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Abstract: Model design and motion control are considered the cornerstones of the robotic field that
allow for achieving performance tasks. This article proposes a new dynamic modeling and control
approach for very lightweight mechanical systems carrying payloads. The selection of the model
and the design of the control are elaborated on using a fractional order framework under different
conditions. The use of fractional order calculus is justified by the better performance that reveals a
fractional order model compared to an integer order model of similar complexity. The mechanical
structure of very lightweight manipulators has vibrations that impede the accurate positioning of
their end effector. Moreover, they have actuators with high friction and sensors to measure the
vibrations, which often are strain gauges, that have offset and high-frequency noise. All these
mentioned problems might degrade the mechanical system’s performance. Hence, to overcome
these inconveniences, two nested-loop controls are examined: an inner loop that controls the motor
dynamics and removes the friction effects and an outer loop implemented to eliminate the beam
vibrations by adapting the input-state feedback linearization technique. Then, we propose a new
fractional order control scheme that (1) removes the strain gauge offset disturbances, (2) reduces the
risk of the actuator’s saturation caused by the high-frequency noise of strain gauges and (3) reduces
the dynamic effects of huge payload changes. We prove that our fractional controller has enhanced
robustness with respect to the above-mentioned problems. Finally, the investigated approach is
validated experimentally by applying it to a lightweight robot mounted on an air table.

Keywords: lightweight robots; fractional order models; fractional order control; flexible robots;
robust controller; sensor-disturbance rejection

1. Introduction

Dynamics modeling and control are keys to competence for industrial robot manu-
facturers. Current developments concerning them focus on improving the performance of
robots, reducing costs related to robots, improving safety and introducing new functionali-
ties as described in [1]. Industrial robots are manufactured using heavy and rigid materials
in order to impede the emergence of vibrations and static deflection in their mechanical
structure and, hence, ensure accurate performance and avoid damage. However, rigid
manipulators are also a source of problems as regards:

1. More energy consumption due to the bulky structure.
2. Higher weight that often impedes their translation if mounted on a mobile platform.
3. Higher design cost and operational risk.

Therefore, using robots whose links are very slender and are made of lighter materials
is an excellent alternative to traditional robots [2]. Unfortunately, these links show a flexi-
bility phenomenon, which is a major cause of serious vibration problems that significantly
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decrease the precision of the positioning of the robot end effector and can engender damage
to the mechanical system as well as to the environment if they are not properly modeled
and controlled. Therefore, there is an important need to improve the models of these robots
and their control methods in order to satisfy conflicting requirements such as increasing the
performance of the robot by reducing its weight, which implies lower mechanical stiffness
and larger oscillations, while trying to reduce the vibration modes (unwanted oscillations
of the flexible link and the end effector) by implementing anti-vibration controllers. In order
to develop suitable model-based control algorithms for flexible link robots, hereafter de-
noted FLR, it is necessary to construct computationally affordable dynamic models of these
systems that incorporate such flexible behavior. In [3,4], literature surveys were reported
on four commonly used dynamic modeling methods that depend on different assumptions:

• The lumped parameter model: This method approximates the mass of the link through
a finite set of lumped masses along its length that does not produce any kind of torque
in the structure. The number of masses considered corresponds to the number of
vibration modes in the model [5,6].

• The assumed model: This represents flexibility by a truncated series of vibration
modes. It consists of the linear combination of a set of space-dependent functions,
called mode shapes, multiplied by time-dependent general coordinates [7,8].

• The finite element method: The flexible link is modeled as a combination of a finite
number of elements and the deflections are analyzed from the movement of small
rigid bodies which leads to an important number of differential equations [9].

• The transfer matrix method: This was originally used in optics and acoustics to
analyze the propagation of electromagnetic or acoustic waves. The transfer matrix can
represent each element of the flexible link system by transferring a state vector from
one end of the element to the other. The whole system transfer matrix is obtained by
multiplying the element transfer matrices together [10].

Dynamic models of FLR involve an infinite number of vibration modes. However,
the methods mentioned above end up truncating models. Basically, the number of vi-
brational modes to be taken into account depends on the ratio between the links and the
payload masses: the lower this ratio is (i.e, the lighter the links and the heavier the payload
are), the smaller the number of significant vibration modes.

Links made of composite materials (e.g., the graphite-epoxy of fiberglass) are able to
carry heavy payloads being much lighter than links made of metals such as aluminum.
Then, robots with large and thin links made of these materials often exhibit very small link–
payload mass ratios and can be modeled for control purposes by only the first vibration
mode of each link. Then, the lumped masses model of [5] can be applied assuming that
all the moving mass is lumped at the end effector. Since this kind of link allows us to
manufacture much lighter robots, this paper will be focused on their modeling and control.

