are identified and start
treatment. The infectious- and treated-induced mortality rates due to TB disease are σ1 and
σ2, respectively. With δ, the incomplete treatment rate is denoted. A portion ζ ∈ (0, 1) of
the latter subpopulation reenters the infectious, and the remainder the exposed, classes.
The successfully treated individuals join the recovered population at rate φ. However, the
immunity gained is not lifelong, and the parameter γ represents the immunity wane.

Following this, the integer-order derivative model has the form:

Ṡ(t) = Λ− βS(t)I(t)− ξS(t),

Ė(t) = (1− c)βS(t)I(t)− ρβE(t)I(t)− kE(t)− ξE(t) + (1− ζ)δT(t) + γβI(t)R(t),

İ(t) = cβS(t)I(t) + ρβE(t)I(t) + kE(t)− hI(t)− σ1 I(t)− ξ I(t) + ζδT(t),

Ṫ(t) = hI(t)− φT(t)− σ2T(t)− ξT(t)− δT(t),

Ṙ(t) = φT(t)− ξR(t)− γβI(t)R(t),

(1)

where N(t) = S(t) + E(t) + I(t) + T(t) + R(t) is the total population size and the addi-
tional compartment

Ḋ(t) = σ1 I(t) + σ2T(t) (2)

designates those deceased only from TB disease.
The model is visually represented in Figure 1.
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Figure 1. Model Equations (1) and (2).

The model Equation (1) is subjected to non-negative initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0. (3)
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2.2. Fractional-Order Model

Now, we enhance the previous model Equation (1) by introducing two kinds of heritage:
fractional order (0 < α ≤ 1), and discrete time delay τ. The inclusion of a time lag accounts
for short-term memory, while the use of fractional order accounts for the long-term temporal
memory of the system. This modified model is given by the following system:

DαS(t) = Λ− βS(t)I(t)− ξS(t),

DαE(t) = (1− c)βS(t)I(t)− ρβE(t)I(t)− kE(t)− ξE(t) + (1− ζ)δT(t) + γβI(t)R(t),

Dα I(t) = cβS(t)I(t) + ρβE(t)I(t) + kE(t)− hI(t)− σ1 I(t)− ξ I(t) + ζδT(t),

DαT(t) = hI(t)− φT(t)− σ2T(t)− ξT(t)− δT(t),

DαR(t) = φT(t)− ξR(t)− γβI(t)R(t− τ),

(4)

where Dα represents the fractional operator of order 0 < α ≤ 1, e.g., of Caputo type. The
discrete delay τ denotes the time required for the infectious to recover [30], and

DαD(t) = σ1 I(t) + σ2T(t). (5)

Of course, the initial conditions Equation (3) have to be modified accordingly:

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T(0) ≥ 0, R(θ) ≥ 0 for − τ ≤ θ ≤ 0. (6)

For convenience, we give detailed information of the parameters in Table 1.

Table 1. Description of the parameters in model Equations (1) and (4).

Parameter Description Typical Values Reference

Λ Birth rate 0.01 [36]
ξ Natural mortality rate 0.01 [36]
β Transmission rate 0.8 Implied
c Portion of “fast” infections 0.5 Implied
ρ Exogenous reinfection rate 0.23 Implied
k Endogenous reactivation rate 0.002 Implied
ζ Portion of drug defiance treated population 0.3 [31]
δ Incomplete (failed) treatment rate 0.065 [31]
γ Waning immunity rate 0.5 Implied
h Treatment rate 0.15 [31]
σ1 Disease-induced mortality rate of infected 0.17 Implied
σ2 Disease-induced mortality rate of treated 0.07 Implied
φ Recovery rate 0.01 [31]

2.3. The Direct and Inverse Problems

If the coefficients in Equation (4) are known, obtaining the functions S(t), E(t), I(t),
T(t), R(t) for t > 0 constitutes solving the direct problem. However, in practice, the
values of many of the parameters are unknown. They cannot be measures, but are vital
for modeling the population, forecasting the future development, and taking adequate
measures to control TB disease.

Statistics supply data of the detected infectious people, as well as the deaths from TB.
This means that we already know the functions I(tk) and D(tk) for some time instances
tk ∈ [0, T], k = 1, . . . , K. Our problem becomes to find the implied values of the unknown
parameters ppp ≡ {β, c, ρ, k, γ, σ1, σ2}, if the following is available:
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I(tk; ppp) = Xk, k = 1, . . . , K,

D(tk; ppp) = Yk, k = 1, . . . , K.
(7)

The process of determining the value of the parameter ppp is known as an inverse
problem, which involves modifying the parameter values of a mathematical model to
match the observed data. In other words, it is the task of finding the appropriate parameter
values that would allow the model to replicate the data that have been collected. This
process is often necessary in both real applications and scientific research, particularly
when it comes to understanding complex phenomena that cannot be directly observed.

