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Abstract: In this investigation, we utilize advanced versions of the Extended Direct Algebraic Method
(EDAM), namely the modified EDAM (mEDAM) and r+mEDAM, to explore families of optical soliton
solutions in the Fractional Perturbed Radhakrishnan—-Kundu-Lakshmanan Model (FPRKLM). Our
study stands out due to its in-depth investigation and the identification of multiple localized and
stable soliton families, illuminating their complex behavior. We offer visual validation via carefully
designed 3D graphics that capture the complex behaviors of these solitons. The implications of our
research extend to fiber optics, communication systems, and nonlinear optics, with the potential for
driving developments in optical devices and information processing technologies. This study conveys
an important contribution to the field of nonlinear optics, paving the way for future advancements
and a greater comprehension of optical solitons and their applications.

Keywords: Fractional Perturbed Radhakrishnan Kundu Lakshmanan Model; Extended Direct
Algebraic Method; Nonlinear Ordinary Differential Equation; optical soliton solutions; variable
transformation; generalized trigonometric functions

1. Introduction

Fractional Partial Differential Equations (FPDEs) have received great attention in dif-
ferent fields of science due to their ability to accurately model complex physical phenomena
[1-4]. This encourages researchers to dedicate their efforts to studying, examining, and an-
alyzing FPDEs. Researchers have used numerical and analytical techniques to understand
and analyze the behavior of FPDEs. Numerical methods are based on discretization tech-
niques that approximate the solution through iterative calculations [5-7]. These numerical
methods are powerful and widely used but often have limitations, such as computational
expenses and the inability to provide exact solutions. In contrast, analytic techniques aim
to obtain exact solutions using mathematical techniques and transformations. Researchers
often prefer closed formulas and analytical techniques that can provide greater insight
into the underlying mathematical structure of a problem. Analytic solutions provide a
comprehensive understanding of system behavior, facilitating further theoretical analysis
and investigation of physical effects. Therefore, different analytical approaches, such as
the Variational Iteration Method (VIM) [8], the Fractional Differential Transform Method
(FDTM) [9], the (G’/G)-expansion method [10], the exp-function method [11], the tan-
expansion method [12], the Adomian Decomposition Method (ADM) [13], the Laplace
Transform Method (LTM) [14] and the EDAM [15,16], etc., are introduced to tackle FPDEs.
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The EDAM is a particularly efficient and reliable approach among these analytical
techniques. The method first transforms a complex nonlinear FPDE into a Nonlinear
Ordinary Differential Equation (NODE) by fitly choosing variable transformations. Then,
using another ODE, the EDAM assumes a series-form solution. Substituting this solution
into NODE adeptly transforms the NODE into a system of algebraic equations. By solving
this system of equations skillfully, the EDAM allows us to construct different families
of soliton solutions, each with profound implications in different scientific fields. This
amazing ability of the EDAM enriches our understanding and exploration of FPDEs and
opens the door to groundbreaking discoveries and major advances in the scientific field.

Our study’s main goal is to investigate the variety of optical soliton solutions for the
FPRKLM using two upgraded versions of the EDAM, namely mEDAM and r+EDAM. The
FPRKLM is a special type of FPDE incorporating perturbations into the Radhakrishnan—
Kundu-Lakshmanan Model (RKLM), a well-known equation governing soliton dynamics.
The FPRKLM exhibits rich dynamics and can be applied to various physical systems,
such as nonlinear optics, Bose-Einstein condensation, and plasma physics. The FPRKLM
provides a valuable theoretical framework for studying wave phenomena and has practical
implications. Optical solitons, which are self-amplifying single waves, have attracted much
attention due to their potential applications in high-speed communication systems, optical
fibers, and optical signal processing. Analyzing the family of optical soliton solutions in
the FPRKLM provides important insights into the behavior and manipulation of optical
pulses and enables their advancement. With this analytical approach, we hope to decipher
the complex wave phenomena of soliton solutions and provide valuable insights into the
behavior of optical solitons in the FPRKLM. This investigation’s results are important for
understanding the FPRKLM and further developing nonlinear optics and related fields. The
proposed complex structural FPRKLM under the Kerr law nonlinearity is given by [17]:

iDfu + e DFu+ by u?u — isDPu — iy1D£(|u|2u) - iauDE(|u\2) - i’yDiExu =0, (I

where 0 < &, < 1 and u represents the complex-valued wave-function in space, x,
and time, t. D}u denotes the fractional time evolution of the nonlinear wave, while

Dfu, D,ch u and Digxu denote spatial fractional derivatives. In this study, both time and
spatial fractional derivatives are defined in Caputo’s derivative sense given in (2). The
proposed model was described in terms of time-fractional derivatives in [17]. The goal of
this study is to solve the problem using a more thorough model that includes complete
fractional derivatives. As a consequence, we generalise the model from [17] by substituting

a fractional derivative, Df , for the traditional spatial derivative. The inclusion of spatial
fractional derivatives captures genuine occurrences and improves the description of the
system by taking fractional diffusion and the interaction of temporal and spatial dynamics
into consideration. It also generalises the issue, allowing for fascinating mathematical
analysis, and broadens the study’s application to complex systems with temporal and
spatial fractional dynamics. The coefficient 2; denotes Group velocity dispersion (GVD),
b1 denotes the nonlinearity coefficient, 6 represents Inter-Modal Dispersion (IMD), p4
corresponds to short-pulse self-tilt coefficient, and ¢ denotes higher-order dispersion. In
contrast, the coefficient y corresponds to third-order dispersion terms.

Prior to this work, many mathematicians have studied the optical wave phenomena
of the proposed model in both integer and fractional forms for exploring optical soliton
solutions using various analytical approaches. In their work [17], Sulaiman et al. delved into
the study of dark, bright, and dark-light mixtures; single, mixed singular optical solitons;
and singular periodic wave solutions in time-fractional FPRKLM. Similarly, Saima et al.
focused on PRKLM for scattered light solitons of bright, dark, singular and dark singular
combinations using (G’/G?)-expansion and sine-Gordon expansion methods [18]. Tukur
and Hasan [19] used the extended rational sine-cosine/sinh-cosh method to tackle local M-
fractional RKL equations. Finally, Kudryashov [20] studied complex RKL equations using
the fourth-power polynomial law of nonlinearity, especially for solitary wave construction.
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The fractional derivatives presented in (1) are defined in the Caputo’s derivative sense.
The operator for this differentiation is defined as [21]

@

i Jo saz(n @)@ —y) 1w, v e (01)
—) Jo 9w\ ' /
Dyu(x,y) _{ M 1

ay 7

where the function u(x, y) is fairly smooth. We rely on the application of the subsequent
two operator’s properties to convert the FPDE indicated in (1) into NODEs:

Dyg" = mgv"", 3)
Dyylx(9)] = v (x(¢)) Dyx(e), @)

Here, we presume that x(¢) & y(¢) symbolises functions that maintain differentiability,
whereas r is a real number.

