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Abstract: This research study aims to investigate the effects of vaccination on reducing disease
burden by analyzing a complex nonlinear ordinary differential equation system. The study focuses
on five distinct sub-classes within the system to comprehensively explore the impact of vaccination.
Specifically, the mathematical model employed in this investigation is a fractional representation
of tuberculosis, utilizing the Atangana–Baleanu fractional derivative in the Caputo sense. The
validity of the proposed model is established through a rigorous qualitative analysis. The existence
and uniqueness of the solution are rigorously determined by applying the fundamental theorems
of the fixed point approach. The stability analysis of the model is conducted using the Ulam–
Hyers approach. Additionally, the study employs the widely recognized iterative Adams–Bashforth
technique to obtain an approximate solution for the suggested model. The numerical simulation of
the tuberculosis model is comprehensively discussed, with a particular focus on the assumptions
made regarding vaccination. The model assumes that only a limited portion of the population is
vaccinated at a steady rate, and the efficacy of the vaccine is a critical factor in reducing disease
burden. The findings of the study indicate that the proposed model can effectively assess the impact
of vaccination on mitigating the spread of tuberculosis. Furthermore, the numerical simulation
underscores the significance of vaccination as an effective control measure against tuberculosis.

Keywords: SVEIR TB model; qualitative analysis; stability analysis; ABC fractional derivative;
Adam–Bashforth method; numerical simulation

1. Introduction

Tuberculosis (TB) is a prevalent and highly transmissible respiratory illness that
remains a significant global health concern, being responsible for a substantial number of
fatalities. This contagious disease predominantly targets the pulmonary system in humans,
but can also affect various other vital organs including the kidneys, brain, spine, and central
nervous system [1–3]. TB is primarily caused by an acid-resistant bacillus bacterium known
as Mycobacterium tuberculosis. This pathogenic microorganism was first identified and
characterized by Dr. Robert Koch in 1882 [4]. In the year 2019, tuberculosis (TB) tragically
resulted in the loss of approximately 1.5 million lives on a global scale. The burden of TB
remains significant, despite the availability of efficient treatments and preventive measures,
with an estimated ten million people infected globally. This includes 5.60 million men,
3.20 million women, and 1.2 million children. Tuberculosis bacteria are pervasive and
have the potential to infect individuals across all age groups. Recognizing the urgent
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need to address this highly transmissible disease, the World Health Organization has set a
target to eliminate TB worldwide by the year 2030. This ambitious goal reflects the global
commitment to combating TB and underscores the importance of concerted efforts on the
prevention, diagnosis, and treatment for achieving this objective (WHO, 14 October 2020).
TB often remains in an asymptomatic state for prolonged periods, with the bacteria residing
in a dormant state within the body. This extended period of dormancy poses challenges in
understanding the transition from latent to active TB disease. Individuals with weakened
immune systems are more vulnerable to contracting TB through contact with infectious
individuals. Low-income countries such as Pakistan, South Africa, and Nigeria have a high
death rate due to the expensive and lengthy medications required to treat TB. Pakistan
ranks fifth among the twenty two high-burden countries, with approximately 65 percent of
reported cases [5–7]. Treatment for TB involves a six-month course of four antimicrobial
drugs, which can completely cure the disease. Bacillus Calmette–Guerin (BCG) is a highly
effective vaccine in children, providing over 50% protection against lung infection and more
than 80% protection against all types of TB. However, its efficacy in adults is limited [8–10].

Previous studies [11–13] have investigated the impact of exogenous factors and the
effectiveness of imperfect vaccines in tuberculosis (TB) epidemics through the application
of mathematical models. Bhunu et al. [14] have expanded the TB model to include the
aspect of exogenous reinfection and relapse of the disease, as well as chemoprophylaxis and
treatment of infection in various stages. In [15], the authors presented a TB transmission
model with exogenous reinfection and investigated if the proposed system is subject to
Hopf bifurcation. They also found the direction of the Hopf bifurcation and the stability of
the periodic bifurcation solution. Additionally, Ullah et al. [16] have studied the dynamics
of tuberculosis transmission in the KP province of Pakistan. The problem addressed in this
research study was parameterized by utilizing authentic data obtained from the national
TB control program covering the time period from 2002 to 2017. The stability analysis of the
model was performed using basic reproductive numbers, and the results showed that the
model is globally and locally stable. In another study by [17], a TB model was developed
and analyzed with a nonlinear incidence rate and exogenous reinfection. The threshold
parameter was found to be crucial in epidemiology for determining the persistence or
extinction of infectious diseases. Two types of bifurcation and stability criteria were
discussed in this study. The use of fractional calculus was also highlighted for modeling
real-world phenomena related to biological, physical, and engineering problems [18–22].