The observations in Equation (7) are called point measurements and the model is
calibrated via minimizing the following cost functional:

Φ = Φ(ppp) =
K

∑
k=1

[
I
(
tk; ppp

)
− Xk

]2
+

K

∑
k=1

[
D
(
tk; ppp

)
−Yk

]2, t ∈ [0, T]. (8)

3. Basic Facts Fractional Calculus

Here, we provide some basic notations and definitions, which are required for the fol-
lowing analysis. It is far from a comprehensive review; a much more thorough introduction
to fractional calculus can be found f. i. in [37,38].

Hereinafter, we assume f ∈ AC[0, T], i.e., f is absolutely continuous on [0, T], and
α ∈ [0, 1].

Definition 1 ((Forward) Riemann–Liouville integral).

(
Jα
0+ f
)
(t) :=


f (t), α = 0,

1
Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds, 0 < α ≤ 1,
t ∈ [0, T),

where Γ denotes the Gamma function Γ(x) :=
∫ ∞

0 sx−1e−sds for x > 0.

Definition 2 ((Forward) Caputo fractional derivative).

CDα
0 f (t) =

(
J1−α
0+

d f
dt

)
(t) =

1
Γ(1− α)

∫ t

0

1
(t− s)α

d f
dt

ds.

For monotonicity, we recall the following [37]:

Lemma 1 (Generalized mean value formula). Let f (t) ∈ C[a, b] and Dα
0 f (t) ∈ C[a, b] for

0 < α ≤ 1. If

Dα
0 f (t) ≥ 0 ∀t ∈ (a, b), then f(t) is nondecreasing, ∀t ∈ [a, b];

Dα
0 f (t) ≤ 0 ∀t ∈ (a, b), then f(t) is nonincreasing, ∀t ∈ [a, b].

4. Solution to the Direct Problem

In this section, a number of important properties of the continuous model are given in
Equations (4)–(6). Then, the numerical approach to solving the latter is discussed.

4.1. Continuous Solution Properties

Proposition 1 (Existence, positivity, and boundedness). The solution to model Equations (4)
and (6) is unique, nonnegative, and bounded for every

(
S(0), E(0), I(0), T(0), R(0)

)
∈ R5

+ and
t > 0.
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Proposition 1 follows from the results in [39] and Lemma 1.
To find the equilibria states of the model Equation (4), one is required to solve the

system
DαS(t) = DαE(t) = Dα I(t) = DαT(t) = DαR(t) = 0.

Proposition 2 (Equilibria states). Model Equation (4) exhibits a disease-free equilibrium (DFE)
point at

E0 =

(
Λ
ξ

, 0, 0, 0, 0
)

(9)

and endemic equilibrium (EE) point at

E1 = (S∗, E∗, I∗, T∗, R∗), (10)

where ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S∗ =
Λ

ξ + βI∗
,

E∗ =
m2ξ −Λβc + βm2 I∗ − δξζ − βδζ I∗

(ξ + βI∗)(k + βρI∗)
I∗,

T∗ =
h

m3
I∗,

R∗ =
φh

m3(ξ + βγI∗)
I∗,

(11)

m1,2,3 are defined in Equation (13) and I∗ is the real positive root to the cubic equation

ã(I∗)3 + b̃(I∗)2 + c̃I∗ + d̃ = 0. (12)

The coefficients ã, b̃, c̃, and d̃ are given in Appendix A.

In the field of mathematical epidemiology, the basic reproduction number R0 is a
concept that carries significant importance [40]. It can be described as a measure of the
contagiousness of a specific disease [41]. The study of infectious disease modeling has
shown that the basic reproduction number plays a key role in predicting the dynamics of
an epidemic. It serves as a threshold for the behavior of the epidemic, indicating an abrupt
change in behavior depending on whether the number is greater than one or less than one.
This phenomenon is known as threshold behavior, and it has been extensively studied [42].

The next generation method [42] allows us to compute the basic reproduction number
for the model Equation (4):

F =


0 (1− c)β Λ

ξ 0

0 cβ Λ
ξ 0

0 0 0

, V =


m1 0 −(1− ζ)δ

−k m2 −ζδ

0 −h m3

,

where
m1 = k + ξ, m2 = h + σ1 + ξ, m3 = φ + σ2 + ξ + δ (13)

and eventually

Proposition 3 (Basic reproduction number).

