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Abstract: In this paper, we consider the existence of positive solutions for a singular tempered
fractional equation with a p-Laplacian operator. By constructing a pair of suitable upper and lower
solutions of the problem, some new results on the existence of positive solutions for the equation
including singular and nonsingular cases are established. The asymptotic behavior of the solution is
also derived, which falls in between two known curves. The interesting points of this paper are that
the nonlinearity of the equation may be singular in time and space variables and the corresponding
operator can have a singular kernel.

Keywords: positive solutions; asymptotic analysis of solution; singular boundary value problem;
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1. Introduction

In this paper, we focus on the existence of positive solutions for the following singular
tempered fractional equation with a p-Laplacian operator

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λx(t)
))

= f (t, x(t)),

x(0) = 0, R
0 Dt

β,λx(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

(1)

where 0 < α ≤ 1, 1 < β ≤ 2, λ is a positive constant, ϕp(s) = |s|p−2s with 1
p + 1

q = 1, p > 1

is a p-Laplacian operator, f (·, ·) is decreasing with respect with the second variable, R
0 Dt

α,λ

and R
0 Dt

α,λ denotes tempered fractional derivatives related to the Riemann–Liouville frac-
tional derivative by

R
0 Dt

α,λx(t) = e−λtR
0 DtDtDt

α(eλtx(t)),

where R
0 DtDtDt

αx(t) = dn

dtn

(
0 In−α

t x(t)
)

denotes the standard Riemann–Liouville fractional
derivative, and 0 In−α

t is the Riemann–Liouville fractional integral operator defined by

0 In−α
t x(t) =

∫ t

0
(t− s)α−1x(s)ds,

and for more details, we refer the reader to [1].
It is well known that the fractional-order derivative possesses nonlocal characteristics,

which provides a possibility to inherit long-term memory in many large range dynamic
processes. Thus, the fractional-order model overcomes the limitations or restrictions of
locality of many integer-order models; it is more accurate than the integer order for long-
term and large-range physical phenomena [2–4]. Because of this advantage of the fractional
derivatives, in the past decades, various type fractional derivatives and integrals such
as Riemann–Liouville, Caputo, tempered, Hadamard, Erdelyi–Kober, Caputo–Fabrizio,
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Hilfer, Riesz derivatives and so on have been introduced to describe different physical
phenomena. In fact, each definition has own conditions and properties, and many of
them are not equivalent to each other. In practical application, the physical system under
consideration determines the selection of a suitable fractional operator. Therefore, it is
logical that we study and develop the specific type of equation and operator for modeling
different physical system. In comparison, the tempered derivative is a nonlocal fractional
derivative with an exponential tempering factor, which possesses stronger nonlinearity. So,
the study for tempered-type fractional differential equations is relatively difficult; for more
background of tempered fractional operators, we refer the reader to [5–7].

Mathematical research has shown that many physical phenomena exhibit a charac-
teristic of semi-long-range dependence. For example, in a stochastic propagation process,
the tempered fractional Brownian motion involves a tempered fractional Gaussian noise,
which follows a power-law operation at moderate time scales but eventually reduces to
a short-term dependent at a long time scale [7]. This implies that the Brownian motion
of the particle jump density in the tempered diffusion adopts an exponential tempering
factor. Recently, Cartea and Negrete [8] showed that the probability density of tempered
Lévy flights is governed by the tempered fractional diffusion equation, which provides a
complete set of tools for statistical physics and numerical analysis. In [9], Chakrabarty and
Meerschaert showed that random walks with exponentially tempered power-law jumps
converge to a tempered stable motion. During the tempered stabilization process, the price
fluctuations of the semi-heavy tail conform to a pure power law on moderate time scales
but converge to a Gaussian distribution on long time scales [10].

On the other hand, a p-Laplacian equation can model turbulent flow in a porous
medium [11–15]; in particular, when the equation contains tempered fractional derivatives,
it can model turbulent velocity fluctuations of porous medium with features of power-law
behavior at infinity and infinite divisibility [16]. Therefore, in the process of analyzing
the statistical data and and modeling the basic physical phenomena in turbulent flow,
Brownian motion, tempered Lévy flight, tempered stable laws are an useful tool. Because
the Equation (1) not only contains tempered fractional derivatives but also includes a
p-Laplacian operator, it is a mathematical model to describe turbulent velocity fluctuations
of the porous medium. Thus, in this paper, we focus on the existence of positive solutions
for the model (1) in a singular case. In fact, singularity may occur in the transmission
process of a turbulent flow in highly heterogeneous porous media, as some unpredictable
factors force the transmission process from a phase into another different phase or state. In
past decades, many works have been completed for various singular nonlinear equations;
for more details, we refer the reader to [17–25].