2. Method and Materials

This section outlines the EDAM’s operational procedures. Take into account the
general FPDE listed below [16]:

M(h,a¢h, b b, Lk, hdb h,..) =0, 0 <, B,y <1, (5)
where h = h(t,v1,v2,03,...,0;).
Following these steps allows us to solve problem (5):

1. First, h(t,v1,v3,03,...,v;) = H(C), { = C(t,v1,02,03,...,0;) ({ can be written in many
ways) is executed to turn (5) into a NODE of the form:

T(H,H,H'H,...) =0, (6)

where H in (6) has derivatives with respect to ¢. (6) may occasionally be integrated
once or more to obtain the integration’s constant.
2. We assume one of the following solutions for (6) based on the version of EDAM:

(@) The following series form solution is suggested by the mEDAM:

H@) = Y CulC@)", )

m=—j

(b) While the r+mEDAM offers the subsequent solution:

j
H(Z) = ). Cul(r+G(Q)", ®)
m=—j
where Cy,(m = —j,...,0,...,]) are arbitrary parameters that will be found
later and G(¢) satisfies the subsequent nonlinear ODE:
G'(§) = (e(G(9)* +bG() +a)ln(p), ©)

Here, it ought to be pointed out that i presumes a value different from 0 and 1,
whereas a, b, and ¢ remain constant during the investigation.

3. The positive integer symbolised as j in (7) and (8) is often referred to as the balance
number. It is calculated by applying homogeneous balancing between the greatest
nonlinear component in Equation (6) and the highest order derivative.
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4.  Following that, we insert (7) or (8) into (6) or into the equation created by integrating
(6), and we then compile all of the terms of G({) that are in the same order and produce
an expression in G({). A system of algebraic equations in Cy,(m = —j,...,0,...,])
and other parameters is produced by equating all the coefficients of the expression to
zero using the concept of comparison of coefficients.

5. We use the Maple programme for resolving this set of algebraic equations.

6. The next step is to determine the coefficients and extra parameters, which we then
include into Equation (7) or (8) along with the general solution of Equation (9), de-
noted as G({), in order to study the optical soliton solutions for Equation (5). We may
produce several families of soliton solutions by using the general solution given in
Equation (10), as shown below.

Family 1. In the case when Q is below 0 and ¢ is not equal to 0. the use of the general
solutions if nonlinear ODE provided in Equation (9) results into the development of the
given family of travelling soliton solutions:

b N v/—Qtany, (1/2v/—RQ)

Gi(g) = e e ,
Gz(@) _ _% . \/TQCOt;t(Zi/z\/jRé),
_ b V=Q(tan, (v=0Q7) £ (v/Pqsec, (vV-0Q7)))
Gs3(¢) = 2t r ,
_ b /=Q(coty (v=QF) + (VPFescu(v=Q10)))
G4(0) = % r ,

and

b /—Q(tan,(1/4/—Q7) — cot, (1/4/—0Q7))

Gs(8) = —5, + 1 -

Family 2. The generic solutions derived from Equation (9) lead to the following family of
traveling soliton solutions when Q is larger than zero and ¢ is not equal to zero:

b v/Qtanh, (1/2v/Q7)

Ge(0) = —

2c 2c ’
Gr(g) = - - YOO 1/2V),
b VQ(tanhy, (VQ?) £ (/pgsech, (VQD)))
Gs(0) = % e ,
_ b VQ(cothy, (vQ?I) + (y/Pgeschy (vVQ7)))
Go({) = % e p
and
_ b VQ(tanhy(1/4/Q7) — cothy(1/4v/Q7))
G1o(0) % ic .

Family 3. The generic solutions stated in Equation (9) are applied in the case where the
product ac is higher than 0 and b is equal to 0, producing the required family of traveling
soliton solutions:

G1(0) = /L any (Vact),

Gial() = \f cot, (v/acZ),
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G13(¢) = \/f(tany (2+/ac) £+ (y/pgsecu(2+/acl))),
G1a(0) = _\/f(COt‘u (2 \/ﬁ@) + (v/pqescu (2 \/ﬁg))),

and

Gis({) = ;\/f (tan, (1/2 V/acg) — coty (1/2 V/act)).

Family 4. The generic solutions of (9) provide the following family of traveling soliton
solutions for ac > 0& b = 0:

and
Gao(2) = —;\/—»‘CI (tanhy (1 /2 \/—ng) + coth, (1/2 \/Tacg) ) :

Family 5. The general solutions derived from Equation (9) give birth to the following
specific family of travelling soliton solutions as follows when ¢ equals a and b equals 0:

G21(§) = tany(ad),

G2(§) = —coty(af),
G3() = tany, (2 AZ) + (\/pqsecu(2al)),
G (0) = —coty(2ag) £ (/pqescu(2al)),

and

Gxs(0) = %tanﬂ(1/2a§) —1/2 coty(1/2al).

Family 6. The following family of traveling soliton solutions is produced when the general
solutions derived from Equation (9) are used in the situation when c is equal to —a and b is
equal to zero:

G26({) = — tanhy, (ag),

G27({) = — cothy,(al),
Gog() = —tanhy(2a0) & (iy/pgsech,(2al)),
G29(f) = — cothy(2al) £ (\/pqcsch-(2a()),

and .
Gao(¢) = — tanhy,(1/2a0) —1/2 cothy (1/2ag).
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Family 7. The application of the general solutions derived from Equation (9) yields the
specified family of traveling soliton solutions when Q is equal to zero:

—2a(bl In(u) +2)'

GSl(g) = bzgll’l(]xl)

Family 8. The generic solutions derived from Equation (9) produce the following family of
traveling soliton solutions where b is equal to v, a is equal to Nv (where N is a non-zero
number), and ¢ is equal to zero:

Gz (g) = u'¢ = N.