The utilization of fractional calculus has gained significant traction among researchers
and mathematicians, owing to its capacity to offer a more precise depiction of natural
phenomena compared to conventional integral order differential equations. Fractional
integrals and derivatives have wide-ranging applications in various fields of science and
engineering [23]. For example, fractional calculus can be used to model controllability [24],
chaotic systems [25], financial modeling [26], diffusion processes, vibrations [27,28], and
many other complex phenomena. Atangana and Baleanu [29] presented a new definition
for fractional differential and addressed the calculus challenge of whether it is possible to
construct another fractional derivative that has a non-singular kernel. They mentioned that
fractional calculus can better describe the dynamics of nonlocal phenomena in some cases.
This new definition uses the kernel to represent a non-local and non-singular kernel called
the Mittag–Leffler function. Using this function in modern fractional calculus explains the
hidden aspect of a nonlocal dynamical system. From a numerical point of view, fractional
calculus is more easily used based on the nonsingular ML kernel [30]. The ML function is
highly used and useful in fractional calculus. Pskhu [31] proposed an important part of
the definition for different fractional differentials. Several researchers have been working
on fractional differential equations and applying them to real-world problems such as
biological, mechanical, control, and financial systems problems [32–35].

Several applications of this new AB derivative have been explored in diverse fields
such as the theory of chaos [36], variational problems [37], heat transfer [38] and many
more [39,40]. Furthermore, it is imperative to engage in a comprehensive discussion re-
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garding the aforementioned equation in conjunction with the fractional integrator. This
novel operator holds significant relevance in the realm of control theory, as well as in the
context of fractional variational Euler, Lagrange, and Hamilton equations [41,42]. In recent
studies, some basic properties of the newly presented AB differentiable have been shown,
for instance, in [43] established the Laplace transform formulae for AB differentiable, in [44]
presented integration by parts and Euler Lagrange equations. Furthermore, some other
more useful and effective studies of the fractional derivatives are applied in mathemat-
ical formulation to many real-world problems [45–49]. Researchers have used a variety
of operators to explore and analyze fractional differential equations, and some ground-
breaking work has been published in the literature on these equations. Each operator has
distinctive qualities and advantages that make them suited for various applications and
fractional derivative-related problem formulations. Several publications have advanced our
knowledge of fractional calculus and its uses in a variety of disciplines, including [50–54].

Our study has focused on the analysis of a nonlinear system of ordinary differential
equations (ODEs) comprising five compartments: susceptible population S, vaccinated
class V, exposed class E, infected class I, and recovered class R taken from [55]. In this
study, we have introduced a new fractional version of this system using the fractional
derivative operator ABC with a fractional order 0 < h ≤ 1.

ABCDh
t (S(t)) = Θ + ϑV− ζS− α1SI− d1S,

ABCDh
t (V(t)) = ζS− γ0α1VI− ϑV− d1V,

ABCDh
t (E(t)) = α1SI+ γ0α1VI− πα1EI− (κ + d1)E+ ςα1IR,

ABCDh
t (I(t)) = πα1EI+κE− (d1 + α2 + d2)I,

ABCDh
t (R(t)) = α2I− ςα1IR− d1R,

S(0) = S0,V(0) = V0,E(0) = E0, I(0) = I0,R(0) = R0.

(1)

The positivity, feasibility, and stability of the examined system can be assessed by
incorporating all compartments, as demonstrated in [55].

The parameters utilized in the proposed system are given Table 1.

Table 1. Description of the used parameters of model (1).

Value Details

Θ constant rate of birth
d1 rate of diminished for each compartment
ϑ the rate at which vaccine wanes over time

α1SI the rate at which class S becomes infected
d2 death rate of TB induced
ζ the rate of vaccine at which S moves to V
α1 the rate of transmission
α2 the rate at which class I become recovered
γ0 the rate of viability of vaccine
π rate of new infection
κ the rate at which class E become infected
ς the rate of low immunity

In this study, our investigation has focused on the application of a fractional approach
to the tuberculosis (TB) model, encompassing five compartments and employing the
Atangana–Baleanu–Caputo fractional operator. Our findings revealed the existence of a
solution for the system, and for the IVP, we established the uniqueness of the solution within
this fractional framework. In order to assess the stability of the solution, we employed the
Ulam–Hyers concept, demonstrating its stability. To compute an approximate solution, we
employed the Newton interpolation method, which incorporates a fractional parameter
in the expression, thereby increasing the degree of freedom for numerical simulation of
the five compartments. This continuous spectrum describes the total density that ranges
between 0 and 1. The structure of this manuscript is as follows: in Section 2, we recall some



