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Abstract: The major goal of this work is to present a novel fractional temperature-dependent bound-
ary element model (BEM) for solving thermoelastic wave propagation problems in smart nanomateri-
als. The computing performance of the suggested methodology was demonstrated by using stable
communication avoiding S-step—generalized minimal residual method (SCAS-GMRES) to solve
discretized linear BEM systems. The benefits of SCAS-GMRES are investigated and compared to
those of other iterative techniques. The numerical results are graphed to demonstrate the influence
of fractional, piezoelectric, and length scale characteristics on total force-stresses. These findings
also demonstrate that the BEM methodology is practical, feasible, effective, and has superiority
over domain methods. The results of the present paper help to develop the industrial uses of
smart nanomaterials.

Keywords: fractional-order; temperature-dependent; size-dependent; boundary element method;
thermoelastic problems; smart nanomaterials

1. Introduction

The fractional derivative, which is a generalization of the integer-order derivative
and integral, is used to describe non-local behaviors and anomalous complex systems.
In recent years, fractional heat equations have been proposed as generalizations of in-
teger order heat equations. The flexibility and non-locality of fractional derivatives are
their key features. Because these derivatives are of fractional order, they have greater
flexibility in approximating real data than classical derivatives. Furthermore, they take
non-locality into account, while classical derivatives do not, i.e., classical derivatives can
only describe changes about a point, whereas fractional derivatives can describe changes
in an interval. Fractional derivatives are nonlocal in nature. Because of this characteristic,
these derivatives can be used to replicate other physical phenomena. In real life, fractional
differential equations are used in control systems, elasticity, electric drives, circuit systems,
continuum mechanics, heat transfer, quantum physics, fluid mechanics, signal analysis,
biomathematics, biomedicine, social systems, and bioengineering.

Many studies in recent years have investigated the thermoelastic behavior of materi-
als [1–6] due to their potential in geological and engineering applications. Nanotechnology
is concerned with developing tools for studying the properties of nanomaterials, whereas
nanoscience is concerned with moving and manipulating atoms to achieve the properties
required in a particular field of life [7,8]. Nanostructures are one of the most important
outcomes of nanotechnology. A structure is classified as a nanostructure if one of its di-
mensions is 100 nanometers or less. Understanding the mechanical behavior of deformed
nanostructures is critical because they are used in a wide range of industries and profes-
sions, including engineering, medicine, renewable energy, and military applications. In the
industrial sector, certain nanoparticles are used to create filters due to their greater strength
as compared to traditional materials [9]. Because of recent advances in nanoscale electronics
and photonics [10–12], certain nanoparticles can be utilized as drug-carrying materials
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in the medical profession because they have a unique sensitivity to the place inside the
human body to which the drug is supposed to be conveyed. When they reach that location,
they accurately release the drug. Encouragement studies have also confirmed the potential
for employing nanoparticles as a cancer treatment. Furthermore, gold nanoparticles are
employed to detect pregnancies in home pregnancy test kits. Nanowires are being em-
ployed in nanoscale biosensors for early illness detection [13,14]. In the field of renewable
energy, the panel, which is connected by an electrical circuit and contains hundreds of solar
cells, converts solar energy into electrical energy. Military uses for nanomaterials include
the creation of nanoscale cylinders with strength and rigidity that have a million times
the storage capacity of conventional computers, military clothing that can absorb radar
waves for stealth and infiltration, and nanosatellites [15–17]. Specific nanomaterials are
incorporated into concrete in the building and construction industry to improve its tenacity,
rigor, and water resistance. These materials include silica nanoparticles, carbon nanotubes,
and titanium dioxide (TiO2). Many nanotechnology applications rely on porothermoelas-
tic interactions that vary with size [18–20]. Because size-dependent thermopiezoelectric
problems are computationally complex to solve and do not have a general analytical solu-
tion, numerical methods for solving them should be developed [21]. The BEM model of
Fahmy et al. [22] described the thermopiezoelectricity theory in smart nanomaterials. In
the BEM model considered herein, we introduce a new solution for fractional, temperature-
dependent, and wave propagation size-dependent thermopiezoelectricity problems in
smart nanomaterials. This paper may be considered as an extension of [22], with fractional,
temperature-dependent, and wave propagation effects that are not considered in [22]. The
boundary element method (BEM) is an efficient numerical approach employed to solve
partial differential equations [23–26]. It outperforms the finite element method (FEM) in
several ways [27]. Only the problem’s boundary needs to be discretized for the BEM. In
comparison to FEM, which necessitates discretization of the entire problem domain, it
has a substantial advantage. Because it requires less computational work and input data
preparation, this feature is critical for solving complex problems in smart nanomaterials. It
also improves the feature’s usability. Only the BEM formulation procedure can address
infinite domain problems with complicated borders and geometrical quirks accurately. The
BEM approach is particularly effective for measuring field derivatives such as tractions,
heat fluxes, and sensitivities. The BEM solution is provided by the integral representation
expression. In the FEM, the solution is only computed at nodal points. As a result, the
BEM has recently emerged as a reliable, practical, and widely used alternative to FEM for
modelling of fractional temperature- and size-dependent thermoelastic problems in smart
nanomaterial technology.