Family 9. The generic solutions derived from Equation (9) give rise to the specified family
of traveling soliton solutions when both b and c are equal to zero:

Ga3(§) = adln(p).

Family 10. The general solutions derived from Equation (9) result in the stated set of
traveling soliton solutions when both b and a are zero:

1

G34(0) = TGy

Family 11. The general solutions resulting from Equation (9) result in the stated family of
traveling soliton solutions when a is zero, b is not equal to zero, and c is not equal to zero:

Gs5(0) = ¢(coshy, (bZ) — sinhy, (b0) + p)”

and

b(coshy, (b) + sinh, (b7))
¢ coshy (b0) + csinhy, (b0) + ¢cq)

Gs6(0) = — (

Family 12. The general solutions derived from Equation (9) result in the following set of
traveling soliton solutions where b is equal to v, ¢ is equal to Nv (where N is a non-zero
number), and a is equal to zero:

e
G =—"—.
7 = T Nat
Here, p and g are both greater than zero, which are known as the deformation parame-
ters. In addition, Q is defined as b? — 4ac. Our solutions contain generalised trigonometric
and hyperbolic functions that may be represented as follows:

T _ gy-it ~iT 4 gy
sing () = PEE 0 s gy = B

2i ! 2 ’
1 1
*wll) = om0 9 = oy
=280, = 2
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Similarly,
] T _gu¢ =4 guf
sinh, () = PEEZ 9K - ZW , coshy(0) = PRI 5 .,
sech-(1) = L csch-(1) = 1
~ cosh-(1)’ ~ sinh-(1)’
B coshy,({) B sinhy, (7)
cothy (0) = m, tanh, ({) = m.
3. Results

In this section, the targeted problem is addressed with improved versions of the
EDAM. We debut with the following traveling wave transformation:

u(x,t) = U(Q)e®, where

« a 10
‘= Mr(ﬁxi Rres AL _r(l,;xf I RSTrERVREZ "
substituting (10) in (1) yields:
A2(aq + 3ky)U" + (by — ku)U® — (w + 0k + a1k 4+ vk>)U = 0, (11)
from the real part while the imaginary part gives:
AU — (c1 + 2a1k + 3k%y + 8)U' — (20 + 3u)UPU’ = 0. (12)

By integrating (12) with respect to J once and setting constant of integration to zero,
we have:
3A2qU" — 3(cq + 2a1k + 3k*y + 6)U — 3(20 + 3u)U° = 0. (13)

(11) and (13) have the same forms under the following constraint condition:

ap+3ky _ bi—kp w + 0k 4 a1k* 4 k3 (14)
302 (20+3u)  3(c1 +2ark + 3k2y +6)
Solving (14) for ¢; and k yields:
o _2a10+3b1’y+3a1y/ (15)
6(c+p)y
_ (w+ Sk + ak? + k) 2
= o T Ak (2kay + 6 + 3k“y). (16)

The constraints in (14)—(16) reduces the FPRKLM to a single ODE given in (11). The
next goal is to solve (11) using the proposed versions of the EDAM for generating families
of optical soliton solutions for (1). Balancing the highest order nonlinear term U? and
highest order derivative U"” gives m = 1.

3.1. Application of the mEDAM

First we wish to use M to solve Equation (11). The following series-based solution for
problem (11) is obtained by inserting j = 1 in Equation (7):

1
U@) = Y Cu(G(Q)" =C1(G(Q)) "+ Co+ C1(G(D), (17)

m=—1
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where C_;, Cp & C; are unknown constants. A system of nonlinear algebraic equations is
produced by substituting Equation (17) into Equation (11). We use the Maple software to
solve this problem, and it offers us the following two sets of solutions:

Case 1.
my my
= 1 = 2 —_— = — 717,
C1=0,Ca ? 1713(192—4ac)'c0 msz(b% — 4ac)
(18)
Y. i
~In(p) \ my(—b2 +4ac)
Case 2.
my My
= _ = - b
Ci=2¢ mz(b? — 4 )'C 1=0Co mz(b* —4ac)”’
(19)
Y. i
~In(p) \ my(—b2+4ac)’
where
my = ay + 3ky
My = w + 6k + a1k 4 k> (20)
ms = by — ku

Taking Case 1 into consideration, we arrive at the following families of optical soliton
solutions:

Family 1. When Q is less than 0 and 4, b, and c are all non-zero, Equations (17) and

(10), and the generic solutions obtained from Equation (9), together, give birth to a specific
family of optical soliton solutions, which may be stated as follows:

uy(x,t) = € (2a

s (_b , V=Qtan, (1/2v=0()) ) B

W 2c 2c a2
L)
- \/ T (R 40
ia(x, 1) = (24 mz<_b  V/Qeot(1/2 \/TQ(@)>—1
mz(b? —4ac) \ 2c 2¢ o)
m
et
uz(x,t) = e®(2a MX
<_ b, VQ(any (v=0(0) (msecy(m@))))l -
2c 2

1y
a \/_ m3z(—b*+ 4 ac) b).
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ug(x,t) = e(2a mx
(_b_ m(COtH(\/TQ(C)) + (\/WCSC%(@(Q)))>_1 (24)
2c 2c
m
a \/_ m3(_b22+ 4ac) b).
and
us(x,t) = e(2a mg(bzmi—zﬁlac)x
( b, V=0(tan (1/4V=0(0)) — cot, (1/4 m<c>>))1 5)
2c 4c

my
- ¢ T8 +2a0) )

Family 2. When Q is greater than 0 and 4, b, and ¢ are all non-zero, Equations (17) and
(10), and the generic solutions obtained from Equation (9), together, give birth to a specific
family of optical soliton solutions, which may be stated as follows:

ug(x,t) = e (2a i’ <_b_ \/Qtanhu(l/zx@(é))>l

m3 (b2 —4ac) \ 2 2 26
my
B ¢ TR 4l
wr(a ) = o (2a, |2 (_b  VQeothy(1/2VQ(0) -
7 mz(b? — 4 ac) 2c 2c 2
1
- mcE e
ug(x,t) = eie(za mx
(b B \/Q(tanhy (ﬁ(@) + (\/Wsech;t(\/@(g)))) ) - 8)
2c 2c
_\/ i )
m3(—b2 +4ac) '
() =20 [
(_ b v/Q(coth, (vA(Z)) + (\/WCSChu(\/Q(g))))>1 29
2c 2c