Due to the widespread application of differential equations in practice, in recent decades,
many theories and methods of nonlinear analysis, such as the spaces theories [26–31], smooth-
ness theories [32–35], operator theories [36–38], fixed-point theorems [18,21,24,25,39–41], sub-
super solution methods [17,42–45], monotone iterative techniques [12,46–53] and the varia-
tional method [54–58], have been developed to study various differential equations. For ex-
ample, by adopting the fixed point theorem of the mixed monotone operator, Zhou et. al [13]
established the existence and uniqueness of positive solutions for the following tempered
fractional differential equation

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λx(t)
))

= f (t, x(t), x(t)) + g(t.u(t)),

x(0) = x′(0) = · · · = x(n−2)(0) = 0,

ϕp

(
R
0 Dt

β,λx(0)
)
= 0,

R
0 Dt

β,λx(1) = δ
∫ 1

0
e−λ(1−t)x(t)dt,

R
0 Dt

γ1,λ
(

ϕp

(
R
0 Dt

β,λx
))

(1) =
∫ η

0
a(t)R

0 Dt
γ2,λ
(

ϕp

(
R
0 Dt

β,λx(t)
))

dA(t),

(2)
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where 1 < α ≤ 2, n− 1 < β ≤ n, n ≥ 4, 0 < γ2 < γ1 < α− 1, δ < β, λ > 0 is a constant,
ϕp, p > 1 is a p-Laplacian operator, R

0 Dt
α,λ is a tempered fractional derivative,

∫ 1
0 ·dA(t)

denotes a Riemann–Stieltjes integral and A is a function of bounded variation. In our
recent work [14], we studied the existence of extremal solutions for a tempered fractional
turbulent flow Equation (2) in the case where γ2 = γ1, δ = 1, and the nonlinearity takes the
special form h(t) f (x(t)). In virtue of iterative techniques, some new results of the existence
of maximum and minimum solutions were established; moreover, iterative properties of
the extremal solutions such as the iterative sequences and the asymptotic estimates of
solutions were also obtained.

However, the nonlinearity of the equations in [13,14] does not allow singularity in
space variables, and also, the order of the tempered fractional derivative must be between
1 and 2, namely 1 < α ≤ 2. this implies the results of [13,14] are not applicable for
Equation (1). On the other hand, if the order of the fractional derivative is less than 1, the
corresponding integral operator will possess a singular kernel, which is very difficult to
deal with. So, for the convenience of handling, most of the existing works on fractional
equations require the order of the fractional derivative to be greater than 1. Thus, the
contribution of this paper is to solve the singular problem including the nonlinearity of the
equation with singularity in space variables and with a singular kernel of the corresponding
operator.

2. Preliminaries and Lemmas

In this section, we give some preliminaries and lemmas to be used in the rest of the
paper.

Lemma 1 ([13]).
(1) Let g(t) ∈ L1[0, 1] ∩ C[0, 1], γ > 0, then

0 Iγ
t

R
0 DtDtDt

γ(g(t)) = g(t) + b1tγ−1 + b2tγ−2 + · · ·+ bmtγ−m,

where bi ∈ R, i = 1, 2, 3, ..., m, (m = [γ] + 1).
(2) If u ∈ L1(0, 1), α > β > 0, then

0 Iα
t 0 Iβ

t u(t) = 0 Iα+β
t u(t), R

0 DtDtDt
β

0 Iα
t u(t) = 0 Iα−β

t u(t), R
0 DtDtDt

β
0 Iβ

t u(t) = u(t).

(3) If ρ > 0, µ > 0, then

R
0 DtDtDt

ρtµ−1 =
Γ(µ)

Γ(µ− ρ)
tµ−ρ−1.

The following Lemma has been proved in Lemma 2.3 of [13].

Lemma 2. Suppose g(t) is a positive continuous function in [0, 1]; then, the linear tempered
fractional equation 

R
0 Dt

β,λx(t)− g(t) = 0,

x(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

(3)

has the unique positive solution

x(t) =
∫ 1

0
H(t, s)g(s)ds, (4)

where



Fractal Fract. 2023, 7, 522 4 of 18

H(t, s) =


[β(1− s)β−1(β− 1 + s)eλstβ−1 − β(β− 1)eλs(t− s)β−1]e−λt

(β− 1)Γ(β + 1)
, 0 ≤ s ≤ t ≤ 1;

[β(1− s)β−1(β− 1 + s)eλs

(β− 1)Γ(β + 1)
tβ−1e−λt, 0 ≤ t ≤ s ≤ 1.

(5)

is the Green function of (3).

Remark 1. In the proof of Lemma 2.3 in [13], there is a mistake in using Lemma 1; it should be:

0 Iγ
t

R
0 DtDtDt

β(eλtx(t)) = eλtx(t) + b1tβ−1 + b2tβ−2 + · · ·+ bntβ−n =
∫ t

0

(t− s)α−1

Γ(α)
g(s)eλsds,

that is

eλtx(t) =
∫ t

0

(t− s)α−1

Γ(α)
g(s)eλsds− b1tβ−1 − b2tβ−2 − · · · − bntβ−n,

which leads to the equation lacking a minus sign.