In this paper, the temperature-dependent thermoelasticity problems are solved using
the boundary element method (BEM) to understand the mechanical characteristics of
deformed smart nanomaterials. The numerical results show the impacts of the fractional
parameter, piezoelectric parameter, and length scale parameter on the total force-stresses.
The numerical results also show temperature-dependent and temperature-independent
effects on smart nanomaterials and non-smart nanomaterials, as well as the viability,
effectiveness, and precision of the current BEM methodology.

2. Formulation of the Problem

Consider a cross section of thermoelastic smart nanomaterial in the x1x2 − plane,
occupying the region V that is bounded by S, as shown in Figure 1. Assume nα can be
written as

nα = eαβ

dxβ

ds
(1)

where eαβ (e12 = −e21 = 1, e11 = e22 = 0).
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All quantities in the x1x2 − plane are independent of x3.
The rotation in terms of deformation displacement vector (u1, u2) and electric field in

terms of electric potential ϕ can be expressed as

Ω = Ω3 =
1
2
(u2, 1 − u1, 2) =

1
2

eαβuβ, α (2)

Eα = −ϕ,α (3)

The strain tensor, mean curvature vector, and true couple-stress can be written as follows:

εαβ =
1
2
(
uα, β + uβ, α

)
(4)

kα = eαβk3β =
1
2

eαβΩ,β (5)

Mi =
1
2

eijk Mkj (6)

where k1 = k32 = 1
2 Ω,2, k2 = −k31 = − 1

2 Ω,1, and k3α = −kα3 = 1
2 Ω,α, Mα = εαβ M3β,

Mij = −Mji, M1 = −M23, M2 = M13, and M3 = M21 = 0 The force-stress tensor can be
divided into two sections:

σαβ = σ(αβ) + σ[αβ], σ3α = σα3 = 0 (7)

The electric displacement Dα is given as

Dα = e0Eα + Pα (8)

The governing equations for entropy balance, force equilibrium, moment equilibrium
equations, and Gauss’s law for the electric field of the considered smart nanomaterial can
be expressed as

−qα,α + Q = 0 (9)

σβα,β + Fα = 0 (10)

σ[βα] = −M[α, β], σ[21] = −σ[12] = −M[1, 2] (11)

Dα,α = ρE (12)
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[
σ(βα) −M[α, β]

]
,β
+ Fα = 0 (13)

Now, we present the following constitutive equations of the considered smart nanomaterial.
The heat flux is

qα = −kΘ,α (14)

The force-stress, couple-stress, and electric displacement are

σ(αβ) = λεγγδαβ + 2µεαβ − (3λ + 2µ)αΘδαβ (15)

Mα = −8µl2kα + 2 f Eα, l2 =
η

µ
(16)

Dα = eEα + 4 f kα (17)

The force-traction, couple-traction, and normal electric displacement are

tα = σβαnβ (18)

m = eβα Mαnβ = M2n1 −M1n2 (19)

d = Dαnα (20)

Thus, the total force-stress tensor is

σβα = λεγγδαβ + 2µεαβ + 2µl2eαβ∇2Ω− E
1− 2ν

αΘδαβ (21)

where
E = 2µ(1 + v), λ = 2µ

v
1− 2v

The fractional-order temperature-dependent heat equation is

Da
τΘ(x, τ) = ξ∇[λ(Θ)∇Θ(x, τ)] + ξQ(x, Θ, τ), ξ =

1
ρ(Θ)c(Θ)