1M
R
\/ m3(—b% +4ac) )
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and
uyo(x,t) =e(2a m X
(_b _ V/Q(tanh, (1/4v/Q(7)) — cothy (1/4V0(0))) ) - 0)
2c 4c

1y
a \/_ mz(—b? +4ac)b)'

Family 3. Equations (17) and (10), and the related general solutions obtained from
Equation (9), when used in conjunction, produce a particular family of optical soliton
solutions where the product ac is larger than zero and b is equal to zero, which may be
written as follows:

i (1) = ([ (bamy (Vac(@))) ), (31)
up(x, ) = (= —mirzz(co’fy(\/%(g)))il)/ (32)

uiz(x, t) = e( _m—mz(tany (2+/ac(2)) £ (\/pqsecu (2 \/%(g))))’l), (33)

3

uia(x,t) = (- ::;2 (coty (2+/ac(7)) £ (v/pgescu(2 \/%(g))))*l), (34)
and
us(x, 1) = e (2 _m”:2 (tany (1/2/ac(g)) — cot, (1/2/ac(7))) ). (35)

Family 4. Combining the use of Equations (17) and (10), and the related general solutions
obtained from Equation (9) results in a unique family of optical soliton solutions in the
situation when the product ac is higher than zero and b is equal to zero. These solutions
are represented as follows:

u1g(x, t) = e \/ani (tanhy (\/Tzc(g)))*l), (36)
iy (3, £) = € (— % (cothy, (\/—7ac(§))>71), 37)

s (x, 1) = eie(_\/Z»i(tanhy (2 \/—Tzc(é))
+ (i\/ﬁsechy (2 \/TQC(C))))_l)/

(38)
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urg(x, 1) = e(— %(COthy (2 —aC(C)) 39)
+ <\/Wcschy (2 \/TM(C)>)>71>/
and
upo(x, t) :eie(—\/Z»i(tanh},(l/Z\/—iﬂC(g)) (40)

+cothy (1/2v/=ac(2))) 7).

Family 5. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to construct a specific family of optical soliton solutions where ¢
is equal to a and b is equal to zero. These solutions are represented as follows:

un (x,1) = (4 |2 (tany (a(2))) ), @)

um(x,t) = e (— —777312 (coty(a(g)))fl), (42)

us(n,t) = 0 2 (an, (20(0) = (VATsee,a@) ), @)
urg(x, 1) = e( :n—rzz(— coty(2a(0)) F (\/Wcscy(Za(g))))_l), (44)

and

s (x, 1) = /_m—n;z(l/z tan, (1/2a(Z)) — 1/2 cot,(1/2a(Z))) 7). (45)

Family 6. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to construct a specific family of optical soliton solutions where ¢
is equal to —a and b is equal to zero. These solutions are represented as follows:

g (3, 1) = el‘9<—¢f§ (tanhy(a(2))) ™), (46)
17 (x,t) = eif’(—\/z (cothy(a(2))) ), (47)
g (x,t) = € (| =2 (— tanhy, (2a(Q)) F (iy/pgsechy(2a(2)))) 1), (48)

msg
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Uz (x,t) = eie(\/Z;(— coth, (2a(Z)) F (v/pgeschy (2 a(g))))fl), (49)

and

usp(x, ) = eig(\/Z(—l/Z tanhy, (1/2a(7)) —1/2 coth,(1/2a(Z))) ). (50)

Family 7. Equations (17) and (10), and the associated general solutions derived from
Equation (9) are used to produce a specific family of optical soliton solutions in the case
where b is equal to v, a is equal to nv (where 1 is a non-zero value), and c is equal to zero.
These solutions are expressed as follows:

_ i Mmoo ) [T

uz (x,t) =€ (2n s (y n) m3). (51)
_ V2 m £ p - kxP ‘

where § = % e (_r{;+l) trgm) & 0=t T(Cstﬂ) 0

Now assuming Case 2, we get the following cluster of optical soliton solutions:

Family 8. Equations (17) and (10), and the equivalent general solutions obtained from
Equation (9) when Q is less than zero and 4, b, and ¢ are all non-zero, result in a particular
family of optical soliton solutions, which may be written as follows:

N, o L _£+mtany(1/2@(g)) | (52)
ma(b% —4ac) \  2c 2 ,

i m
s 8) = [t

toc "2 b /=Qcotu(1/2V=Q(Y)) ) (53)
m3(b2 —4ac) \ 2 2% ,
_ Lif nip 1y
waat) = ¢ a2
(54)

2c 2c

(_ b, V=Q(tan, (vV=0(0)) (\/Wsecu(x/@(é))))»,

_ e 3 3
uas(x, ) = e \/ mg(—b2+4ac)b+zc 1113(192—4&10)><

(_ b V0ot (VEO) £ (VAo (vV-0(D))) ) . 9

2c 2c
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and

AR L S W WA S S
e, ) = €7 \/ ms(—b% 4 4ac) tec mg;(bz—élac)><

<_b , VQlany (1/4V=0(0) - coty(1/4m<@>>>>)_

2c 4c

(56)

Family 9. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are all applied in the case when Q is higher than zero and 4, b, and c are
all non-zero, leading to a specific family of optical soliton solutions, which may be stated
as follows:

i m
1/[37(3(, t) = ele(\/?’l’lg(bziﬁlﬂC)b

e (- Q2 00D, *
mz(b? — 4 ac) 2c 2c '
(58)
m b /Qcoth, 1/2\/>
o2t 2 2).
M39(X/t):€i9(_\/ s (— b2+4a 4110
(b \/@(tanhy<\/>( )) (\/ﬁsechy(f(g)))))) &)
2c 2c l
u40(x,t) :eiG(_\/ 3(— b2+4ﬂ m
@GR S 0
2c 2c '
and
g (x,t) :eie(\/ 3(— b2+4ac m
(61)

~—

7

<_b vQ(tanhy (1/4v/Q(Z)) — cothy (1/4 VQ(Z) )

2c 4c

Family 10. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to provide a particular family of optical soliton solutions where
the product ac is larger than zero and b is equal to zero. These solutions are represented
as follows:

2 tany (VA (), (62

g (x,t) = e o~
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2 coty (Vac(())), (63)