R0 =
Λ
ξ
· βkm3 + βcm1m3 − βckm3

δζhk− δhk− δζhm1 + m1m2m3
. (14)
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To put this in a more technical manner, the basic reproduction numberR0 quantifies
the average number of new infections that can be caused by a single infected individual
during their infectious period in a fully susceptible population. In simpler terms, it mea-
sures the contagiousness of a disease and its potential to cause an epidemic. WhenR0 < 1,
this means that each infected individual, on average, infects fewer than one susceptible
individual, indicating that the disease is likely to die out. However, ifR0 > 1, this implies
that each infected individual will infect more than one susceptible individual, and the
disease is expected to continue spreading among the population. The basic reproduction
number is a crucial parameter in epidemiological models, as it helps in predicting the
trajectory of an outbreak and designing appropriate control measures.

Before further studying equilibria states, we will measure the sensitivity ofR0 to the
parameters involved in it. Basically, the sensitivity analysis reveals how important is each
of the parameters in the model. It quantifies the impact a particular parameter has on a
variable. The sensitivity of the basic reproduction number with respect to a parameter
is the proportion of the relative change in R0 to relative change in p. Assuming R0 is a
differentiable function of the parameters, then the sensitivity indices can be written by
means of the partial derivatives:

SR0
p =

p
R0
· ∂R0

∂p
.

In particular,

SR0
Λ = 1 > 0 SR0

ξ < 0

SR0
β = 1 > 0 SR0

h < 0

SR0
c =

cξ

k + cξ
> 0 SR0

σ1 < 0

SR0
k > 0 SR0

σ2 < 0

SR0
ζ > 0 SR0

φ < 0

SR0
δ > 0

Obviously, Λ and β are directly proportional toR0, in the sense that one unit change
in them will cause exactly one unit change in R0. The parameters c, k, ζ and δ are also
directly proportional to the basic reproduction number, while the parameters ξ, h, σ1, σ2
and φ are inversely proportional toR0. The latter does not depend on ρ or γ. A respective
increase or decrease in the parameters leads to minimizing or maximizing the endemic
nature of TB, which could be used in an optimal control framework.

Now, we continue with an equilibrium study.

Theorem 1 (Equilibrium stability). The DFE E0 Equation (9) of model Equation (4) is locally
asymptotically stable if

β <
ξ

Λ
min

{
m1 + m2 + m3

c
,

m1m2 + m1m3 + m2m3 − δhζ

k + cm1 + cm3 − ck
, −b+Re(

√
b2 − 4ac)

2a

}
andR0 < 1

and unstable ifR0 > 1, where

a = c(k + cm1 + cm3 − ck),

b = km3 − (m1 + m2 + m3)(k + cm1 + cm3 − ck)− c(m1m2 + m2m3 − δhζ + km3),

c = (m1 + m2 + m3)(m1m2 + m1m3 + m2m3 − δhζ) + δhk−m1m2m3 − δhkζ + δhm1ζ.
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Proof. The characteristic matrix, evaluated at E0, is

J(E0) =



−ξ 0 −Λ
ξ β 0 0

0 −m1 (1− c)Λ
ξ β (1− ζ)δ 0

0 k c Λ
ξ β−m2 ζδ 0

0 0 h −m3 0

0 0 0 φ −ξ


.

Taking into consideration both −ξ, the remaining part of the characteristic equation at
E0 is

P(λ) = λ3 + a2λ2 + a1λ + a0,

where

a2 = m1 + m2 + m3 − c
Λ
ξ

β,

a1 = m1m2 + m1m3 + m2m3 − δhζ − Λ
ξ

β(k + cm3 + cm1 − ck),

a0 = m1m2m3 − δhk− δhm1ζ + δhkζ − Λ
ξ

β(km3 + cm1m3 − ckm3).

The Routh–Hurwitz criteria requires

a2 > 0, a1 > 0, a0 > 0, a2a1 − a0 > 0 (15)

so that all roots of P(λ) lie in the open left half-plane.
The first condition in Equation (15) reduces to

Λ
ξ

β <
m1 + m2 + m3

c
,

the second condition reduces to

Λ
ξ

β <
m1m2 + m1m3 + m2m3 − δhζ

k + cm1 + cm3 − ck︸ ︷︷ ︸
B

,

and a0 > 0 is equivalent toR0 < 1.

Reordering the terms of a2a1 − a0 yields a
(

Λ
ξ β
)2

+ b
(

Λ
ξ β
)
+ c. From m1 > k it is

obvious that a > 0, i.e., the parabola is upward (convex); therefore, Λ
ξ β must be less than

the lower root and more than the greater root, if any. However, the parabola vertex is

v = − b

2a
=

(1− c)km1 + (1− c)km2 + c(m2
1 + m2

3 + δhζ)

2c(k + cm1 + cm3 − ck)︸ ︷︷ ︸
>0

+B,

which means the right branch surely violates the second condition. Thus, Λ
ξ β must be less

than the lower root, if it exists.
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4.2. Numerical Solution

This subsection is dedicated to presenting the numerical procedure required to solve
the direct problem Equations (4)–(6). We employ the following equidistant grid:

ωdir
4t = {t0 = 0, tj = j4t, tJ = T} for j = 1, . . . , J − 1 (16)

with a constant step size4t.
The fractional-order model Equations (4) and (5) are solved with ωdir

4t Equation (16).
Now, we consider a modified Adams–Bashforth–Moulton (fractional Adams) scheme to
deal with the delay. The system Equation (4) is written as

CDα
0yyy = FFF

(
t, yyy(t), yyy(t− τ)

)
,

which is identical to the Volterra integral equation

yyy(t) = yyy0 +
1

Γ(α)

∫ t

0

FFF
(
s, yyy(s), yyy(s− τ)

)
(t− s)1−α

ds,

and we solve it by means of Algorithm 1. This is a single-step method, i.e., only the initial
condition Equation (6) is needed to begin with.

Algorithm 1 Fractional Adams method [43]

for j = 0, . . . , J − 1 do
Let t := tj, t̂ := tj+1, y̌̌y̌y := yyy(t− τ), yyy := yyy(t), ŷ̂ŷy := yyy(t̂). Then ŷ̂ŷy is calculated as

ŷ̂ŷypred = yyy0 +
1

Γ(α)

j

∑
i=0

bi,j+1FFF(t, yyy, y̌̌y̌y),

ŷ̂ŷy = yyy0 +
1

Γ(α)

(
j

∑
i=0

ai,j+1FFF(t, yyy, y̌̌y̌y) + ai+1,j+1FFF
(
t̂, ŷ̂ŷypred, yyy(t̂− τ)

))
,

where

ai,j+1 =
4tα

α(α + 1)



jα+1 − (j− α)(j + 1)α, i = 0,

(j− i + 2)α+1 − 2(j− i + 1)α+1 + (j− i)α+1, 1 ≤ i ≤ j,

1, i = j + 1,

bi,j+1 =
4tα

α

(
(j− i + 1)α − (j− i)α

)
, 0 ≤ i ≤ j.

end for

Although basic, this method is unconditionally stable and computationally efficient.
Different procedures could be used.

5. Numerical Solution to the Inverse Problem

Here, we present the numerical approach to solving the inverse problem Equations (4)–(7).
The new temporal grid ωinv

4t Equation (17) is as follows:

ωinv
4t = {t0 = t0 = 0, ti = tmi , tI = tJ = T} for i = 1, . . . , I− 1 and mi = j for somes i ≤ j. (17)

The nodes ti designate each point in which a measurement Equation (7) is available.
Unfortunately, in general, data are collected on an annual basis, in contrast to COVID-19
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statistics, for example, where the data are updated daily. Thus, ti are the moments at the
end of every year, where the annual data are reported [36].

The point of minimum p̌̌p̌p of the functional Φ(ppp) Equation (8) is called a nonlin-
ear least squares estimator (LSE). To find it, or to minimize Φ(ppp), we use the Levenberg–
Marquardt algorithm.

To assess the performance of the estimator p̌̌p̌p, we utilize various metrics to validate
its convergence. These metrics are divided into two categories: those associated with the
estimator itself, and those that gauge the goodness of fit.

The norm of the step δpppk is the first metric used to measure the difference between
two consecutive iterations of the minimizer pppk and pppk+1:

δpppk := ‖4pppk‖ = ‖pppk+1 − pppk‖.

The second metric is the relative change in the cost function δΦk, which is defined as follows:

δΦk :=
|4Φk|

1 + |Φ(pppk)|
,

where4Φk := Φ(pppk+1)−Φ(pppk) and Φ(pppk) is the cost function at iteration k.
To ensure that the iterative procedure for obtaining Φ(ppp) is reliable, it is necessary to

have an appropriate stopping criterion. One such criterion is expressed as

min{δpppk, δΦk} < ε, (18)

Here, ε is a tolerance value set by the user. If the condition in Equation (18) is satisfied,
the iterative procedure terminates at the (k + 1)th iteration, and the estimated value of the
nonlinear LSE is returned as p̌̌p̌p := pppk+1.

Various metrics are used to validate the convergence of the estimator p̌̌p̌p, including
the norm of the step δpppk, which measures the difference between the previous and current
iterations of the estimator. The relative change in the cost function δΦk is another metric that
measures the degree of convergence of the algorithm. The first-order optimality measure
is also used to evaluate how closely the estimator p̌̌p̌p approximates the true minimum of
Equation (8). This measure is calculated as the infinity norm of the gradient of the objective
function Φ evaluated at LSE, which corresponds to the maximum absolute value of the
partial derivatives of Φ with respect to the parameter vector ppp:

‖∇Φ(p̌̌p̌p)‖∞ = max
i=1,7

∣∣∣∣ ∂Φ
∂pi (p̌̌p̌p)