From Lemmas 1 and 2, we have the following lemma.

Lemma 3. Let g(t) be a positive continuous function in [0, 1]; then, the associated linear tempered
fractional equation

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λx(t)
))

= g(t),

x(0) = 0, R
0 Dt

β,λx(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

(6)

has the unique positive solution

x(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1g(τ)eλτdτ

)q−1

ds. (7)

Proof. Firstly, let v = R
0 Dt

β,λx(t), u = ϕp(v); then, it follows from Lemma 1 and the
definition of tempered fractional derivative that the solution of the initial value problem{

R
0 Dt

α,λu(t) = g(t), t ∈ (0, 1),

u(0) = 0,
(8)

is

eλtu(t) =
∫ t

0

(t− s)α−1

Γ(α)
g(s)eλsds− c1tα−1, t ∈ [0, 1].

Since u(0) = 0, 0 < α ≤ 1, one has c1 = 0,

u(t) =
∫ t

0

(t− s)α−1e−λt

Γ(α)
g(s)eλsds, t ∈ [0, 1]. (9)

On the other hand, by R
0 Dt

β,λx(t) = v, ϕp(v) = u, we have

u = ϕp

(
R
0 Dt

β,λx(t)
)
=
∫ t

0

(t− s)α−1e−λt

Γ(α)
g(s)eλsds,
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which implies that the solution of (6) satisfies
R
0 Dt

β,λx(t)) = ϕ−1
p

(∫ t

0

(t− s)α−1e−λt

Γ(α)
g(s)eλsds

)
,

x(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

(10)

It follows from Lemma 2 that

x(t) =
∫ 1

0
H(t, s)ϕ−1

p

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1g(τ)eλτdτ

)
ds, t ∈ [0, 1].

Since g(s) ≥ 0, s ∈ [0, 1], we have

ϕ−1
p

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1g(τ)eλτdτ

)
=

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1g(τ)eλτdτ

)q−1

, s ∈ [0, 1],

which implies that Equation (6) has a unique solution that can be expressed by

x(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1g(τ)eλτdτ

)q−1

ds, t ∈ [0, 1]. (11)

Lemma 4. The Green function H(t, s) in (5) has the following properties:
(1) H(t, s) is non-negative and continuous for (t, s) ∈ [0, 1]× [0, 1].

(2) For any t, s ∈ [0, 1], H(t, s) satisfies

m1(s)e−λttβ−1 ≤ H(t, s) ≤ M1(s)e−λttβ−1, (12)

where

M1(s) =
β(1− s)β−1(β− 1 + s)eλs

(β− 1)Γ(β + 1)
, m1(s) =

βs(1− s)β−1eλs

(β− 1)Γ(β + 1)
.

From (10) and (11), we have the following analogous maximum value principle.

Lemma 5. If x ∈ C([0, 1],R) satisfies
R
0 Dt

β,λx(t) ≥ 0, t ∈ [0, 1],

x(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt,

then x(t) ≥ 0, t ∈ [0, 1].

3. Main Results

In this section, we firstly list the hypotheses used in this paper.

(A1) f ∈ C((0, 1)× (0, ∞), [0,+∞)), and f (t, z) is decreasing in z > 0;
(A2) For any ρ > 0, f (t, ρ) 6≡ 0, and there exists a constant 0 < σ < α such that

0 <
∫ 1

0
e

λ
σ t f

1
σ (t, ρe−λttβ−1)dt < +∞. (13)

Denote the Banach space E = C[0, 1] with the maximum norm

||x|| = max{x(t) : t ∈ [0, 1]}.
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Now, define a cone K = {x ∈ E : x(t) ≥ 0} and a subset K∗ of K

K∗ =
{

x ∈ E : there exists a number 0 < hx < 1 such that

hxe−λttβ−1 ≤ x(t) ≤ h−1
x e−λttβ−1, t ∈ [0, 1]

}
,

and then define an operator S in E,

(Sx)(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, x(τ))dτ

)q−1

ds, (14)

then, the fixed point of operator S in E is the solution of the singular tempered fractional
Equation (1).

Lemma 6. Assume that (A1)–(A2) hold. Then, S : K∗ → K∗ is a completely continuous operator.