(22)

in which

Q(x, Θ, τ) = Q(x, Θ, τ) +
1− R

x0
e(−

xa
x0
)J(τ), J(t) =

J0 τ

τ2
1

e−
τ
τ1 , a = 1, 2, 3

As a result, Equations (9), (10), and (12) may be expressed as

k∇2Θ + Q = 0 (23)

λuβ,βα + µ
((

1 + l2∇2
)

uβ,βα +
(

1− l2∇2
)
∇2uα

)
− E

1− 2ν
αΘ,α + Fα = 0 (24)

e∇2 ϕ + ρE = 0, e = ere0 (25)

Now, we can introduce the following definitions for q, tα, m, and d, as follows.
The normal heat flux is

q = qαnα = −k
∂Θ
∂n

(26)
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The force-traction vector is

tα = σβαnβ =

(
λεγγδαβ + 2µεαβ + 2µl2eαβ∇2Ω− E

1− 2ν
αΘδαβ

)
nβ (27)

The couple-traction is

m = eβαµαnβ = 4µl2 ∂Ω
∂n
− 2 f

∂ϕ

∂s
(28)

The normal electric displacement is

d = Dαnα = −e
∂ϕ

∂n
+ 2 f

∂Ω
∂s

(29)

3. Boundary Conditions

The temperature and displacement boundary conditions under consideration are

Θ = Θ on ST (30)

q = q on Sq, ST ∪ Sq = S, ST ∩ Sq = ∅ (31)

uα = uα on Su (32)

tα = tα on St, Su ∪ St = S, Su ∩ St = ∅ (33)

where
Ω = Ω on Sω (34)

m = m on Sm, Sω ∪ Sm = S, Sω ∩ Sm = ∅ (35)

and
ϕ = ϕ on Sϕ (36)

d = d on Sd, Sϕ ∪ Sd = S, Sϕ ∩ Sd = ∅ (37)

where ST, Sq, Su, St, SΩ, Sm, Sϕ, and Sd are the sprcified boundary values for T, q, uα, tα, Ω,
m, ϕ, and d, respectively.

4. Boundary Element Implementation

By using Caputo’s formula and Equation (22), we obtain the following [28,29]:

Da
τΘ f+1 + Da

τΘ f ≈
k

∑
J=0

Wa,J

(
Θ f+1−J(x)−Θ f−J(x)

)
(38)

where

Wa,0 =
(∆τ)−a

Γ(2− a)
and Wa,J = Wa,0

(
(J + 1)1−a − (J − 1)1−a

)
(39)

By using Equation (38), Equation (22) may be written as

Wa,0Θ f+1(x)− λ(x, Θ)Θ f+1
,ii (x)− λ,i(x, Θ)Θ f+1

,i (x)

= Wa,0Θ f (x)− λ(x)Θ f
,ii (x)− λ,i(x, Θ)Θ f

,j (x)−
f

∑
J=1

Wa,J

(
Θ f+1−J(x)−Θ f−J(x)

)
+ h f+1

m (x, Θ, τ) + h f
m(x, Θ, τ)

(40)
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By using the Kirchhoff transformation, T =
∫ T

T0

λ(Θ)
λ0

dΘ. [30], Equation (22) may be
written as follo [31]:

∇2T(x, τ) +
1

λ0
h(x, T, τ) =

ρ0 c0

λ0

∂T(x, τ)
∂τ

+ Nl
(

x, T,
.
T
)

(41)

which can be expressed as [31]

∇2T(x, τ) +
1

λ0
hNl

(
x, T,

.
T, τ

)
=

ρ0 c0

λ0

∂T(x, τ)
∂τ

(42)

in which

Nl
(

x, T,
.
T
)
=

[
ρ(T) c(T)

λ(T)
− ρ0 c0

λ0

]
.
T (43)

hNl

(
x, T,

.
T, τ

)
= h(x, T, τ) +

[
ρ0 c0 −

λ0

λ(T)
ρ(T) c(T)

]
.
T (44)

The fundamental solution of (40) can be used to define the integral equation corre-
sponding to (42) as follows [32]:

C(P)T(P, τn+1) + a0
∫

Γ

∫ τn+1
τn

T(Q, τ)q∗(P, τn+1; Q, τ)dτdΓ

= a0
∫

Γ

∫ τn+1
τn

q(Q, τ)T∗(P, τn+1; Q, τ)dτdΓ + a0
λ0

∫
Ω

∫ τn+1
τn

hNl

(
Q, T,

.
T, τ

)
T∗(P, τn+1; Q, τ)dτdΩ

+
∫

Ω T(Q, τn)T∗(P, τn+1; Q, τ)dΩ, a0 = λ0
ρ0c0

(45)

By using the same technique of Fahmy [31], the radial point interpolation method
(RPIM) and Cartesian transformation method (CTM) [33–36] are used to treat the domain
integrals in Equation (45), which results from the fractional-order temperature-dependent
heat conduction in Equation (22).

The boundary integral equations can now be expressed as follows [37–39]:

cQ∗(ξ)T(ξ)−
∫

S
qQ∗(x, ξ)T(x)dS(x) = −

∫
S

TQ∗(x, ξ)q(x)dS(x) +
∫

V
TQ∗(x, ξ)Q(x)dV(x) (46)

cαβ(ξ)uα(ξ) +
∮

S tF∗
αβ(x, ξ)uα(x)dS(x) +

∫
S mF∗

β (x, ξ)Ω(x)dS(x) +
∫

S hF∗
β (x, ξ)T(x)dS(x) +

∫
S dF∗

β (x, ξ) ϕ(x)dS(x)

=
∫

S uF∗
αβ(x, ξ)tα(x)dS(x) +

∫
S ΩF∗

β (x, ξ)m(x)dS(x) +
∫

V uF∗
αβ(x, ξ)Fα(x)dV

+
∫

S f F∗
β (x, ξ)q(x)dS(x)−

∫
V f F∗

β (x, ξ)Q(x)dV

(47)

cΩ(ξ)Ω(ξ) +
∫

S tC∗
α (x, ξ)uα(x)dS(x) +

∮
S mC∗(x, ξ)Ω(x)dS(x) +

∮
S dC∗(x, ξ)ϕ(x)dS(x)

=
∫

S uC∗
α (x, ξ)tα(x)dS(x) +

∫
S ΩC∗(x, ξ)m(x)dS(x) +

∫
V uC∗

α (x, ξ)Fα(x)dV
(48)

cϕ(ξ)ϕ(ξ) +
∮

S mR∗(x, ξ)Ω(x)dS(x) +
∮

S dR∗(x, ξ)ϕ(x)dS(x)

=
∫

S ϕR∗(x, ξ)d(x)dS(x)−
∫

V ϕR∗(x, ξ)ρE(x)dV
(49)
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The integral Equations (46)–(49) in the absence of body forces and volume charge
density can be written in matrix form as follows:


cQ

*
(ξ)T(ξ)

cαβ(ξ)uα(ξ)
cω(ξ)Ω(ξ)
cφ(ξ)ϕ(ξ)

+
∮

S


−qQ

*
0 0 0

hF*

β tF*

αβ(x, ξ) mF*

β (x, ξ) dF*

β (x, ξ)

0 tC*
α (x, ξ) mC*

(x, ξ) dC*
(x, ξ)

0 0 mR*
(x, ξ) dR*

(x, ξ)




T(x)
uα(x)
Ω(x)
ϕ(x)

dS(x)

=
∫

s


−ϑQ

*
0 0 0

f F*

β (x, ξ) uF*

αβ(x, ξ) ΩF*

β (x, ξ) 0

0 uC*
α (x, ξ) ΩC*

(x, ξ) 0
0 0 0 ϕR*

(x, ξ)




q(x)
tα(x)
m(x)
d(x)

dS(x)

(50)

Now, it is convenient to rewrite Equation (50) in compact index-notation form as

cI J(ξ)uI(ξ) +
∮

S
t∗I J(x, ξ)uI(x)dS(x) =

∫
s

u∗I J(x, ξ)tI(x)dS(x) (51)

This leads to the following linear algebraic equations system:

Tu = Ut (52)

which can also be expressed as
AX = B (53)

5. Numerical Results and Discussion

To demonstrate the numerical computations calculated using the proposed methodol-
ogy, we consider the temperature-dependent thermoelastic smart nanomaterial properties
of pure copper (Cu) nanoparticles [40,41] as shown in Table 1 and using the boundary
conditions depicted in Figure 2 to exemplify the numerical computations computed by the
suggested methodology. Under thermal and piezoelectric loadings, the considered ther-
moelastic smart nanomaterial deforms and becomes electrically polarized. As illustrated in
Figure 3, the BEM discretization used 42 border elements and 68 internal points.