Fractal Fract. 2023, 7, 526 4 of 21

basic definitions and symbols from fractional calculus. In Section 3, we prove the theoretical
results of the given model with the aid of fixed point theory. In the same section, we also
discuss the UH stability by making a small change in the initial condition. In Section 4,
we have used the famous Adams–Bashforth methods that exist in the literature to find the
approximate solution for the considered model. The numerical simulation is also discussed
to summarize our results in the same section by using MATLAB 16 to obtain the graphical
results. Finally, in Section 5 we conclude our work.

2. Basic Results

Here, we show some basic notation and statement from fractional calculus [29].

Definition 1. Consider a function U(t) ∈ h ∈ [0, 1]; then, the fractional operator in the sense of
Caputo ABC is defined as

ABCDh
t (U(t)) =

M (h)
1− h

∫ t

0
Eh

[
−h

1− h

(
t− u

)h] d
du

U(u)du, (2)

where the normalization function M (0) = M (1) = 1 and Eh is the Mittag–Leffler function
given by

Eh (y) =
∞

∑
k=0

yk

Γ(hk + 1)
.

Definition 2. Consider a function U(t) ∈ L1(0, T). The integral of ABC can be defined as

ABC Ih
t U(t) =

1− h
M (h)

U(t) +
h

M (h)
1

Γ(h)

∫ t

0
(t− u)h−1U(u)du, t > 0. (3)

Lemma 1 ([29]). The solution of the given problem and for h ∈ (0, 1], can be

ABCDh
t U(t) = U(t),

U(t) = U0,

with the assumption

U(t) = U0 +
1− h
M (h)

U(t) +
h

M (h)
1

Γ(h)

∫ t

0
(t− u)h−1U(u)du. (4)

3. Existence Theory

In this section, we examined the feasibility of the model in real-world scenarios.
Additionally, we demonstrated the stability and existence results of the problem under
consideration. Therefore, we rearrange the given problem as

ABCDh
t S(t) = G1(S,V,E, I,R),

ABCDh
t (V(t)) = G2(S,V,E, I,R),

ABCDh
t (E(t)) = G3(S,V,E, I,R),

ABCDh
t (I(t)) = G4(S,V,E, I,R),

ABCDh
t (R(t)) = G5(S,V,E, I,R),

(5)

Writing Equation (1) in the form

ABCDh
t U(t) = η(t, U(t)),

U(0) = U0(t), (6)

where
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U(t) := (S,V,E, I,R)T ,
U0 := (S0,V0,E0, I0,R0)

T ,
η(t, U(t)(t)) := Gi(t,S,V,E, I,R)T , i = 1, 2, ...5,

(7)

where (.)T defined the transpose of the vector. In view of Lemma 1, we obtain the following
integral of equation from system (6) as

U(t) = U0 +
1− h
M (h)

Z(t, U(t)) +
h

M (h)Γ(h)

∫ t

0
(t− ϕ)h−1Z(ϕ, U(ϕ))dϕ. (8)

Next, let a Banach space be Υ = C([0, T], Rk)1≤k≤n under the norm ‖U‖ = supt∈[0,T]
|U(t)|. Further, Φ = (Υ5, ‖U‖) be a Banach space and

‖U‖ = sup
t∈[0,T]

(
|S|+ |V|+ |E|+ |I|+ |R|

)
. (9)

In the next theorem, we showed the existence results with the aid of Schauder’s fixed
point theorem.

Theorem 1. SupposeZ ∈ Φ be a continuous and ∃ a constantV > 03 |Z(t, U(t))| ≤ V(1 + |U|),
∀ t ∈ [0, T] and U ∈ Φ; then,

∇1 =

(
(1− h)Γ(h)V+VTh

M (h)Γ(h)

)
< 1. (10)

The solution for the above Equation (8) is unique and continuous for all t ∈ [0, T].