M43(X, t) = eig(i s

uaa(, 1) = (| 22 (tan, (2 VA () + (Vpasec, (2vac(0))), (69

m3

wis(x,1) = ¢ (= 2 (cotu (2 Vac()) = (VT eseu(2Vac(2)))), (69)

and

g (x, 1) = e /‘7’7;2 (tany (1/2v/ac()) — coty (1/2/ac(Q))))- (66)

Family 11. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to provide a particular family of optical soliton solutions where
the product ac is less than zero and b is equal to zero. These solutions are represented
as follows:

war () = eie(_\/z tanh, (\/_TC(@)) ), (67)
was (e t) = ¢ \/z cothy, (V=ac(2))), 68)

o1, 8) = £ (— \/n’”z (tanhy (z \/_Tw(g)) + (i\/ﬁsechy (2 \/—Tzc(g)) ) ) ), (69)

uso(x, ) = e (— \/Z(C()thy (2 \/TIZC(@) + (Mcschy (2 \/TI/HZ(g)) ) ) ), (70)
and

s (1) = o \/Z? (tanh, (1/2 vV=ac(g)) + cothy, (1/2v=ac(@)) ). (7)

Family 12. The use of Equations (17) and (10), and the related general solutions obtained
from Equation (9) results in a different family of optical soliton solutions in the situation
when c is equal to 2 and b is equal to zero. These solutions are represented as follows:

usa(x, ) = *m";z tany, (a(7))), (72)
uss(x,t) = e (— | —2 cot, (a(())), (73)

m3
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sa () = e /%(tany(Za(C)) + (v/pasecu(2a(?))))), (74)
uss(x,£) = (1 "2 (= coty(2a(0) F (VP eseu(2a(2))))), (75)

and

g (x, 1) = /‘7’1;2(1/2 tan,, (1/2a(7)) — 1/2 coty(1/2a(Q))))- (76)

Family 13. The use of Equations (17) and (10), and the related general solutions obtained
from Equation (9) results in a different family of optical soliton solutions in the situation
when ¢ is equal to —a and b is equal to zero. These solutions are represented as follows:

s, ) = (= [ 2 by (a(2)), 77)
sl ) = (= /22 cothy (a(0))) 78)
s (35, £) = €[22 (— tanhy (20(0)) F (1 Fsechy (2a(0)), 79)
e, £) = ¢ ([ (— cothy(20(0)) F (v/Feschy(2a() (50)

and

ea (1) = eie(\/fi(_uz tanh,, (1/2a(¢)) — 1/2 cothy, (1/2a(7))))- (81)

Family 14. Equations (17) and (10), and the equivalent general solutions obtained from
Equation (9) when a is equal to zero, b is not equal to zero, and ¢ is not equal to zero,
produce a particular family of optical soliton solutions, which may be written as follows:

uea(x, 1) = e”(\/fi 2 ijp(coshyw@)) —sinh, (0(@) +p) ), ()
- F B o

Family 15. Equations (17) and (10) & the associated general solutions derived from
Equation (9) produce a particular set of optical soliton solutions in the case where b is

and
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equal to v, c is equal to nv (where 7 is a non-zero value), and a is equal to zero. These
solutions are expressed as follows:

_ o [m M2, 0@ () — g @)

ues(x, 1) =" ( m3+2n -y (P nqu ) )- (84)
2 p t _ kxP “

where ¢ = p, [ (v — Fam ) o 0=~ e O

3.2. Application of the r+mEDAM

Now we wish to address (11) using the r+mEDAM. Putting m = 1 in (8) gives the
subsequent series-based solution for (11):

1
U@)= Y Culr+G(@Q))"=Ca(r+G(0) ' +Co+Ci(r+G(©)'. (8

m=—1

The coefficients C_1, Cp, and C; are referred to as unknown parameters. A system of
nonlinear algebraic equations is produced by putting Equation (85) into Equation (11). We
use the Maple programme to address this problem, and it offers us the following two sets
of solutions:

Case 1
—0C =2(a—rbas? . Mm
Ci=0,C_4 (a rb+r c) mg(b2—4ac)' o
My \/E my
C(): _W(b—ch"),)\: )
3(—b?+4ac) In(p) \| my(—b?+4ac)
Case 2
my my
Ci=2¢,/]————,C_1=0,Cg=—/—————(b—2cr),
1= my(b2 —4ac)’ 0 \/ m3(—b2 +4ac) ( er) 7)
A= V2 my

In(p) \| my(—b2+4ac)

In light of Case 1, we discover the families of optical soliton solutions shown below:

Family 16. Equations (85) and (10), and the related general solutions obtained from
Equation (9) together produce a particular family of optical soliton solutions in the case
when Q is less than zero and a, b, and ¢ are all non-zero:

o

ugs (x, 1) = (2 (a —rb+ rzc) s (0% — hac) X

- (88)
b, v=Quan,(1/2v=0()\ i
<_2c+ ; 2c ) +\/_m3(—b22+4ac) (b—2er)),
uge(x, t) = (2 (a —rb+ rzc) mg,(bzmi—zélac) X
- (89)
b V=Qcot,(1/2v=0@) ) i
<_26_ ; 2c > +\/_m3(—b22+4ac) (b=2er)).
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o m
mz(b? — 4 ac)

(_ b, VOt (V=0(@) £ (\/Wsecﬂm@))))_l 0

ugr(x,t) = €(2 (a —rb+ r2c>

2c 2c

+ \/_ m3(—brgz+4ac) (b=2er)),

__Mm
mz(b% — 4 ac)

(_ b V=0(cotu(vV=0(0)) * (mCscﬂ(@@))))l &

ugg(x, 1) = € (2 (a —rb+ rzc)

2c 2c

1y
+ \/_ mz(—b% +4ac) (b—2er)),

and

o m
mz(b%* — 4ac)

( b V=Qtany(1/4V=0(0)) —coty(1/4@<€>))>_l (92)

ugo(x, 1) = €(2 (a —rb+ r2c>

2c 4c

m
+ \/—m3(_b22+4ac> (b—2cr)).