The vibrations of the link are sensed using strain gauges. These sensors are cheap and
simple to install. However, they present a relatively variable offset that depends on the
temperature, and exhibit high-frequency noise [11]. These are the major disturbances to be
eliminated in this work.

In the context of modeling, Fractional-Order (FO) models have already been proposed
for FLR and FJR in [12,13], where the authors proposed an algorithm to select the most
suitable fractional model to describe the robot dynamics. They proposed an integer order
transfer function which was then converted to an equivalent fractional order transfer
function by tuning a fractional order λ ∈ (0, 1] in such a way that an error with the
response of the system controlled by a PID was minimized. This approach is complicated
and requires the assumption of the values of some parameters such as the damping ratio
and the natural frequency of the mechanism and yields unnecessarily complicated fractional
order models. In the context of FLR, fractionality is commonly used to model damping.
Several of these models have been proposed in [14], but in many cases without experimental
evidence. The model that has been more accepted and has been experimentally justified
modifies the internal structural viscoelastic damping term of the model by changing the
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time derivative of this term by a fractional order time derivative between 0 and 2, e.g.,
ref. [15].

In the last few decades, several techniques have been reported for controlling FLR.
Among the control strategies most used to dampen link vibrations, we mention Port–
Hamiltonian modeling-based control [16], sliding mode control [17], adaptive control [18],
optimal control [19], reinforcement learning control [20] and neural network control [8].

A paramount problem of FLR control systems is that they become untuned when the
payload changes. Carrying different payloads from the nominal one—which is usually
required in different tasks—produces changes in the vibration frequencies of the link,
which yields degraded performance and even instability in the closed-loop system. This
problem has been tackled using sliding controllers, e.g., [21]. They yield accurate trajectory
tracking even in the case of large payload variations (up to 200% of the nominal payload)
but they need the fulfillment of the so-called matching condition; they provide a noisy
control signal and their performance degrades if the measured signals that are feedback
contain disturbances (like strain gauges). Robust H∞ controller [22] has also been used to
solve this problem. These controllers guarantee the stability of the the closed-loop system
under payload variations or non-negligible spillover effects, but the quality of the reference
tracking in the nominal case is not as good as that which is achieved with a controller
specifically designed for the nominal payload, i.e., the stability margin is increased at
the expense of losing system response performance (the system usually becomes slower).
Moreover, these controllers have three more drawbacks: they allow only limited variations
in the tip load, the quality of the trajectory tracking deteriorates considerably when the
payload differs more from the nominal value and disturbances in the strain gauge sensor
produce tracking errors and loss of precision in the end effector positioning. Another
approach is using adaptive control. In [18], an adaptive controller based on an algebraic
estimator of the payload and a generalized Proportional Integral control was designed to
cancel the end effector vibration robustly with respect to payload variations. However,
it did not take into consideration the presence of sensor offset disturbances nor the high-
frequency noise, which degrades the payload estimate and the control performance.

The application of fractional calculus to control robotic systems has gained interest in
the last few years because it yields controllers with enhanced robustness to external distur-
bances and parametric uncertainties. FO controllers have been applied to ensure control
performances as tip position accuracy and suppression of the residual vibrations: FO adap-
tive back-stepping control [23], FO PID controller based on Kalman filter estimation [24],
FO PID control [25], FO modeling and PI control of soft robotic arms [26], FO optimal
control [27] and variable structure system fractional sliding mode controller [28], and a
comparison was realized between the sliding mode controller and the fractional sliding
mode controller in a non-commensurate order in [29]. The latest review about fractional
order modeling and control of flexible and rigid robotic manipulators is presented in [30].
However, in the modeling part this paper focuses more on rigid than flexible structures,
which are reported and illustrated with examples of rigid planar robots with different de-
grees of freedom and flexible joints. Finally, ref. [31] implements an FO controller combined
with a standard PD controller [32] robust to strain gauge disturbances and payload varia-
tions. The design of this controller was based on the closed-loop pole allocation technique
using an integer order model. This robust controller reduced the high-frequency noise
introduced by the strain gauge sensor, eliminated the sensor offset effect and maintained
the stability of the system during a large interval of payload variations. This article is used
as the reference and the starting point of the present work.

The general contribution of the present work is introducing a new fractional order
model of FLR and proving that the controller designed based on that model improves the
experimental results attained by [31]. Specific contributions are as follows: (1) proposing
a new model of the dynamics of FLR that introduces a fractional order derivative in the
inertia term of the Euler–Bernoulli equation instead of in the damping term, as is usually
done; (2) proving experimentally the superior performance of this model; (3) modifying
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the control system [31]—which is based on a combination of the singular perturbation
theory and the input-state linearization technique for an integer order model—to cope with
the new FO model; and (4) proving experimentally that the resulting new control system
outperforms the system presented in ref. [31].