Proof. From Equation (10), the given problem solution is also a solution of the equivalent
integral Equation (8). Suppose the operator f : Φ→ Φ is given by

(fU)(t) = U0 +
1− h
M (h)

Z(t, U(t)) +
h

M (h)Γ(h)

∫ t

0
(t− ϕ)h−1Z(λ, U(λ))dλ. (11)

A bounded closed and convex ball can be defined as B$ = {U ∈ λ : ‖U ≤ $, $ > 0‖}
with $ ≥ ∇2

1−∇1
, where

∇2 = |U0|+
1− h
M (h)

V+
Th

M (h)Γ(h)
V. (12)

It is sufficient to verify that (f)B$) ⊂ B$, ∀ t ∈ [0, T]; then, we obtain

|(fU)(t)| ≤ |U0|+
1− h
M (h)

|Z(t, U(t))|+ h
M (h)Γ(h)

∫ t

0
(t− λ)h−1|Z(λ, U(λ))|dλ

≤ |U0|+
1− h
M (h)

V(1 + |U(t)|) + h
M (h)Γ(h)

∫ t

0
(t− λ)h−1V(1 + |U(t)|)dλ, (13)

and U ∈ B$. We also obtain

‖(fU)‖ ≤ |U0|+
1− h
M (h)

V(1 + ‖U(t)‖) + Th

M (h)Γ(h)
V(1 + ‖U(t)‖)

≤ |U0|+
1− h
M (h)

V+
Th

M (h)Γ(h)
V+

[
1− h
M (h)

V+
Th

M (h)Γ(h)
V

]
$

≤ ∇2 +∇1$ ≤ $.

We have proven that (fB$) ⊂ B$.
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Next, to show that for the continuous operator f, let us consider that {Un} is a
sequence 3 Un → U in B$ as n→ ∞; then, for all t ∈ [0, T], we have the following∣∣(fUn)(t)− (fU)(t)

∣∣ ≤ 1− h
M (h)

∣∣Z(t, Un(t))− Z(t, U(t))
∣∣+

h
M (h)Γ(h)

∫ t

0
(t− λ)h−1∣∣Z(λ, Un(λ))− Z(λ, U(λ))

∣∣dλ

≤ 1− h
M (h)

‖Z(t, Un(t))− Z(t, U(t))‖

+
Th

M (h)Γ(h)
‖Z(λ, Un(λ))− Z(y, U(λ))‖.

Hence, from the continuity of function Z, we obtain

‖(fUn)(t)− (fU)(t)‖ → 0 as n→ 0. (14)

This shows that f is continuous on B$. Finally, we present that (fB$) is a relatively
compact operator. Because (fB$) ⊂ B$, (fB$) is bounded uniformly. Further, we show the
operator f to be “equi-continuous” on B$. Consider U ∈ B$ and that there is t1, t2 ∈ [0, T]
with t1 < t2; then, we have

‖fU(t2)−fU(t1)‖ ≤
1− h
M (h)

∣∣Z(t2, U(t2))− Z(t1, U(t1))
∣∣

+
h

M (h)Γ(h)

∣∣∣∣[ ∫ t2

0
(t2 − λ)h−1 −

∫ t1

0
(t1 − λ)h−1

]
Z(λ, U(λ))dλ

∣∣∣∣
≤ 1− h

M (h)

∣∣Z(t2, U(t2))− Z(t1, U(t1))
∣∣+ h

M (h)
L ( + ‖U‖)

Γ(h + 1)
(th

2 − th
1).

Apparently, the right side ‖fU(t2)−fU(t1)‖ → 0 as t2 → t1. In view of the Arzelà–
Ascoli theorem, (fBρ) is relatively compact, and thus, the operator is continuous com-
pletely. Therefore, the problem (1) has at least one solution.

Now, we discuss the uniqueness result for the suggested model (1), with the follow-
ing assumption

0 ≤
[

1− 1− h
M (h)

$− hTh

M (h)Γ(h)
$

]
. (15)

Suppose there exist other solutions such as S,V,E, I,R; it holds that

S(t)− S1(t) =
1− h
M (h)

(
F1(t,S)− F1(t,S1)

)
+

h
M (h)Γ(h)

∫ t

0

(
F1(λ,S)− F1(λ,S1)

)
dλ, (16)

using norm to Equation (16), we have∥∥S− S1
∥∥ =

∥∥∥∥ 1− h
M (h)

(
F1(t,S)− F1(t,S1)

)
+

h
M (h)Γ(h)

∫ t

0

(
F1(λ,S)− F1(λ,S1)

)
dλ

∥∥∥∥
≤ 1− h

M (h)
$
∥∥S− S1

∥∥+ h
M (h)Γ(h)

$
∥∥S− S1

∥∥. (17)

Therefore, ∥∥S− S1
∥∥[1− 1− h

M (h)
$− hTh

M (h)Γ(h)
$

]
≤ 0. (18)

implies that S = S1, if the inequality (15) holds. Considering that for the remaining
compartments V = V1, E = E1, I = I1, and R = R1, the solution is unique.
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Next, we show the UH stability for the suggested system (1).