Proof. Firstly, it follows from the definition of K∗ that for any x ∈ K∗, there exists a number
0 < hx < 1 such that

hxe−λttβ−1 ≤ x(t) ≤ h−1
x e−λttβ−1, t ∈ [0, 1]. (15)

Since S is increasing with respect to x, by (14), (15), Hölder inequality and Lemma 4, we
have

(Sx)(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, x(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, x(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, hxe−λττβ−1)dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(
e−λs

Γ(α)

)q−1(∫ s

0
(s− τ)

α−1
1−σ dτ

)(1−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ (τ, hxe−λττβ−1)dτ

)σ(q−1)
ds

=

(
1− σ

α− σ

)(1−σ)(q−1)
e−λttβ−1

∫ 1

0

β(1− s)β−1(β− 1 + s)eλs

(β− 1)Γ(β + 1)

(
e−λs

Γ(α)

)q−1

s(α−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ (τ, hxe−λττβ−1)dτ

)σ(q−1)
ds

≤
(

1− σ

α− σ

)(1−σ)(q−1)
e−λttβ−1

∫ 1

0

β(1− s)β−1(β− 1 + s)eλs

(β− 1)Γ(β + 1)

(
e−λs

Γ(α)

)q−1

s(α−σ)(q−1)ds

×
(∫ 1

0
e

λτ
σ f

1
σ (τ, hxe−λττβ−1)dτ

)σ(q−1)

≤
(

1− σ

α− σ

)(1−σ)(q−1)
e−λttβ−1

∫ 1

0

β2eλ

(β− 1)Γ(β + 1)

(
1

Γ(α)

)q−1
ds

×
(∫ 1

0
e

λτ
σ f

1
σ (τ, hxe−λττβ−1)dτ

)σ(q−1)

≤ M∗1 e−λttβ−1
(

1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, hxe−λττβ−1)dτ

)σ(q−1)

< +∞,

(16)
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where

M∗1 =
β2eλ

Γq−1(α)(β− 1)Γ(β + 1)
.

On the other hand, for any ρ > 0, since f (t, ρ) 6≡ 0, we have f (t, h−1
x ) 6≡ 0. Thus, by the

local inheriting order property of continuous functions, there exists [a, b] ⊂ (0, 1) such that

∫ b

a
m1(s)

(∫ s

0

e−λs

Γ(α)
(1− τ)α−1eλτ f (τ, h−1

x )dτ

)q−1

ds > 0. (17)

As 0 < α < 1, by (16) and (17), we have

0 <
∫ b

a
m1(s)

(∫ s

0

e−λs

Γ(α)
(1− τ)α−1eλτ f (τ, h−1

x )dτ

)q−1

ds

≤
∫ 1

0
m1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, h−1

x e−λττβ−1)dτ

)q−1

ds

≤
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, h−1

x e−λττβ−1)dτ

)q−1

ds

< +∞.

(18)

Thus, it follows from Lemma 4 and (18) that

(Sx)(t) ≥ e−λttβ−1
∫ 1

0
m1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, x(τ))dτ

)q−1

ds

≥ e−λttβ−1
∫ 1

0
m1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, h−1

x e−λττβ−1)dτ

)q−1

ds

≥ e−λttβ−1
∫ b

a
m1(s)

(∫ s

0

e−λs

Γ(α)
(1− τ)α−1eλτ f (τ, h−1

x e−λττβ−1)dτ

)q−1

ds.

(19)

Take

h∗x = min

1
3

,

(
M∗1

(
1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, hxe−λττβ−1)dτ

)σ(q−1)
)−1

,

∫ b

a
m1(s)

(∫ s

0

e−λs

Γ(α)
(1− τ)α−1eλτ f (τ, h−1

x e−λττβ−1)dτ

)q−1

ds

}
.

Then, we have

h∗xe−λttβ−1 ≤ S(x)(t) ≤ 1
h∗x

e−λttβ−1,

which implies that S(K∗) ⊂ K∗ is well defined and uniformly bounded.
On the other hand, it is easy to see that S is continuous in E and also equicontinuous

on any bounded set of K∗. Thus, according to the Arezela–Ascoli theorem, S : K∗ → K∗ is
completely continuous.

In what follows, we introduce the definition of the upper and lower solutions of the
tempered fractional Equation (1).

Definition 1. Suppose the function ξ ∈ E satisfies
R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λξ(t)
))
≤ f (t, ξ(t)),

ξ(0) ≥ 0, R
0 Dt

β,λξ(0) ≥ 0, ξ(1) ≥
∫ 1

0
e−λ(1−t)ξ(t)dt,

(20)
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then, ξ(t) is called a lower solution of the tempered fractional Equation (1).

Definition 2. Suppose the function η ∈ E satisfies
R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λη(t)
))
≥ f (t, η(t)),

η(0) ≤ 0, R
0 Dt

β,λη(0) ≤ 0, η(1) ≤
∫ 1

0
e−λ(1−t)η(t)dt,

(21)

then, η(t) is called an upper solution of the tempered fractional Equation (1).

Theorem 1. Assume that the conditions (A1)–(A2) are satisfied. Then, the singular tempered
fractional Equation (1) has at least one positive solution w(t), and there exist two constants
k1, k2 > 0 such that

k1e−λttβ−1 ≤ w(t) ≤ k2e−λttβ−1.