∣∣∣∣.
Furthermore, to assess the performance of the model in fitting the data, we calculate

several metrics after obtaining the nonlinear LSE. These metrics are associated with the
goodness of fit and include the variance of the residuals, root mean squared error (RMSE),
and coefficient of determination:

σ̃2 =
Φ(p̌̌p̌p)

K
, σ̂ =

√
Φ(p̌̌p̌p)
K− 3

, R2 = 1− Φ(p̌̌p̌p)
K

∑
k=1

(
∑

Ψ∈{X,Y}
(Ψ(tk)−Ψ)2

) ,

The variance of the residuals and RMSE are metrics where lower values indicate a better
model fit to the data. On the other hand, the coefficient of determination assesses how
well the model fits the data mean and is a metric where higher values indicate a better
model fit, but not greater than one. The mean value of the experimental data is denoted by

Ψ =
∑K

k=1 Ψ(tk)

K
.

If the residuals (Ξ(tk; ppp)−Ψk), Ξ ∈ {I, D} are distributed normally or the number
of observations K is large enough, it is possible to estimate the covariance matrix of the
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nonlinear LSE p̌̌p̌p using Equation (19). This equation uses the sensitivity or Jacobian matrix,
denoted as J(p̌̌p̌p), which is calculated at the value of p̌̌p̌p:

Σ =
σ̂2

J>(p̌̌p̌p)J(p̌̌p̌p)
, (19)

where

J(p̌̌p̌p) =
(

∂I(p̌̌p̌p)
∂ppp

,
∂D(p̌̌p̌p)

∂ppp

)>
.

The sensitivity matrix J(ppp) indicates how much the values of Ψ(tk; ppp) change with
variations in ppp. A sensitivity analysis provides insights into the importance of the mea-
surements for parameter estimation [44]. The covariance matrix in Equation (19) is used to
compute the standard error (SE), which is related to the accuracy of the nonlinear LSE p̌̌p̌p in
the parameter recovery. The standard error is defined as follows:

ŜE =
√

diag(Σ). (20)

6. Computational Experiments

In this section, we provide a variety of computational simulations, implemented in
MATLABr, to test the suggested approach. First, we solve the direct problem, and the
solution to the inverse problem readily follows. We conclude the section with an experiment
with real data.

The inverse problem is solved in a synthetic data framework. This means that the values
of the parameters ppp are set, and then the direct problem is solved with these parameters.
Later, this solution is used to generate the observations Equation (7). Next, the inverse
problem is solved with these measurements. The advantage of this is simple, the implied
values of ppp can be compared with the true ones, which are a priori known in this setting.

In reality, however, these values ppp are unknown, so we need a different approach. The
true values of the parameters cannot be assessed, but this is not the case with the implied
functions I(t) and D(t); i.e., the solution to the direct problem with the derived parameter
values can be compared to the observed values. For that purpose, the residual measure is
introduced later.

6.1. Direct Problem

Let us begin by setting Λ = ξ = 0.01, ζ = 0.3, δ = 0.05, h = 0.15, φ = 0.1. Then
ppp ≡ {β, c, ρ, k, γ, σ1, σ2} = {0.4, 0.5, 0.23, 0.002, 0.5, 0.17, 0.07}. Let τ = 0.7 be the delay and
the fractional order α = 0.9. A population of 2000 people is considered, and S(0) = 1770,
E(0) = 200, I(0) = 30 and T(0) = R(0) = D(0) = 0. The considered time period is
200 years, in order for the system to approach the equilibrium state.When β = 0.4 is low
andR0 = 0.7374 < 1, then there is no epidemic (Figure 2). On the contrary, for β = 0.8 and
R0 = 1.4749 > 1, the disease persists in the society (Figure 3).
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Figure 2. The epidemic dynamics for β = 0.4 andR0 = 0.7374 < 1.
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Figure 3. The epidemic dynamics for β = 0.8 andR0 = 1.4749 > 1.



Fractal Fract. 2023, 7, 538 15 of 22

6.2. Inverse Problem

Now, we solve the inverse problem Equations (4)–(7). Let β = 0.8 and the regarded
period in T = 20 years. All the parameters stay the same as in the direct problem setting,
except that ppp are not known. However, Equation (7) are provided for each year. The initial
approximations of the parameters are ppp0 = {0.9, 0.6, 0.3, 0.005, 0.6, 0.2, 0.1}.

The experiment with exact observations is plotted in Figure 4, while the results are
given in Table 2.
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Figure 4. The identified epidemic dynamics for β = 0.8 and exact measurements.

Table 2. Parameter ppp recovery from exact measurements.