Table 1. Considered properties of pure copper (Cu) nanoparticles [42].

T(◦C) 0 500 900

C(J/kg) ◦K 385 433 480

ρ(kg/m3) 8930 8686 8458
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Table 1. Considered properties of pure copper (Cu) nanoparticles [42]. 

T(°C) 0 500 900 
C(J/kg) °K 385 433 480 𝜌(kg/mଷ) 8930 8686 8458 

Figure 3. BEM model of the current problem.

The thermal conductivity of pure copper (Cu) nanoparticles is

λ = 400
(

1− T
6000

)
The solid line indicates Case A, which represents temperature-dependent smart nano-

materials (f = −1). Case B is shown by the dashed line, which represents temperature-
dependent non-smart nanomaterials (f = 0). The dotted line indicates Case C, which
represents temperature-independent smart nanomaterials (f = −1). Case D is shown by the
dash-dot line, which represents temperature-independent non-smart nanomaterials (f = 0).

In the present paper, to solve linear systems generated by BEM discretization efficiently,
we used the stable communication avoiding S-step—generalized minimal residual method
(SCAS-GMRES) of Zan et al. [43] to reduce the number of iterations and computation time.
The SCAS-GMRES method [43], fast modified diagonal and toeplitz splitting (FMDTS)
method of Xin and Chong [44], and unconditionally convergent—respectively scaled
circulant and skew-circulant splitting (UC-RSCSCS) method of Zi et al. [45] were compared
when considering the solution of the current problem, as shown in Table 2. This table
shows the number of iterations (Iter.), processor time (CPU time), relative residual (Rr),
and error (Err.) calculated for different length scale values. According to Table 2, the
SCAS-GMRES iterative method requires the least amount of IT and CPU time, implying
that it outperforms the FMDTS and UC-RSCSCS iterative methods.

Table 3 explains the numerical solutions obtained for total force-stress σ11 at points A
and B for various length scale values (l = 0.01, 0.1, and 1.0). Table 3 additionally provides the
finite element method (FEM) data of Sladek et al. [46] and the analytical data of Yu et al. [47]
for our investigated problem. As demonstrated in Table 3, the BEM data are very consistent
with the FEM and analytical data. As a result, the proposed BEM’s validity and precision
are demonstrated.

From Figure 4, it is obvious that the total force-stress σ11 increases, decreases, then
increases towards zero as x1 tends toward infinity for different theories.

From Figure 5, it is obvious that the total force-stress σ12 decreases, increases, decreases,
then increases towards zero as x1 tends toward infinity for different theories.
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Table 2. Results for the iteration techniques.

l Method Iter. CPU Time Rr Err.

0.01

SCAS-GMRES 30 0.0119 1.96 × 10−7 1.48 × 10−9

FMDTS 60 0.0564 5.50 × 10−7 1.72 × 10−7

UC-RSCSCS 70 0.0730 7.02 × 10−7 2.50 × 10−6

0.1

SCAS-GMRES 40 0.0538 0.19 × 10−6 2.06 × 10−8

FMDTS 90 0.2239 1.72 × 10−5 4.52 × 10−6

UC-RSCSCS 120 0.3764 1.16 × 10−4 0.58 × 10−5

1.0

SCAS-GMRES 60 0.1758 2.22 × 10−5 1.80 × 10−7

FMDTS 270 0.7940 1.80 × 10−4 3.62 × 10−5

UC-RSCSCS 280 0.8950 1.22 × 10−3 4.60 × 10−4

Table 3. Numerical values for total force-stress σ11 at points A and B.