Proof. Firstly, by Lemma 6, S : K∗ → K∗ is completely continuous. Thus, it follows from
Lemma 3 and (14) that

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sx)(t)
))

= f (t, x(t)),

(Sx)(0) = 0, R
0 Dt

β,λ(Sx)(0) = 0, (Sx)(1) =
∫ 1

0
e−λ(1−t)(Sx)(t)dt.

(22)

Now, we shall construct a pair of lower and upper solutions for the tempered fractional
Equation (1). For this, take

κ(t) = min
{

e−λttβ−1, S(e−λttβ−1)
}

,

θ(t) = max
{

e−λttβ−1, S(e−λttβ−1)
}

.
(23)

If e−λttβ−1 = S(e−λttβ−1), then e−λttβ−1 is a positive solution of the tempered fractional
Equation (1) and thus, the proof of Theorem 1 is completed. Otherwise, one has θ(t), κ(t) ∈ K∗

and
κ(t) ≤ e−λttβ−1 ≤ θ(t). (24)

Letting
ξ(t) = Sθ(t), η(t) = Sκ(t). (25)

we assert that ξ(t) and η(t) are a pair of lower and upper solutions for the tempered
fractional Equation (1).

In fact, since S is a decreasing operator with respect to x due to the monotonicity of f ,
it follows from (23)–(25) that ξ(t), η(t) ∈ K∗ and

ξ(t) = Sθ(t) ≤ Sκ(t) = η(t),

ξ(t) = Sθ(t) ≤ S(e−λttβ−1) ≤ θ(t),

η(t) = Sκ(t) ≥ S(e−λttβ−1) ≥ κ(t).

(26)

Consequently, by (22)–(26), one obtains

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λξ(t)
))
− f (t, ξ(t))

= R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sθ)(t)
))
− f (t, (Sθ)(t))

≤ R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sθ)(t)
))
− f (t, θ(t)) = 0,

(27)
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and
R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λη(t)
))
− f (t, η(t))

= R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sκ)(t)
))
− f (t, (Sκ)(t))

≥ R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sκ)(t)
))
− f (t, κ(t)) = 0.

(28)

Obviously, (22) and (25) imply that η and ξ satisfy

ξ(0) = 0, R
0 Dt

β,λξ(0) = 0, ξ(1) =
∫ 1

0
e−λ(1−t)ξ(t)dt

η(0) = 0, R
0 Dt

β,λη(0) = 0, η(1) =
∫ 1

0
e−λ(1−t)η(t)dt.

(29)

Thus, (26)–(29) guarantee that the function η(t) and ξ(t) are a pair of upper and lower
solutions of Equation (1) satisfying ξ(t), η(t) ∈ K∗.

Now, define an auxiliary function

F(t, x) =


f (t, ξ(t)), x < ξ(t),

f (t, x(t)), ξ(t) ≤ x ≤ η(t),

f (t, η(t)), x > η(t).

(30)

Clearly, F[0, 1] × [0,+∞) → [0,+∞) is continuous. Then, we consider the following
modified tempered fractional equation

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λx(t)
))

= F(t, x(t)), 0 < t < 1

x(0) = 0, R
0 Dt

β,λx(0) = 0, x(1) =
∫ 1

0
e−λ(1−t)x(t)dt.

(31)

For this, define an operator B in E

(Bx)(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, x(τ))dτ

)q−1

ds, ∀x ∈ E.

Then, it follows from Lemma 3 that the solution of the boundary value problem (31) is
equivalent to the fixed point of B.

Notice that ξ ∈ K∗, and there exists a constant 0 < hξ < 1 such that

hξ e−λttβ−1 ≤ ξ(t) ≤ h−1
ξ e−λttβ−1, t ∈ [0, 1].
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Consequently, for all x ∈ E, by (30), Hölder inequality and Lemma 6, we obtain

(Bx)(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, x(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, x(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, ξ(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, lξe−λττβ−1)dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(
e−λs

Γ(α)

)q−1(∫ s

0
(s− τ)

α−1
1−σ dτ

)(1−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ (τ, lξe−λττβ−1)dτ

)σ(q−1)
ds

≤ M∗1 e−λttβ−1
(

1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, lξe−λττβ−1)dτ

)σ(q−1)

< +∞,

(32)

which implies that B is bounded. Thus, it follows from the continuity of F and H that
B : E→ E is a continuous operator.

Assume that Ω ⊂ E is a bounded set; then, for all x ∈ Ω, there exists some positive
constant N > 0 such that ||x|| ≤ N. Now, let

L = max
0≤t≤1,0≤x≤N

|F(t, x)|+ 1.

Since H(t, s) is uniformly continuous in [0, 1]× [0, 1], for any ε > 0 and s ∈ [0, 1], there
exists σ > 0 such that for any t1, t2 ∈ [0, 1] and | t1 − t2 |< σ, one has

| H(t1, s)− H(t2, s) |< 1
Lq

(
eλ

αΓ(α)

)1−q

ε.