Parameter pi
0 pi p̌i

∣∣pi− p̌i
∣∣ ∣∣pi− p̌i

∣∣
pi ŜE

β 0.9 0.8 0.7571 0.0429 0.0536 1.7565 × 10−4

c 0.6 0.5 0.5065 0.0065 0.0130 1.2582 × 10−4

ρ 0.3 0.23 0.2414 0.0114 0.0497 8.3171 × 10−4

k 0.005 0.002 0.0041 0.0021 1.0699 1.2502 × 10−5

γ 0.6 0.5 0.3334 0.1666 0.3333 0.8049
σ1 0.2 0.17 0.1704 3.7077 × 10−4 0.0022 1.1758 × 10−4

σ2 0.1 0.07 0.0706 6.3291 × 10−4 0.0090 3.5894 × 10−4

The recovered R0 = 1.5700. It can be observed that the parameters were accurately
recovered with small absolute and relative errors.

Next, we perform a test with perturbed measurements. In reality, sometimes the
statistics are inexact, due to a number of reasons, thus such an experiment is meaningful.
In order to simulate the perturbation, we introduce Gaussian noise to the observations
Equation (7). This means that we are 95% confident that any individual measurement’s
bias will not exceed 5%. We conducted this test with such a high level of noise, in order to
confirm the algorithm’s robustness. The results are displayed in Figure 5 and Table 3.
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Figure 5. The identified epidemic dynamics for β = 0.8 and perturbed measurements.

Table 3. Parameter ppp recovery from perturbed measurements.

Parameter pi
0 pi p̌i

∣∣pi− p̌i
∣∣ ∣∣pi− p̌i

∣∣
pi ŜE

β 0.9 0.8 0.7579 0.0421 0.0526 0.0019
c 0.6 0.5 0.5093 0.0093 0.0186 0.0014
ρ 0.3 0.23 0.2217 0.0083 0.0360 0.0090
k 0.005 0.002 0.0040 0.0020 1.0197 1.3516 × 10−4

γ 0.6 0.5 0.2146 0.2854 0.5708 9.0682
σ1 0.2 0.17 0.1698 1.6755 × 10−4 9.8561 × 10−4 0.0013
σ2 0.1 0.07 0.0712 0.0012 0.0174 0.0039

The recoveredR0 = 1.5723. The errors were slightly higher but still acceptable.
The relative errors (REs) in parameters and functions are further defined as

REppp :=

∥∥p̌̌p̌p− p̌̌p̌ppert
∥∥

∞
‖p̌̌p̌p‖∞

,

REΞ :=

∥∥Ξ(t; p̌̌p̌p)− Ξ(t; p̌̌p̌ppert)
∥∥

∞
‖Ξ(t; p̌̌p̌p)‖∞

,

where Ξ(t; ppp) are the implied solutions for Ξ ∈ {S, E, I, T, R, D} using ppp, and p̌̌p̌ppert is the
nonlinear LSE, obtained with the perturbed data.

In our case, REppp = 0.1569 and REΞ = {0.0004, 0.0014, 0.0021, 0.0024, 0.0121, 0.0008}
for Ξ ∈ {S, E, I, T, R, D}. The relative errors are small, which again implies the advantages
of the algorithm.

The gof metric for both cases are given in Table 4. For very little computational effort,
the algorithm achieved a sufficient accuracy.
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Table 4. Goodness-of-fit metrics.

Noise ‖∇Φ(p̌̌p̌p)‖∞ Iter δpppk Φ(p̌̌p̌p) σ̃2 σ̂ R2

0% 2.49 × 10−5 4 0.272652 1.75098 × 10−7 8.7549 × 10−9 1.0149 × 10−4 1−2.2158 × 10−5

5% 6.95 × 10−5 4 0.407747 2.05108 × 10−5 1.0255 × 10−6 0.0011 0.9974

6.3. Calibration to Real Data

Here, we fit the model to real data [36]. We chose Pakistan for two reasons: it is one
of the countries most influenced by TB in the world, and the results could be compared
to [29,31]. We considered the period 2000–2019, due to the data availability. As discussed,
the statistics for infectious and those deceased were presented on an annual basis.

To obtain the measurement for I(tk), we multiplied the incidence rate by the popu-
lation in the respective year. Since both the birth and mortality rates were high, it was
important to do so, otherwise we would have arrived at a flat curve. Considering the
deceased from TB, we accumulated the deaths during the years, to obtain the measurement
for D(tk), k = 1, . . . , K, K = 20.

We kept the same settings, except that δ = 0.065 and φ = 0.01. To measure the gof, we
used the residuals

R
(
ppp
)
=
∥∥I
(
ppp
)
− X

∥∥
2 +

∥∥D
(
ppp
)
−Y

∥∥
2. (21)

It also helped us to determine the optimal fractional order. Empirically, we deduced that
α = 0.8, since this yielded the smallest residual norm Equation (21) R

(
ppp
)
= 1.9619× 10−7.