l
BEM FEM Analytical

(σ11)¯
A

(σ11)¯
B

(σ11)¯
A

(σ11)¯
B

(σ11)¯
A

(σ11)¯
B

0.01 −0.04766 × 10−12 −0.01847 × 10−12 −0.04769 × 10−12 −0.01850 × 10−12 −0.04767 × 10−12 −0.01848 × 10−12

0.1 −0.02452 × 10−12 −0.02113 × 10−12 −0.02455 × 10−12 −0.02116 × 10−12 −0.02453 × 10−12 −0.02114 × 10−12

1.0 −0.01984 × 10−12 −0.02582 × 10−12 −0.01987 × 10−12 −0.02586 × 10−12 −0.01985 × 10−12 −0.02583 × 10−12
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From Figure 6, it is obvious that the total force-stress σ11 increases, decreases, then
increases towards zero as x1 tends toward infinity. It is also shown that the total force-stress
σ22 increases with small values of x1 and then decreases and increases with large values
of x1.
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Figure 6. Total force-stress σ22 distribution on x1-axis for various smart nanomaterial theories.

From Figure 7, it is obvious that the total force-stress σ11 decreases with an increase of
x1 but increases with an increase of fractional order parameter a.

From Figure 8, it is clear that the total force-stress σ12 increases and decreases with an
increase of x1 and tends to zero as x1 tends to infinity. It is also shown that the values of
total force-stress σ12 almost coincide at the different values of fractional order parameter a,
except for the interval 1.25 < x1 < 2.20, where we find that the total force-stress σ12 decreases
with an increase of fractional order parameter a.
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Figure 8. Total force-stress σ12 distribution on x1-axis for various fractional parameter a values.

From Figure 9, it is obvious that the total force-stress σ22 increases, decreases, and
tends toward zero as x1 tends toward infinity. It is also clear that the total force-stress σ22
decreases with the increase of fractional order parameter a.

From Figure 10, it is obvious that the total force-stress σ11 increases, decreases, and
tend toward zero as x1 tends to infinity. It is also clear that the total force-stress σ11 decreases
with the increasing of piezoelectric parameter f.



Fractal Fract. 2023, 7, 536 12 of 18

Fractal Fract. 2023, 7, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 8. Total force-stress 𝜎ଵଶ distribution on 𝑥ଵ-axis for various fractional parameter 𝑎 values. 

From Figure 9, it is obvious that the total force-stress 𝜎ଶଶ increases, decreases, and 
tends toward zero as 𝑥ଵ tends toward infinity. It is also clear that the total force-stress 𝜎ଶଶ 
decreases with the increase of fractional order parameter 𝑎. 

 
Figure 9. Total force-stress 𝜎ଶଶ distribution on 𝑥ଵ-axis for various fractional parameter 𝑎 values. 

From Figure 10, it is obvious that the total force-stress 𝜎ଵଵ increases, decreases, and 
tend toward zero as 𝑥ଵ tends to infinity. It is also clear that the total force-stress 𝜎ଵଵ de-
creases with the increasing of piezoelectric parameter f. 

Figure 9. Total force-stress σ22 distribution on x1-axis for various fractional parameter a values.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 10. Total force-stress 𝜎ଵଵ distribution on 𝑥ଵ-axis for various piezoelectric parameter f val-
ues. 

Figure 11 shows the total force-stress 𝜎ଵଶ distribution for various values of piezoe-
lectric parameter f. 

 
Figure 11. Total force-stress 𝜎ଵଶ distribution on 𝑥ଵ-axis for various piezoelectric parameter f val-
ues. 

From Figure 12, The total force-stress 𝜎ଶଶ increases, decreases, and then tend toward 
zero as 𝑥ଵ tends toward infinity. It is also shown that the values of total force-stress 𝜎ଶଶ 
almost coincide at the different values of piezoelectric parameter f, except for the interval 1.25 ൏ 𝑥ଵ ൏ 2.20, where we find that the total force-stress 𝜎ଵଶ decreases with an increase 
of piezoelectric parameter f. 

Figure 10. Total force-stress σ11 distribution on x1-axis for various piezoelectric parameter f values.

Figure 11 shows the total force-stress σ12 distribution for various values of piezoelectric
parameter f.