Theorem 2. Consider Z ∈ λ to be a continuous function, let a constant K > 0 3
∣∣Z(t, Q)−

Z(t, Q̃)
∣∣ ≤ K∣∣Q− Q̃

∣∣, ∀ t ∈ [0, T] and Q ∈ λ with 1 > (1−h)Γ(h)K+KTh

M (h)Γ(h) . Taking Q and Q̃ as
the solution for Equation (6)

ABCDh
t Q̃(t) = Z(t, Q̃(t)), Q̃(0) = Q0 + ε ≥ 0, (19)

where 
Q̃ = (S̃, Ṽ, Ẽ, Ĩ, R̃)T ,

Q0 + ε = (S0 + ε,V0 + ε,E0 + ε, I0 + ε,R0 + ε)T ,

Z(t, Q̃(t)) = Fi(S̃, Ṽ, Ẽ, Ĩ, R̃)T , i = 1, 2, ..., 5.

(20)

Then,

‖Q− Q̃‖ ≤
[

1− (1− h)Γ(h)K+KTh

M (h)Γ(h)

]−1

|ε|. (21)

Proof. The solution of the given problem (6) and Equation (19) are equivalent to the integral
Equation (8)

Q̃(t) = Q0 + ε +
1− h
M (h)

Z(t, Q̃(t)) +
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1Z(λ, Q̃(λ))dλ, (22)

every t ∈ [0, T], we obtain

|Q− Q̃| ≤ |ε|+ 1− h
M (h)

∣∣Z(t, Q(t))− Z(t, Q̃(t))
∣∣

+
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1∣∣Z(λ, Q(λ))− Z(λ, Q̃(λ))

∣∣dλ

≤ |ε|+ 1− h
M (h)

K
∣∣Q(t)− Q̃(t)

∣∣+ h
M (h)Γ(h)

∫ t

0
(t− λ)h−1K

∣∣Q(λ)− Q̃(λ)
∣∣dλ

≤ |ε|+
[

1− h
M (h)

+
Th

M (h)Γ(h)

]
K‖Q− Q̃‖.

Thus, we obtained

‖Q− Q̃‖ ≤ |ε|+
[
(1− h)Γ(h) + Th

M (h)Γ(h)

]
K‖Q− Q̃‖.

Hence,

‖Q− Q̃‖ ≤
[

1− (1− h)Γ(h)K+KTh

M (h)Γ(h)

]−1

|ε|.

Therefore, the theorem is proven.

4. Numerical Approach

Here, we explore a numerical technique for a given problem, wherein the time deriva-
tive is represented by a fractional derivative utilizing the generalized Mittag–Leffler (ML)
kernel. Our investigation involved a numerical simulation employing an interpolation
polynomial. To approximate the fractional-order integral using the AB (Adams–Bashforth)
method, we applied the widely recognized Adams–Bashforth technique [56].



Fractal Fract. 2023, 7, 526 8 of 21

Using the initial conditions together with operator ABC Ih
0 and applying the scheme of

on the given problem, we have

S− S0 = AB Ih
0G1(S, t),

V−V0 = AB Ih
0G2(V, t),

E−E0 = AB Eh
0G3(E, t),

I− I0 = AB Ih
0G4(I, t),

R−R0 = AB Ih
0G5(R, t),

(23)

which gives

S(t)− S0 =
1− h
M (h)

G1(S(t), t) +
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1G1(S(λ), λ)dλ,

V(t)−V0 =
1− h
M (h)

G2(V(t), t) +
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1G2(V(λ), λ)dλ,

E(t)−E0 =
1− h
M (h)

G3(E(t), t) +
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1G3(E(λ), λ)dλ,

I(t)− I0 =
1− h
M (h)

G4(I(t), t) +
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1G4(I(λ), λ)dλ,

R(t)−R0 =
1− h
M (h)

G5(R(t), t) +
h

M (h)Γ(h)

∫ t

0
(t− λ)h−1G5(R(λ), λ)dλ,

To develop an iterative scheme, we substitute t = tι+1 for ν = 0, 1, 2, . . . into the
above system