As ∣∣∣∣∣
(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, x(τ))dτ

)q−1∣∣∣∣∣
≤
∣∣∣∣∣
(∫ 1

0

Leλ

Γ(α)
(1− τ)α−1dτ

)q−1∣∣∣∣∣
=

(
Leλ

αΓ(α)

)q−1

,

(33)

we have

| Bx(t1)− Bx(t2) |≤
∫ 1

0
| H(t1, s)− H(t2, s) |

∣∣∣∣∣
(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, x(τ))dτ

)q−1∣∣∣∣∣ds < ε,

which implies that B(Ω) is equicontinuous.
Thus, by the Arzela–Ascoli theorem, B : E→ E is a completely continuous operator.

Hence, the Schauder fixed point theorem guarantees that B has a fixed point w such that
w = Bw.
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In the following, we shall prove that the fixed point w of the operator B is also the
fixed point of the operator S. In fact, from the definition of F, it is sufficient to prove

ξ(t) ≤ w(t) ≤ η(t), t ∈ [0, 1]. (34)

Firstly, we show w(t) ≤ η(t). If not, we have w(t) > η(t); thus, according to the
definition of F, we have

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λw(t)
))

= F(t, w(t)) = f (t, η(t)), t ∈ [0, 1]. (35)

Noticing η(t) is an upper solution of (1), we have

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λη(t)
))
≥ f (t, η(t)), t ∈ [0, 1]. (36)

Let x(t) = ϕp

(
R
0 Dt

β,λη(t)
)
− ϕp

(
R
0 Dt

β,λw(t)
)

, t ∈ [0, 1]. Since w is a fixed point of B,
by (31) and (29), we have

w(0) = R
0 Dt

β,λw(0) = 0, w(1) =
∫ 1

0
e−λ(1−t)w(t)dt,

η(0) = R
0 Dt

β,λη(0) = 0, η(1) =
∫ 1

0
e−λ(1−t)η(t)dt,

(37)

which imply that

x(0) = ϕp

(
R
0 Dt

β,λη(0)
)
− ϕp

(
R
0 Dt

β,λw(0)
)
= 0, t ∈ [0, 1] (38)

It follows from (35) and (36) that

R
0 Dt

α,λx(t) = R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λη(t)
))
− R

0 Dt
α,λ
(

ϕp

(
R
0 Dt

β,λw(t)
))

≥ f (t, η(t))− F(t, η(t)) = 0.
(39)

Thus, (38), (39) and Lemma 5 guarantee

x(t) ≥ 0, t ∈ [0, 1],

i.e.,
ϕp

(
R
0 Dt

β,λη(t)
)
≥ ϕp

(
R
0 Dt

β,λw(t)
)

, t ∈ [0, 1].

Since ϕp is monotone increasing and (10) implies that R
0 Dt

β,λη(t) and R
0 Dt

β,λw(t) are
non-negative, we have

R
0 Dt

β,λη(t) ≥ R
0 Dt

β,λw(t), i.e., R
0 Dt

β,λ(η − w)(t) ≥ 0. (40)

Thus, by (37), (40) and Lemma 5, we have

η(t)− w(t) ≥ 0,

that is w(t) ≤ η(t) on [0, 1], which contradicts w(t) > η(t). Thus, w(t) ≤ η(t) on [0, 1].
Following the same strategy, one has w(t) ≥ ξ(t) on [0, 1]. Hence,

ξ(t) ≤ w(t) ≤ η(t), t ∈ [0, 1],

which yields
F(t, w(t)) = f (t, w(t)), t ∈ [0, 1].
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Thus, the fixed point of B is also the fixed point of S. Consequently, w(t) is a positive
solution of the tempered fractional Equation (1).

Next, we focus on the estimation and asymptotic behavior of the solution of the
tempered fractional Equation (1). In view of ξ ∈ K∗ and (34), there exists 0 < hξ < 1 such
that

w(t) ≥ ξ(t) ≥ hξ e−λttβ−1. (41)

Thus, from (41) and (18) and the Hölder inequality, we have

w(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ F(τ, w(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, w(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, lξ e−λττβ−1)dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(
e−λs

Γ(α)

)q−1(∫ s

0
(s− τ)

α−1
1−σ dτ

)(1−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ (τ, lξe−λττβ−1)dτ

)σ(q−1)
ds

≤ M∗1

(
1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, lξ e−λττβ−1)dτ

)σ(q−1)

e−λttβ−1

= k2e−λttβ−1.

(42)

Hence, it follows from (41) and (42) that

k1e−λttβ−1 ≤ w(t) ≤ k2e−λttβ−1,

where
k1 = hξ ,

k2 = M∗1

(
1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, lξ e−λττβ−1)dτ

)σ(q−1)

.