The derived basic reproduction number wasR0 = 1.1908, and the implied parameters were
p̌̌p̌p = {0.6661, 0.4456, 0.2259, 0.0036, 0.4215, 0.2071, 0.0452}, which are close to those in [31].

Finally, the calibration is visualized in Figure 6, and the gof quantities are given in
Table 5.
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Figure 6. The identified epidemic dynamics for Pakistan.
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Table 5. Goodness-of-fit metrics for the real-world data fit

‖∇Φ(p̌̌p̌p)‖∞ Iter δpppk Φ(p̌̌p̌p) σ̃2 σ̂ R2

4.5 × 10−7 5 0.086884 1.9619 × 10−7 9.8095 × 10−9 1.0743 × 10−4 0.9981

The high values of R0 = 1.1908 and β = 0.6661 unequivocally demonstrate that TB
has not disappeared in Pakistan.

6.4. Discussion

In this study, we constructed model Equations (4)–(6) to account for endogenous
reactivation and exogenous reinfection, incomplete treatment, slow and fast contagion, as
well as short and long memory effects, all of which are typical of TB dynamics. First, we
tested the approach in a quasi-real setting. This allowed us to compare the implied values of
the parameters with the actual ones. All the parameters, except γ, were precisely recovered.
This further allowed making a reliable estimate of the basic reproduction numberR0. These
conclusions remained true, even in the case of the presence of noise in the observations,
which demonstrated the robustness of the algorithm.

The reason why the error in the reconstruction of γ was higher than in the others was
that the model was, to a large extent, insensitive to this parameter. This fact hindered the
identification of γ, but on the other hand, this value was not crucial for the implied TB
dynamics. Even with a large error in this value, the system would behave identically, thus
reconstructing γ is of small importance.

In the real world, however, we do not know the "fair" values of the parameters, so
we cannot directly assess the quality of their recovery. This is why we introduced the
residual measure Equation (21). If the solution to the direct problems with the implied
parameters mimics the observed dynamics, we can be confident in the parameter estimates.
This is what we carried out in the real-world application with public data from Pakistan
[36]. Measurements were only available for the currently infected people and those who
had died from TB. From the 2000–2019 data, we arrived at a high transmission rate β and
R0 > 1. This means that the current measures were insufficient to turn the tide. The
strategies that were most efficient and have the minimal cost could be deduced with an
optimal control approach.

This study contributed to the available knowledge in the manner in which the pro-
posed model accounts for the distinctive features of the TB dynamics, without introducing
unnecessary complexity, as well as being able to be successfully calibrated. Its ability to
cope well with real data might be very beneficial in modeling, simulating, and forecasting
the spread of TB, which are useful tools in fighting the disease.

7. Conclusions

This study dealt with a TB epidemic model. The whole population was divided into
five compartments: susceptible, infected but not yet infectious, infectious, treated, and
recovered, along with vital dynamics. The immunity gained is not lifelong and decays
with time. Furthermore, the considered mechanisms for contracting the infection include
slow and fast contamination due to mass action, endogenous reactivation, and exogenous
reinfection. Furthermore, those treated and recovered could again become exposed or
infectious, due to an incomplete treatment or waning immunity.

This new model extends the previous ones twofold. The two types of memory
incorporated—the time lag for short memory and the fractional order of the derivatives
for long memory—make the model better adjustable to real data. It is clear that the cur-
rent level of infectiousness depends, not only to the immediately preceding number of
infected, but also on a long history due to the latent period. Thus, applying fractional-order
derivatives is suitable for epidemiological modeling in general.

Along with suggesting a population dynamics model and conducting a basic analysis,
the other aim of this study was to propose a robust algorithm to recover important param-
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eters. We noted that statistics are usually collected only for the (detected) infectious and
people deceased from TB. This information was included in a quadratic cost functional,
which was minimized to find the optimal values of the unknown parameters that mimic
the empirical disease dynamics as much as possible.

The model was calibrated with real-world data, and the results indicated that it could
accurately capture the behavior of the disease under different scenarios. Such studies
highlight the crucial role of mathematical modeling in controlling the spread of infections
and for taking appropriate measures to prevent and treat the disease. This model can be
used as a tool to assess the effectiveness of different interventions, such as vaccination
programs and screening policies. We believe that this work will contribute to the ongoing
efforts to combat tuberculosis and improve public health worldwide.

There are many ways in which this investigation could be continued. Probably the
most straightforward way to further develop this study would be to implement an optimal
control framework. This would give insights into the proper control strategies to employ,
while keeping the resources used at an acceptable level.