S(tν+1)− S(0) = 1−h
M (h)G1(S(tν), tν) +

h
M (h)Γ(h) ∑ν

i=0
∫ ti+1

ti
(tν+1 − λ)h−1G1(S(λ), λ)dλ,

V(tν+1)−V(0) = 1−h
M (h)G2(V(tν), tν) +

h
M (h)Γ(h) ∑ν

i=0
∫ ti+1

ti
(tν+1 − λ)h−1G2(V(λ), λ)dλ,

E(tν+1)−E(0) = 1−h
M (h)G3(E(tν), tν) +

h
M (h)Γ(h) ∑ν

i=0
∫ ti+1

ti
(tν+1 − λ)h−1G3(E(λ), λ)dλ,

I(tν+1)− I(0) = 1−h
M (h)G4(I(tν), tν) +

h
M (h)Γ(h) ∑ν

i=0
∫ ti+1

ti
(tν+1 − λ)h−1G4(I(λ), λ)dλ,

R(tν+1)−R(0) = 1−h
M (h)G5(R(tν), tν) +

h
M (h)Γ(h) ∑ν

i=0
∫ ti+1

ti
(tν+1 − λ)h−1G5(R(λ), λ)dλ,

To obtain the approximate functions G1(S(λ), λ), G2(V(λ), λ), G3(E(λ), λ), G4(I(λ), λ),
and G5(R(λ), λ), a two-step interpolation polynomial is utilized, and the inside of the
integral of the above equation on the interval [tς, tς+1]. We obtain

G1(S(λ), λ) ∼= G1(S(tς),tς)
∆ (t − tς−1) +

G1(S(tς−1),tς−1)
∆ (t − tς),

G2(V(λ), λ) ∼= G2(V(tς),tς)
∆ (t − tς−1) +

G2(V(tς−1),tς−1)
∆ (t − tς),

G3(E(λ), λ) ∼= G3(E(tς),tς)
∆ (t − tς−1) +

G3(E(tς−1),tς−1)
∆ (t − tς),

G4(I(λ), λ) ∼= G4(I(tς),tς)
∆ (t − tς−1) +

G4(I(tς−1),tς−1)
∆ (t − tς),

G5(R(λ), λ) ∼= G5(R(tς),tς)
∆ (t − tς−1) +

G5(R(tς−1),tς−1)
∆ (t − tς),

(24)
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which gives

S(tι+1) = S(0) + 1− h
M (h)

G1(S(tν), tν) +
h

M (h)Γ(h)

ν

∑
i=0

(
G1(S(tς), tς)

∆
Iς−1,h

+
G1(S(tς−1), tς−1)

∆
Iς,h

)
,

V(tι+1) = V(0) + 1− h
M (h)

G2(V(tν), tν) +
h

M (h)Γ(h)

ν

∑
i=0

(
G2(V(tς), tς)

∆
Iς−1,h

+
G2(V(tς−1), tς−1)

∆
Iς,h

)
,

E(tι+1) = E(0) + 1− h
M (h)

G3(E(tν), tν) +
h

M (h)Γ(h)

ν

∑
i=0

(
G3(E(tς), tς)

∆
Iς−1,h

+
G3(E(tς−1), tς−1)

∆
Iς,h

)
,

I(tι+1) = I(0) + 1− h
M (h)

G4(I(tν), tν) +
h

M (h)Γ(h)

ν

∑
i=0

(
G4(I(tς), tς)

∆
Iς−1,h

+
G4(I(tς−1), tς−1)

∆
Iς,h

)
,

R(tι+1) = R(0) + 1− h
M (h)

G5(R(tν), tν) +
h

M (h)Γ(h)

ν

∑
i=0

(
G5(R(tς), tς)

∆
Iς−1,h

+
G5(R(tς−1), tς−1)

∆
Iς,h

)
,

(25)

where

Iς−1,h =
∫ tς+1

tς

(t − tς−1)(tι+1 − t)h−1dt , Iς,h =
∫ tς+1

tς

(t − ti)(tι+1 − t)h−1dt .

Here, we calculate the integrals Iς−1,h and Iς,h as follows

Iς−1,h = −1
h

[
(tς+1 − tς−1)(tι+1 − tς+1)

h − (tς − tς−1)(tι+1 − tς)
h
]

− 1
h(h − 1)

[
(tι+1 − tς+1)

h+1 − (tι+1 − tς)
h+1
]

,

and

Iς,h = −1
h

[
(tς+1 − ti)(tι+1 − tς+1)

h
]
− 1

h(h − 1)

[
(tι+1 − tς+1)

h+1 − (tι+1 − tς)
h+1
]

,

given that tς = i∆, one can easily find that

Iς−1,h = − ∆h+1

h(h + 1)

[
(ι + 1− ς)h (ι− ς + 2 + h)− (ι− ς)h (ι− ς + 2 + 2h)

]
, (26)

Iς,h =
∆h+1

h(h + 1)