Theorem 2. Suppose the following conditions hold
(B1) f ∈ C((0, 1)× [0, ∞), [0,+∞)), and f (t, z) is decreasing in z > 0.
(B2) f (t, 0) 6≡ 0 for any t ∈ (0, 1), and there exists a constant 0 < σ < α such that

0 <
∫ 1

0
e

λτ
σ f

1
σ (τ, 0)dτ < +∞. (43)

Then, Equation (1) has at least one positive solution w(t), and there exists a constant N ∗ > 0
such that

0 ≤ w(t) ≤ N ∗e−λttβ−1.

Proof. We replace the set K∗ by

K = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]},

and let
κ(t) = min{0, S0}, θ(t) = max{0, S0}.



Fractal Fract. 2023, 7, 522 13 of 18

Noting that S0 ≥ 0, we have

κ(t) = 0, θ(t) = S0.

Let
ξ(t) = Sθ(t), η(t) = Sκ(t),

then, we have η(t), ξ(t) ∈ K and

0 ≤ η(t) = Sκ(t) = S0 and 0 ≤ ξ(t) = Sθ(t) = S(S0) = (Sη)(t) ≤ S0 = η(t). (44)

On the other hand, we also have

R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λξ(t)
))
− f (t, ξ(t))

= R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sθ)(t)
))
− f (t, (Sθ)(t))

≤ R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sθ)(t)
))
− f (t, (S0)(t))

= R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sθ)(t)
))
− f (t, θ(t)) = 0, t ∈ (0, 1),

(45)

and
R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λη(t)
))
− f (t, η(t))

= R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sκ)(t)
))
− f (t, (Sκ)(t))

≥ R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sκ)(t)
))
− f (t, (S0)(t))

= R
0 Dt

α,λ
(

ϕp

(
R
0 Dt

β,λ(Sκ)(t)
))
− f (t, κ(t)) = 0.

(46)

Thus, from (44)–(46), ξ(t) and η(t) are the lower and upper solutions of the boundary
value problem (1), respectively. Hence, it follows from the proof of Theorem 1 that S has a
fixed point w ∈ K and

w(t) = (Sw)(t) =
∫ 1

0
H(t, s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, w(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, w(τ))dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(∫ s

0

e−λs

Γ(α)
(s− τ)α−1eλτ f (τ, 0)dτ

)q−1

ds

≤ e−λttβ−1
∫ 1

0
M1(s)

(
e−λs

Γ(α)

)q−1(∫ s

0
(s− τ)

α−1
1−σ dτ

)(1−σ)(q−1)

×
(∫ s

0
e

λτ
σ f

1
σ (τ, 0)dτ

)σ(q−1)
ds

≤ M∗1 e−λttβ−1
(

1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, 0)dτ

)σ(q−1)

≤ N ∗e−λttβ−1,

(47)

where

N ∗ = M∗1

(
1− σ

α− σ

)(1−σ)(q−1)(∫ 1

0
e

λτ
σ f

1
σ (τ, 0)dτ

)σ(q−1)

.

Thus, the conclusion of Theorem 2 is true.
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Theorem 3. Suppose
(C1) f ∈ C([0, 1] × [0, ∞), [0,+∞)) satisfies f (t, 0) 6≡ 0 for any t ∈ [0, 1], and f (t, z) is
decreasing in z > 0.

Then, Equation (1) has at least one positive solution w(t), and there exists a constant N ∗ > 0
such that

0 ≤ w(t) ≤ N ∗e−λttβ−1.

Proof. Clearly, (C1) implies that (B2) holds. Following the proof of Theorem 2, we can
then obtain the conclusion.

4. Example

Example 1. Take

α =
1
2

, β =
3
2

, λ = 2, p =
3
2

.

Consider the tempered fractional equation with integral boundary conditions
R
0 Dt

1
2 ,2
(

ϕ 3
2

(
R
0 Dt

3
2 ,2x(t)

))
=

1

(1− t)
1
6 t

1
12 x

1
6 (t)

,

x(0) = 0, R
0 Dt

3
2 ,2x(0) = 0, x(1) =

∫ 1

0
e−2(1−t)x(t)dt.

(48)

Conclusion 1. The tempered fractional Equation (48) has at least one positive solution w(t).
Moreover, there exist two constants k1, k2 > 0 such that

k1e−2tt
1
2 ≤ w(t)) ≤ k2e−2tt

1
2 .

Proof. Denote
f (t, z) =

1

(1− t)
1
6 t

1
12 z

1
6

.

It is clear that f ∈ C((0, 1)× (0, ∞), [0,+∞)), and f (t, z) is decreasing in z > 0, so
(A1) is satisfied.