Moreover, the model parameters could be considered as time- and space-dependent
function instead of constants. In addition, stochastics could be involved in the dynamics.
More compartments could be included for vaccinated or hospitalized people. Furthermore,
TB often interacts with other diseases, most notably HIV, and recently COVID-19. It would
be interesting and useful to employ a model that encompasses such a relation. What is
more, population heterogeneities such as age structure, spatial discrepancy, and others
would be worth studying. Such approaches, combined with various advanced numerical
methods, are useful in many fields of science besides epidemiological modeling.
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Appendix A. EE State

Let us recall that the EE state E1 = (S∗, E∗, I∗, T∗, R∗) Equation (10) is defined via
Equation (11) and I∗ implicitly is stated as the real positive root of ã(I∗)3 + b̃(I∗)2 + c̃I∗ +
d̃ = 0 Equation (12). The coefficients are as follows:

ã = β3(δ2γρζ − γhρσ2 − φγρσ1 − δγρσ1 − γρσ1σ2 − δγhρζ + δφγρζ + δγρσ2ζ − γhρξ

− φγρξ − δγρξ − γρσ2ξ − γρσ1ξ + δγρξζ − γρξ2)
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b̃ = β2(− γξ3 − ρξ3 − δγξ2 − φγξ2 − γhξ2 − γkξ2 − δρξ2 − φρξ2 − γρξ3 − γσ1ξ2 − γσ2ξ2 − hρξ2

− ρσ1ξ2 − ρσ2ξ2 − δγkσ1 − φγkσ1 − δγhξ − γhkσ2 − φγhξ − δγkξ − φγkξ − γhkξ − δγσ1ξ

− γkσ1σ2 − φγσ1ξ − φhρξ − γhσ2ξ − γkσ1ξ − γkσ2ξ − δρσ1ξ − φρσ1ξ − γσ1σ2ξ − hρσ2ξ − ρσ1σ2ξ

+ δ2γkζ − δγρξ2 − φγρξ2 − γhρξ2 + δγξ2ζ + δ2γξζ − γρσ1ξ2 − γρσ2ξ2 + δρξ2ζ

+ δ2ρξζ + δφγkζ − δγhkζ + δγkσ2ζ + δφγξζ + δγkξζ − δγρσ1ξ − φγρσ1ξ

− γhρσ2ξ + δφρξζ + δγσ2ξζ − δhρξζ − γρσ1σ2ξ + δρσ2ξζ + δγρξ2ζ + δ2γρξζ

+ δγρσ2ξζ + δφγρξζ − δγhρξζ
)
+ β3Λγρm3

c̃ = β(−δξ3 − φξ3 − γξ4 − hξ3 − kξ3 − ρξ4 − σ1ξ3 − σ2ξ3 − ξ4 − δγξ3 − δγξ3 − δhξ2 − φγξ3 − δkξ2

− φkξ2 − γkξ3 − hkξ2 − δρξ3 − δσ1ξ2 − φρξ3 − φσ1ξ2 − γσ1ξ3 − γσ2ξ3 − hρξ3 − hσ2ξ2 − kσ1ξ2 − kσ2ξ2

+ δξ3ζ − ρσ1ξ3 − ρσ2ξ3 − σ1σ2ξ2 + δ2ξ2ζ − φhkξ − δkσ1ξ − φkσ1ξ − hkσ2ξ − kσ1σ2ξ − δγhξ2 − φγhξ2

− δγkξ2 − φγkξ2 − γhkξ2 − δγσ1ξ2 − φγσ1ξ2 − φhρξ2 − γhσ2ξ2 + δφξ2ζ − γkσ1ξ2 − γkσ2ξ2

+ δγξ3ζ + δkξ2ζ + δ2kξζ − δρσ1ξ2 − φρσ1ξ2 − γσ1σ2ξ2 − hρσ2ξ2 + δρξ3ζ + δσ2ξ2ζ − ρσ1σ2ξ2

+ δ2γξ2ζ + δ2ρξ2ζ − δγkσ1ξ − φγkσ1ξ − γhkσ2ξ + δφkξζ − δhkξζ − γkσ1σ2ξ + δkσ2ξζ

+ δφγξ2ζ + δγkξ2ζ + δ2γkξζ + δφρξ2ζ + δγσ2ξ2ζ − δhρξ2ζ + δρσ2ξ2ζ + δφγkξζ − δγhkξζ + δγkσ2ξζ)

+ β2Λ(ρξ2 + ρσ2ξ + cγξ2 + δγk + φγk + γkσ2 + γkξ + δρξ + φρξ + cδγξ + cφγξ + cγσ2ξ)

d̃ = βΛξm3
(
k + cξ

)
+ (δ2kζ − φhk− δkσ1 − φkσ1 − hkσ2 − kσ1σ2 + δφkζ − δhkζ + δkσ2ζ)ξ2 −

(
δh + φh + δk + φk + hk + δσ1 + φσ1

+ hσ2 + kσ1 + kσ2 + σ1σ2 − δζ(δ + φ + k + σ2)
)
ξ3 − (δ + φ + h + k + σ1 + σ2 − δζ)ξ4 − ξ5
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