[
(ι + 1− ς)h+1 − (ι− ς)h (ι− ς + 1 + h)

]
. (27)

Substituting Equations (26) and (27) into Equation (25), we obtain
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S(tι+1) = S(t0) +
(1− h)
M (h)

[
G1(S(tι), tι)

]
+

h
M (h)

ν

∑
i=0

(
G1(S(tι), tι)

Γ(h + 2)

×∆h
[
(ι + 1− ς)h (ι− ς + 2 + h)− (ι− ς)h (ι− ς + 2 + 2h)

]
−G1(S(tν−1), tν−1)

Γ(h + 2)
∆h [(ι + 1− ς)h+1 − (ι− ς)h (ι− ς + 1 + h)]

)
, (28)

V(tι+1) = V(t0) +
(1− h)
M (h)

[
G2(V(tι), tι)

]
+

h
M (h)

ν

∑
i=0

(
G2(V(tι), tι)

Γ(h + 2)

×∆h
[
(ι + 1− ς)h (ι− ς + 2 + h)− (ι− ς)h (ι− ς + 2 + 2h)

]
−G2(V(tν−1), tν−1)

Γ(h + 2)
∆h [(ι + 1− ς)h+1 − (ι− ς)h (ι− ς + 1 + h)]

)
, (29)

E(tι+1) = E(t0) +
(1− h)
M (h)

[
G3(E(tι), tι)

]
+

h
M (h)

ν

∑
i=0

(
G3(E(tι), tι)

Γ(h + 2)

×∆h
[
(ι + 1− ς)h (ι− ς + 2 + h)− (ι− ς)h (ι− ς + 2 + 2h)

]
−G3(E(tν−1), tν−1)

Γ(h + 2)
∆h [(ι + 1− ς)h+1 − (ι− ς)h (ι− ς + 1 + h)]

)
, (30)

I(tι+1) = I(t0) +
(1− h)
M (h)

[
G4(I(tι), tι)

]
+

h
M (h)

ν

∑
i=0

(
G4(I(tι), tι)

Γ(h + 2)

×∆h
[
(ι + 1− ς)h (ι− ς + 2 + h)− (ι− ς)h (ι− ς + 2 + 2h)

]
−G4(I(tν−1), tν−1)

Γ(h + 2)
∆h [(ι + 1− ς)h+1 − (ι− ς)h (ι− ς + 1 + h)]

)
, (31)

R(tι+1) = R(t0) +
(1− h)
M (h)

[
G5(R(tι), tι)

]
+

h
M (h)

ν

∑
i=0

(
G5(R(tι), tι)

Γ(h + 2)

×∆h
[
(ι + 1− ς)h (ι− ς + 2 + h)− (ι− ς)h (ι− ς + 2 + 2h)

]
−G5(R(tν−1), tν−1)

Γ(h + 2)
∆h [(ι + 1− ς)h+1 − (ι− ς)h (ι− ς + 1 + h)]

)
. (32)

4.1. Numerical Simulation Results of the Model and Discussion

In this section, we present the numerical simulation in the form of a graphical rep-
resentation for validating our required results at different fractional-order levels against
the available data shown in Table 2, as well as the model’s initial conditions [55]. Figure 1
illustrates the temporal evolution of the susceptible class across different fractional order
h , wherein an initial increase was observed followed by stabilization. Notably, stability is
achieved more rapidly at higher fractional orders. Similarly, the number of healthy individ-
uals exhibits an upward trend as the vaccination rate increases, as depicted in Figure 2 for
four distinct fractional orders.
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Table 2. Values of the used parameters of the considered model (1).

Parameter Value Parameter Value

S 0.6 V 0.17
E 0.13 I 0.05
R 0.005 d1 0.15
Θ 5 ϑ 0.2
d2 0.12 ζ 0.3
α1 0.8 α2 3
γ0 0.8 π 0.17
κ 0.02 ς 0.7
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Figure 1. Plots for S(t) at four different fractional orders h between 0, 1.
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Figure 2. Plots for V(t) at four different fractional orders h between 0, 1.