From Figure 12, The total force-stress σ22 increases, decreases, and then tend toward
zero as x1 tends toward infinity. It is also shown that the values of total force-stress σ22
almost coincide at the different values of piezoelectric parameter f, except for the interval
1.25 < x1 < 2.20, where we find that the total force-stress σ12 decreases with an increase of
piezoelectric parameter f.
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Figure 12. Total force-stress σ22 distribution on x1-axis for various piezoelectric parameter f values.

From Figure 13, it is obvious that the total force-stress σ22 increases, decreases, and
then tends toward zero as x1 tends toward infinity. It is also clear that the total force-stress
σ11 decreases with small values of length scale parameter l and then increases with large
values of length scale parameter l.
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From Figure 14, it is obvious that the total force-stress σ12 increases, decreases, and
then tends toward zero as x1 tends toward infinity. It is also clear that the total force-stress
σ12 decreases with small values of length scale parameter l and then increases with large
values of length scale parameter l.
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Figure 14. Total force-stress σ12 distribution on x1-axis for various length scale l values.

From Figure 15, it is concluded that the total force-stress σ22 along the x1-axis increases
for the small values of x1 with an increasing of length scale parameter l. It is clear that the
total force-stress σ12 decreases and increases with large values of x1 and tends toward zero
as x1 tends toward infinity.
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6. Conclusions

A new BEM model for temperature- and size-dependent fractional thermoelastic
problems in smart nanomaterials is introduced.

A new efficient BEM methodology is developed for treating temperature-dependent
and size-dependent thermoelastic problems in smart nanomaterials.

The BEM efficiency has been shown by the usage of the SCAS-GMRES, which mini-
mizes memory needs and processing time.

The suggested model includes thermoelastic and piezoelectric impacts, which al-
lows us to explain the differences between temperature-dependent smart nanomaterials,
temperature-independent smart nanomaterials, temperature-dependent non-smart nano-
materials, and temperature-independent non-smart nanomaterials.

The numerical data are plotted to show the impacts of the fractional order parameter,
temperature, and size on the total force-stresses.

The computational effectiveness of the suggested methodology has been established.
The proposed BEM approach has been shown to be valid and accurate.
We can conclude from current study that our proposed BEM technique is practicable,

feasible, effective, and superior to FDM or FEM.
The proposed methodology can be utilized to examine a wide range of thermoelastic

problems in smart nanomaterials that are temperature and size dependent.
It can be argued that our research has a wide range of applications, including shape

memory alloys, environmental sensors, photovoltaic cells, nanoceramics, sunscreens, air
purifiers, food packaging, flame retardants, antibacterial cleansers, filters, smart coatings,
and thin films.

Recent numerical calculations for issues with smart nanomaterials may be of interest
to nanophysicists, nanochemists, and nanobiologists, in addition to mathematicians with
expertise in nanotechnology, quantum computing, artificial intelligence, and optogenetics.
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Nomenclature

ā Coefficient of thermal expansion Fα Body force vector
a Fractional-order parameter F* Point force kernel function
δαβ Kronecker delta function f Piezoelectric coefficient
λ & µ Lamé elastic constants J(τ) Non-Gaussian temporal profile
ρE Volume electric charge density J0 Total energy intensity
η Couple-stress parameter k Thermal conductivity
σαβ Total force-stress tensor kα Mean curvature vector
σ(αβ) Symmetric force-stress tensor kαβ Pseudo mean curvature tensor
σ[αβ] Skew-symmetric force-stress tensor l The material length scale parameter
τ Time Mi True couple-stress vector
τ1 Laser pulse time characteristic Mkj Pseudo couple-stress tensor
ϕ Electric potential m Couple-traction
Ω Rotation nα Outward unit normal vector
A Non-symmetric dense matrix Pα Polarization of piezoelectric material
B Known boundary values vector Q External heat source
C* Point couple kernel function Q* Point heat source kernel function
Dα Electric displacement q Normal flux
d Normal electric displacement qα Heat flux vector
E Young’s modulus R Irradiated surface absorptivity
Eα Electric field R* Point electrical source kernel function
eαβ 2D permutation symbol T Temperature
eijk 3D Levi-Civita permutation symbol tI Generalized tractions
e Electric permittivity tα Force-traction vector
er Relative permittivity uα Displacement vector
e0 Vacuum permittivity v Poisson ratio
X Unknown boundary values vector
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