Family 17. Equations (85) and (10), and the related general solutions obtained from
Equation (9) together produce a particular family of optical soliton solutions in the case
when Q is greater than zero and 4, b, and c are all non-zero:

my

uzo(x, t) = ei9(2 (a —rb+ rzc) 71413(102 ~ fa0) X

- (93)
b VQtanh, (1/2v0()\ i
<_2c_ Vzc ) +\/_1713(—bzz+4ac) (b=2er)),
uz (x, ) = (2 (a —rb+ rzc) m X o
b VQeoth,(1/2vQ(0) ) i
<_2c_ HZC ) +\/_m3(—b22—|—4ac) (b=2er)).
uz(x,t) = (2 (a —rb+ rzc) W—zélac) X
(_b - \FQ(tanhy (ﬁ(é)) + (\/ﬁsechy(\@(g)))) ) o (95)
2c 2c

+\/—’”Z(b—zcr)),

m3(—b2 + 4ac)
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Uz (x, ) = (2 (a — b+ r2c> % x
(_ b /0ot (D) £ Emwchy(m@)»)” 6)
e 02
and
Upa(x, ) = (2 (a —rb+ r2c) m x
(i _ V0{anty (1/4VO(E) — <oty (1/4 VOE) ) B -

+ \/_rrg(—lzi—élac)(b_zcr))'

Family 18. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions where the product ac is
larger than zero and b is equal to zero. These solutions are represented as follows:

uzs(x, ) = e((1+ %) e (tany (Vac(@)) 7 = = ), (98)
uze(x, 1) = € (— (1 + %) _mnz)z (c:oty(\/ﬁ(g)))_1 - —%r), (99)
uzy(x,t) = e (— e,
R ad (100)
(14 Ty e (tany (2 Vae(©)) # (Vpa seeu (2vac(0))) ),
uzs(x, 1) = e (— [~ T2,
, s (101)
—(1+ ), /_m—";z(coty(Z Vac(Q)) + (vPgeseu (2vac(©))) ),
and
uyg(x,t) = ele( _ It
s (102)
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Family 19. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions where ac is less than zero
and b is equal to zero. These solutions are represented as follows:

ugo(x,t) = e (— (1 + %) \/z<tanhy (\/—Tw(g)) ) . /—%r), (103)

ugt (x, ) = e®(—(1+ ﬁ) % (cothy (\/_Tzc(g)))*l — -T2, (104)

msa

ugy(x,t) = e( 2
, msaa . (105)
- L) 2 e, (2 v=a2(0)) + (i pase (2v=(@)))) ),
ugs(x, ) = €%(—, /- e
i msaa . (106)
-1+ C(Z)\/E(cothy (2 \/—711(3@)) + (\/WCSChV <2 \/TQC@)) )) )
and
uga(x,t) = €( e
maa (107)

—2(1+ C;)\/Z?(tanhy (1/2 \/Tuc(g)) + coth, (1/2 \/Tuc(g)))_l).

Family 20. Equations (85) and (10), and the related general solutions obtained from
Equation (9) are used to produce a unique family of optical soliton solutions in the sit-
uation when c is equal to a and b is equal to zero. These solutions are written as follows:

s, = (14 ) S (ran, 0(0) " - [~ 22), (108)
usa(x,) = (=1 2) [ 2 (cony(a()) ! = -2, (109
gy (x,£) = e (— —%r o
(147 =2 tan, (20(2)) + (VFTsecy (2a(6)) ™),

et = _%r (111)

2y [ M2 (o csc -
(1+7%),/ ms( tu(2a(0)) F (VPgescu(2a(0)))) ),
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and

my
ms

(1+7%), /‘7’?(1/2 tany, (1/24()) — 1/2 coty(1/2a(2))) 7).

ugg(x, ) = € (—
(112)

Family 21. Equations (85) and (10), and the related general solutions obtained from
Equation (9) are used to produce a unique family of optical soliton solutions in the sit-
uation when c is equal to —a and b is equal to zero. These solutions are written as follows:

ug(x, 1) = eie(—(l - rZ)ﬁ(tanhy(a(C)))_l + Z—ir), (113)
ug (x,1) = e¥(—(1 — rz)\/z (cothy (a(0))) " + %r), (114)
ug (x, ) = e( M2,
" s (115)
+(1—7r%) %(— tanhy, (2a(¢)) F (i\/pgsechy (2 a(@))))fl),
ugz(x,t) = eig(\/nTZr
s (116)
+(1— rz)\/fi(— cothy (2a(2)) T (/Ageschy(2a(0)))) ),
and
uoy(x, ) = €( M2,
i s (117)
+(1- rz)\/Z;(—l/Z tanhy, (1/2a(Z)) — 1/2 coth, (1/2a(Z))) ).

Family 22. Equations (85) and (10), and the associated general solutions derived from
Equation (9) produce a specific family of optical soliton solutions when b is equal to v, a
is equal to nv (where 7 is a non-zero value), and c is equal to zero. These solutions are
expressed as follows:

s, 1) = (2 (=) 22 (4O ) 4 [12), (118)

Family 23. Equations (85) and (10), and the associated general solutions derived from
Equation (9) are used to produce a specific family of optical soliton solutions in the case
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where 4 is equal to zero, b is not equal to zero, and c is not equal to zero. These solutions
are expressed as follows:

; m
uge (1) = (/= 5 (b —2cr)

i (119)
—2(=rb+ %) \/Z?C(C%hﬂ(b(é)) ;;;nhu(b(é)) r),
and
s, = ([~ (b 21
(120)

() [ (coshy (B(2)) + sinhy (b(2)) +4)
2( - ) m3  b(coshy (b(Z)) + sinhy, (b(7))) )

Family 24. Equations (85) and (10), and the associated general solutions derived from
Equation (9) produce a specific family of optical soliton solutions when b is equal to v, ¢
is equal to nv (where n is a non-zero value), and a is equal to zero. These solutions are
expressed as follows

— nau @
_ e 2\ (M2 (p " ) 1 121
ugg(x,t)—e (2 <—7+7 Tl) %W‘F m73(1—27’l7’>) ( )

A I B _ kxP 1"
where § = ;o5 m1<72”22+4ac) (_rfiﬂ) * F(§+1))' & 0= _r(ﬁxﬂ) + F((;JH) MG

Now, assuming Case 2, we obtain the subsequent families of optical soliiton solutions:

Family 25. Equations (85) and (10), and the related general solutions deriving from
Equation (9) result in a specific family of optical soliton solutions in the situation when Q
is less than zero and a, b, and c are all non-zero:

1o

—ef(— |2 _(pb_2¢r
ugs(x8) = €7 ma(—) " 72 (122)
m b v—Qtan,(1/2v/-Q(7))
+2¢ m?jg<_2c+ e )),
i6 L S Yo
too(x,t) = €7( ms(—Q)(b 2) 123
e mz(_b_ﬁzcoty(l/zm@))) .
msQ\ 2c 2c ’

(124)
),
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2 (x, 1) = (= _miﬂ_zQ) (b—2cr)+2c %x
(b V0ot (V=) * (mcscy(ﬁz(@)))))) (125)
2c 2 ,

and

[ m m
u103(x, t) = ¢l 2 b 2cr)+2c,/ 2
ma(— m3(Q

( b, m(tany(1/4f( )) —cot#(1/4F >) (126)
2¢ 4c '

Family 26. Equations (85) and (10), and the related general solutions deriving from
Equation (9) result in a specific family of optical soliton solutions in the situation when Q
is greater than zero and 4, b, and ¢ are all non-zero:

my

wioa(x,t) = e (— Tm(-0) (b—2cr)
(127)
my (b v/Qtanhy, (1/21/Q(7))
e m3<Q>< 2 > )>,
t0s(,1) = (= [~ 5 (0= 2¢7)
(128)
m b V/Qcoth,(1/2/Q(7)
+2c TH3(2Q) <_2(1 2c )
‘ - 2 cr c ma
e = g O 2 g
(_b B \/Q(tanhy (ﬁ(é)) + (/pgsechy, (v/Q(2) ))) )) (129)
2c 2 ,
u107(x, 1) = (- m3( b 2cr)+2c mnzzQ
<b VQ(cothy (VQ(Z )) (v/Pgeschy (vVQ(Q) )))) (130)
2c 2c ,
and
_ it —m i
uros(x, t) = e (— 1 (=Q) (b—2cr)+2c (0] .
(b ~ v/Q(tanh,, (1/4v/Q()) — cothy(1/4 mgm)) (
2c 4c .

Family 27. When the product ac is larger than 0 and b is equal to 0, the application of
Equations (85) and (10), and the associated general solutions obtained from Equation (9)
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results in a different family of optical soliton solutions, which may be represented as follows:

noy moycC

w9 (x,t) = € (| === tany, (Vac(Q)) + | ———),

ms msa

urno(x, ) = eie(_\/_»;nécot#(\/%(@)) N )

msa

uin (x,8) = (. / —Z—;(tanﬂ (2/ac(2)) + (/Pasecy (2 vac(2))))

mycC

STy,

msa

2

Z/1112(x/ t) = ei@(_ _11173 (COty (2 \/%(g)) + (\/WCSC]A (2 \/%(g))))

—myc
msa

r),

and

uz(x,t) = (. —i%a(tany(l/Z Vac(Z)) — cot, (1/2+/ac(7)))

—l—,/—@r).
maa

(132)

(133)

(134)

(135)

(136)

Family 28. When the product ac is less than 0 and b is equal to 0, the application of
Equations (85) and (10), and the associated general solutions obtained from Equation (9)
results in a different family of optical soliton solutions, which may be represented as follows:

urna(x, t) = eie(\/fitar‘hﬂ (\/—Tzc(C)) + \/ng,;r)'

s (1) = (= [T cothy (V=ac(@)) + =20,

ms3 msa

(137)

(138)

(139)

(140)
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and

4 MoC
upg(x, ) = e’e(1 / ——ZQr
3 (141)

- \/K(tanhy (1/2 \/Tzzc(g)) + cothy, (1/2 \/—7116(5))))

Family 29. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions in the case when ¢
is equal to a and b is equal to zero. These solutions are written as follows:

1o, 1) = €9 /—mf’zz tan,, (a(7)) + —%r), (142)
wia(x,£) = ¢ ([ cotu(a(@)) + /= 20), (143)
o (%, £) = € %(tany(Z a(0)) £ (vpgsecu(2a(0)))) + —Z—zr), (144)

win(x,£) = (| (= cotu(20(0))

(145)
T (VPgescu(2a(0)))) + ,/—Z—;r),
and
w125 (x, 1) = (| —2(1/2 tan, (1/2a(())
” "3 " (146)

—1/2 cot, (1/2a(2))) + 4 /—Z—;r).

Family 30. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions in the case when ¢
is equal to —a and b is equal to zero. These solutions are written as follows:

wiza(x, 1) = () /12 tanhy (a(©)) + /1 21), (147)
115 (x, 1) = eig(\/ji coth, (a(Z)) + Z—ir), (148)

m

Uuppe(x,t) = ei"(\/fi (tanhy,(2a(Q)) £ (iy/pgsechy(2a(Q)))) + 1/ —1), (149)

ms
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127 (x, 1) = e (= [ 22 (— cothy (2a(2))
3 _ (150)

F (Vpaeschu(2a(0)))) + m—ir),
and
. 1 1

s (3, 1) = (/22 vy 30 )

(151)

+ %cothy (;M@))) + ﬁr)

Family 31. Equations (85) and (10), and the related general solutions obtained from
Equation (9) are used to provide a particular family of optical soliton solutions where
a is equal to zero, b is not equal to zero, and c is not equal to zero. These solutions are
represented as follows:

nmy

o i ms P 152
thao (x,t) = €= [ 5 (b= 26r) = 2 (D)) — sinhy, 610 + 7 o

i m
uz0(x, t) = 619(—\/ leﬂ(b —2cr)

. \/%(coshy(b(é)) +sinhy, (b(7)))
coshy (b(Z)) + sinhy, (b(7)) +q

and

(153)

Family 32. Equations (85) and (10), and the associated general solutions derived from
Equation (9) produce a specific family of optical soliton solutions when b is equal to v, ¢
is equal to nv (where n is a non-zero value), and a is equal to zero. These solutions are
expressed as follows:

i my my  pu’ ©
_ _ 22 U o A— 154
ua1(x, 1) = €"( _ (1—2rn)+2n ms p— nq‘uv(é)) (154)
_ 2 i t“ = ke .
where { = In(p) ml(—Zé2+4ac) (F(ngl) a r(cﬂ:Jrl) )' and 6 = _r(/gx+1) + F(L’;}il) 0

4. Discussion and Graphs

The present study used two improved versions of the EDAM approach, especially
the mEDAM and r+mEDAM, to successfully build families of optical soliton solutions
for the FPRKLM. These findings contribute to further development of the field related to
the FPRKLM and enable a deeper understanding of complex waves in nonlinear optical
systems. Our obtained results also determine the cogency of the mEDAM and r+mEDAM
approaches in obtaining analytical solutions for the FPRKLM. Both techniques offer a
systematic approach for solving complex FPDEs and provide explicit formulations for
optical soliton solutions.