Now, choose σ = 1
3 < α = 1

2 , for any ρ > 0; then, we have

f (t, ρ) =
1

(1− t)
1
6 t

1
12 ρ

1
6
6≡ 0, t ∈ (0, 1),

and

0 <
∫ 1

0
e

λτ
σ f

1
σ (τ, ρe−λττβ−1)dτ =

∫ 1

0
e6τ

 1

(1− τ)
1
6 τ

1
12 ρ

1
6

(
e−2ττ

1
2

) 1
6


3

dτ

= ρ−
1
6

∫ 1

0

e7τ

(1− τ)
1
2 τ

1
2

dτ ≤ ρ−
1
6 e7π < +∞.

(49)

Thus, (A2) also holds.
By Theorem 1, the tempered fractional Equation (48) has at least one positive solution

W(t), and there exist two constants k1, k2 > 0 such that

k1e−2tt
1
2 ≤ w(t)) ≤ k2e−2tt

1
2 .
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Example 2. Consider the tempered fractional Equation (48) with f (t, z) = 1

(1−t)
1
6 t

1
12 (z+1)

1
6

,


R
0 Dt

1
2 ,2
(

ϕ 3
2

(
R
0 Dt

3
2 ,2x(t)

))
=

1

(1− t)
1
6 t

1
12 (x(t) + 1)

1
6

,

x(0) = 0, R
0 Dt

3
2 ,2x(0) = 0, x(1) =

∫ 1

0
e−2(1−t)x(t)dt.

(50)

Conclusion 2. The tempered fractional Equation (50) has at least one positive solution w(t), and
there exists a constant N ∗ > 0 such that

0 ≤ w(t) ≤ N ∗e−2tt
1
2 .

Proof. Obviously, f ∈ C((0, 1)× [0, ∞), [0,+∞)), and f (t, z) is decreasing in z > 0, and
thus, (B1) holds. In addition, we have

f (t, 0) =
1

(1− t)
1
6 t

1
12
6≡ 0

for any t ∈ (0, 1). Take 0 < σ = 1
3 < α = 1

2 ; then, we have

0 <
∫ 1

0
e

λτ
σ f

1
σ (τ, 0)dτ =

∫ 1

0
e6τ

[
1

(1− τ)
1
6 τ

1
12

]3

dτ

=
∫ 1

0

e6τ

(1− τ)
1
2 τ

1
4

dτ ≤ e7B(
1
2

,
3
4
) ≈ 2.3963e7 < +∞,

(51)

that is, (B2) holds.
Then, by Theorem 2, Equation (50) has at least one positive solution x(t), and there

exists a constant N ∗ > 0 such that

0 ≤ x(t) ≤ N ∗e−2tt
1
2 .

Example 3. Consider the tempered fractional Equation (48) with f (t, z) = (1−t)
1
6 t

1
12

(z+1)
1
6

,


R
0 Dt

1
2 ,2
(

ϕ 3
2

(
R
0 Dt

3
2 ,2x(t)

))
=

(1− t)
1
6 t

1
12

(x(t) + 1)
1
6

,

x(0) = 0, R
0 Dt

3
2 ,2x(0) = 0, x(1) =

∫ 1

0
e−2(1−t)x(t)dt.

(52)

Conclusion 3. The tempered fractional Equation (50) has at least one positive solution w(t), and
there exists a constant N ∗ > 0 such that

0 ≤ w(t) ≤ N ∗e−2tt
1
2 .

Proof. Clearly, f ∈ C([0, 1]× [0, ∞), [0,+∞)) satisfies f (t, 0) 6≡ 0 for any t ∈ [0, 1], and
f (t, z) is decreasing in z > 0. Then, by Theorem 3, Equation (52) has at least one positive
solution x(t), and there exists a constant N ∗ > 0 such that

0 ≤ x(t) ≤ N ∗e−λttβ−1.
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5. Conclusions

In this paper, we establish some new results for the existence of positive solutions of
a class of singular tempered fractional equations with a p-Laplacian operator. The main
contribution is the construction of a pair of suitable upper and lower solutions to solve the
difficulty of singularities, which includes two aspects:

(i). The nonlinearity of the equation allows having singularities at time and space
variables;

(ii). The order of the fractional derivative can be less than 1, and the corresponding
operator allows having a singular kernel.

In addition, our results are also comprehensive, which contain three different cases,
i.e., all singular and nonsingular cases are discussed,

Case 1. f (t, z) may be singular at t = 0, t = 1 and z = 0 in Theorem 1;
Case 2. f (t, z) may be singular at t = 0, t = 1 and has no singularity at z = 0 in

Theorem 2;
Case 3. f (t, z) has no singularity at t = 0, t = 1 and z = 0 in Theorem 3.
In this paper, we only consider the existence of positive solution for tempered fractional

Equation (1), so some further work can continue to be considered such as the uniqueness
and multiplicity of positive solutions, the case where the nonlinearity is changing sign or
the p-Laplacian operator becomes a nonlinear operator, etc.
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