In this scenario, the exposed class experiences a rapid decline at lower fractional orders,
followed by stabilization as a significant portion of the population becomes vaccinated, as
depicted in Figure 3. Conversely, the infection class is effectively controlled, exhibiting a
decline that contrasts with the trends observed in the susceptible and vaccinated classes, as
illustrated in Figure 4. Lastly, Figure 5 shows the temporal evolution of the recovered class,
which initially exhibits growth before gradually decaying and approaching stability across
various fractional orders.
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Figure 3. Plots for E(t) at four different fractional orders h between 0 and 1.
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Figure 4. Plots for I(t) at four different fractional orders h between 0 and 1.
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Figure 5. Plots for R(t) at four different fractional orders h between 0, 1, and a = 0.145.
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In order to assess the sensitivity of the parameters and examine the dynamics of all five
compartments prior to infection control, we conducted a series of experiments involving
the manipulation of parameter values. The results of these experiments are presented in
Table 3, which provides a comprehensive overview of the controlled and stable situation.
The graphical representation of the data from Table 3 demonstrates the initial increase
in infection rates, followed by a subsequent decline resulting from the vaccination of a
larger proportion of individuals. This numerical simulation highlights the effectiveness of
vaccination in mitigating the spread of infection and achieving a controlled and stable state.

Table 3. Values of the used parameters of the considered model (1).

Parameter Value Parameter Value

S 0.6 V 0.17
E 0.13 I 0.05
R 0.005 d1 0.1
Θ 0.23 ϑ 0.2
d2 0.1 ζ 0.3
α1 0.2 α2 2
γ0 0.2 π 0.17
κ 0.02 ς 0.7

The graphical representation in Figure 6a–e for taking different fractional orders where
as Figure 7a–e is another set of small fractional orders.

In Figures 8a–f and 9a–d, we presented a comparative analysis between the numerical
scheme results and the series type solution obtained through the Laplace Adomian de-
composition method (LADM) for all five compartments. This comparison was conducted
for the first set of fractional orders, as well as the classical order 1. The graphs on the
right-hand side depicted the results obtained through the LADM.
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Figure 6. Cont.
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Figure 6. Plots for all five agents at four different fractional orders h between 0 and 1 for Table 2 data.
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Figure 7. Plots for all five agents at four different fractional orders h between 0 and 1 for Table 2 data.
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Figure 8. Comparison of obtained numerical scheme with LADM for first three agent on different
orders h between 0 and 1 for Table 2 data.
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Figure 9. Comparison of obtained numerical scheme with LADM for last two agents on different
orders h between 0 and 1 for Table 2 data.

In Figures 10a,f to 11c,d, we showed a comparative analysis between the numerical
scheme results and the series type solution obtained through the Laplace Adomian decom-
position method (LADM) for all five compartments. This comparison specifically focused
on the second set of small fractional orders. The graphs on the right-hand side illustrated
the results obtained through the LADM.
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Figure 10. Comparison of obtained numerical scheme with LADM for first three agent on different
orders h between 0 and 1 for Table 2 data.
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Figure 11. Comparison of obtained numerical scheme with LADM for last two agents on different
orders h between 0 and 1 for Table 2 data.

4.2. Sensitivity of the Parameters

In this section, we introduce variations in parameter values to examine their impact on
the dynamics of the five-compartmental model under consideration. These dynamics align
with the characteristics observed in many epidemic models, wherein the susceptible class
initially experiences a slight growth followed by a decline. The vaccinated and exposed
classes exhibit an initial increase before declining and eventually stabilizing. On the other
hand, the infected and recovered populations demonstrate an increase, reaching their peak
point. The behavior of these classes is influenced by the inclusion of vaccination with
different fractional orders, as illustrated in Figures 12a–e and 13a–e.
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Figure 12. Plots for all five agents at four different fractional orders h between 0 and 1 for Table 2
data by changing the values of ω and θ.
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Figure 13. Plots for all five agents at four different fractional orders h between 0 and 1 for Table 2
data by changing the values of ϑ.

5. Conclusions

The present manuscript offers a comprehensive investigation into the implications
of tuberculosis (TB) on the human population. The study employs a five-compartment
model that incorporates the utilization of the generalized ABC fractional operator. The
dynamics of all compartments have been tested successfully on different fractional orders to
validate the additional degree of freedom in selecting the derivative order. The fixed-point
approach demonstrates the uniqueness and existence of solutions in the generalized format.
Stability analysis of the model is performed using Ulam–Hyer’s stability techniques. An
approximate solution for the model is obtained using the Adams–Bashforth technique. The
study explores various fractional orders and iterative intervals, considering different initial
conditions. Each curve is plotted for four different fractional orders and compared with
the integer order. The analysis revealed that TB has a more significant impact on the adult
population compared to the younger population. Moreover, the impact is lower for small
fractional orders and higher for high fractional orders. In terms of stability, small fractional
orders maintain high accuracy, whereas the opposite is true for high fractional orders.
Furthermore, the numerical scheme is compared with the Laplace Adomian decomposition
method for both fractional and classical orders.
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