By assigning different values to the model’s parameters, several figures have been
plotted to show the wave behavior of the designed optical solution. These plots represent
the relationship between wave amplitudes and spatial variables, showing the different
profiles observed in the solution. The resulting wave profiles include periodic waves, kink
waves, solitary waves, lump waves, and more. The presence of these different wave profiles
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in the optical soliton solution of the FPRKLM highlights the rich dynamics of the model.
Each profile produces a different peculiar behavior of the system and provides valuable
insight into the underlying physics. Periodic waves indicate the presence of oscillatory
motion, kink waves indicate the presence of local disturbances or sudden changes in
wave behavior, solitary waves represent self-supporting local structures, and lump waves
indicate local concentrations of energy.

The relationship between these waveform profiles and the proposed model is at-
tributed to the nonlinear terms present in the equations and the particular shape of the
fractional perturbations. These features introduce nonlinearity and complexity into the sys-
tem, leading to the emergence of various wave phenomena. The mEDAM and r+mEDAM
techniques provide powerful tools to capture and understand these phenomena, allowing
us to study the complex dynamics of the FPRKLM.

Remark 1. Figure 1 indicates a captivating M-shaped periodic wave structure in the optical
soliton solution for the FPRKLM. This wave pattern is governed by the nonlinear behaviour of the
system and the fractional perturbations it involves. The parameters in the model, such as the GVD
coefficient (a1), nonlinearity coefficient (by), IMD 6, u1, o, and vy, considerably impact the wave
profile. GVD plays a role in the formation of distinctive peaks and troughs in the M-shaped pattern,
whereas the non-linearity coefficient determines soliton intensity and stability. The relationship
between fractional perturbations and o sets forth complexities and modulations, further shaping
the M-shaped wave. Furthermore, taking into account the wave velocities (k and w) permits for
an analysis of soliton spreading characteristics, figuring out the speed and phase that influence the
M-shaped periodic wave.

x

Figure 1. A three-dimensional graph of the function 14 that appears in Equation (24) fora =2,b =1,
c=2,u=ek=0w=10=0,a1=30=3=07=26=2p=3,9q=2,a=09,p=1

Remark 2. Figure 2 shows an asymmetric kink wave that was seen in the FPRKLM’s optical soliton
solutions. These kink waves, which are distinguished by their unique characteristics, are caused
by the existence of nonlinearity inside the model. The soliton solution generally experiences quick
transitions between stable states at these locations, causing abrupt changes or discontinuities in
the wave pattern. The development and behaviour of these asymmetric kink waves are significantly
influenced by the precise parameters regulating the FPRKLM, such as the nonlinearity coefficient
(b1). Understanding the underlying processes and how they interact with the nonlinear dynamics of
the model helps us better understand how such kink wave occurrences in optical solitons develop.

a1
05040302
09030708
300 +

Figure 2. A three-dimensional graph of the function us5; that appears in Equation (72) fora = 3,b =0,
c=3,u=e¢k=0w=-1,0=10,40 =3,b =3,c1 = —4,7v=26=2,p=3,q=2,a=p=1
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Remark 3. A rogue wave seen in the optical soliton solutions of the FPRKLM is shown graphically
in Figure 3. The model’s innate nonlinearity and dispersiveness can be used to explain the appearance
of rogue waves in the data. These waves, which have amplitudes that are noticeably bigger than those
of their neighbours, result from the constructive interference of smaller waves that are modulated
and interacted with by nonlinear processes and dispersion effects. Rogue waves display variable
amplitudes during propagation as a result of the complex interaction between dispersion (a1),
nonlinear effects (by), and the underlying dynamics of the FPRKLM system. Understanding
the processes that cause rogue waves to form and behave in the FPRKLM might help one better
understand the intricate wave phenomena brought on by nonlinear interactions and dispersion in
optical solitons.

1000
600 0

400
agp 200

t

Figure 3. A three-dimensional graph of the function uy, that appears in Equation (95) fora = 3,b = 10,
c=3u=ek=1Lw=10=0r=6a =3b =3,c0=07vy=20=2,p=39=2,a =025
B =0.9.

Remark 4. The profile in Figure 4 demonstrates another rogue wave that travels smoothly until it
reaches the domain’s limit before abruptly changing in amplitude. The occurrence of smooth rogue waves
in the optical soliton solutions of the FPRKLM that undergo abrupt changes at certain domain borders
may be explained by a combination of components, including critical points, bifurcations, and nonlinear
interactions within the system. When the parameters of the FPRKLM system approach their critical
values, a transition occurs that results in rapid changes in wave behaviour and the formation of rogue
waves. The development of nonlinear interactions within the system may be aided by nonlinear effects
and instabilities, which may ultimately lead to abrupt changes in the wave profile. Through analysis and
numerical simulations, the specifics of these phenomena may be further investigated. The specifics of
these phenomena rely on the system'’s characteristics and beginning circumstances.

Figure 4. A three-dimensional graph of the function 113 that appears in Equation (154) fora = 3,b = 10,
c=3,u=2k=1Lw=19=0,r=6,a, =3,b =3,c0=0,vy=28=2,p=3,9g=2,a =05,
p=09,v=in=1/12.

5. Conclusions

In the present investigation, we used the mEDAM and r+mEDAM methods to explore
optical soliton solutions in the FPRKLM. Our study was concentrated on discovering
the complex structure of the FPRKLM as well as comprehending the wave behavior of
the system via exact analytical formulations obtained by means of these sophisticated
methods. The obtained wave profiles, provided graphically, displayed a diverse range of
behaviors, which include periodic waves, lump waves, kink waves, solitary waves, and
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more, demonstrating the complex nature of the FPRKLM. The research we conducted
revealed the association between these wave profiles and the nonlinear terms and fractional
perturbation of the model, showing the efficacy of the mEDAM and r+mEDAM methods
in studying these kinds of phenomena. The novelty of our study is rooted in improving the
comprehension of non linear optical systems by offering an outline for future studies and
potential applications in this field.
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