This paper is organized as follows. Section 2 presents the experimental setup and its
integer order dynamic model. Section 3 describes the new fractional order model and its
experimental validation. Section 4 presents our control scheme. Sections 5 and 6 develop
a control system robust to strain gauge disturbances and payload changes, respectively,
based on the previous model. Section 7 describes the experimental platform and illustrates
the results obtained experimentally with the new controller scheme compared to the one
proposed in [31]. Finally, Section 8 presents some conclusions.

2. Experimental Setup
2.1. Flexible Robot Setup Description

The contributions of this paper are experimentally validated in a setup located in the
Robotics Laboratory at the Industrial Engineering School of the University of Castilla-La-
Mancha. The setup consists of a lightweight single-link FLR mounted on an air table using
a Harmonic Drive mini servo DC motor. The link is attached to the motor’s output, while a
disk rotates freely at the other end of the link on an air table which helps to cancel out the
gravity and friction effects. The disk serves as the payload. Both the link and the payload
move in a horizontal plane, supported by the three-legged metallic structure. The FLR is
equipped with an encoder in the motor for precise measurement of the motor’s angular
position and a pair of strain gauges at the base of the link. Figure 1 shows this experimental
platform and more details can be found in [31].

Figure 1. Air Table Flexible Robot System.

The physical parameters of the motor and of the flexible mechanism are shown in
Table 1 with numerical values. The actuator of the FLR is composed of three elements: a
DC motor, a reduction gear and a current amplifier. The actuator generates the movement
of the robot following the orders received from a control unit and, hence, it actuates the
rotational joint of the robot.
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Table 1. Values and units of the robot properties.

Symbol Description Numerical Values

J Motor Inertia 6.87 · 10−5 (kg·m2)
ν Viscous Friction 1.041 · 10−3 (N·m·s)
K Electromechanical Constant 0.21 (N·m·V−1)
L Flexible Beam Length 0.65 (m)

EI Flexural Rigidity 0.260 (N·m2)
mnom Nominal Tip Load 0.03 (kg)

Ts Sampling Time 4 (ms)
d Diameter 3 · 10−3 (m)

ω0 Nominal Frequency 11.54 (rad·s−1)
ωl Minimal Frequency 9.42 (rad·s−1)
ωh Maximal Frequency 14.14 (rad·s−1)

2.2. Robot Dynamics

Under the assumption that the distributed mass of the link is neglected and the tip
mass does not induce any rotational moment at the FLR tip because it can freely rotate
around a vertical axis, a lumped-mass model of the robot with a single vibration mode
is defined. Figure 2 shows a scheme of this FLR, in which θm represents the joint angle,
θt is the angle of the tip, i.e., the angular position of the payload, m is the payload mass
placed at the end of the arm and L is the length of the link. The stiffness of the flexible link
is c = 3·E·I

L , where E · I (N·m2) is the flexural rigidity of the link.

Motor

m θm

θt

K, J, ν

c, L

Γ
Figure 2. Schematic Representation of a Single Link Flexible manipulator.

The dynamic model of our FLR can be divided into two submodels: the first one
represents the motor dynamics and the second one describes the behavior of the flexible
link. These two submodels are linked by the coupling torque Γ (N·m) which is exerted
between the motor and the flexible link and measured by the strain gauges placed at the
base of the link.

2.2.1. Actuator Model

The actuator model connects the armature voltage to the motor angle at the gear output.
It considers Γc as the Coulomb friction torque, which is a piecewise constant perturbation
dependent on the sign of the motor angular velocity (explained in references [31,33]).
To address the static non-linearities of the DC motor, the Coulomb friction is compensated.
Additionally, the coupling torque Γ is compensated to eliminate the impact of link dynamics
on the motor. These compensations are achieved by defining a fictitious input u′ for the
armature voltage, which incorporates the control signal, coupling torque and Coulomb
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friction. The actuator transfer function that relates the motor angle to the armature voltage
fictitious input is defined by:

θm(s)
U′(s)

= Gm(s) =
K

s · (J · s + ν)
=

A
s · (s + B)

(1)

where A = K/J and B = ν/J, K(N ·m/v) is the electromechanical constant of the motor
servo-amplifier system, J (kg·m2) is the inertia of the motor and ν (N·m·s) is the viscous
friction coefficient. More details about the actuator modeling are provided in [31].

2.2.2. Flexible Link Integer Order Model

The link is modeled as an Euler–Bernoulli beam with negligible distributed mass.
Axial deformation is disregarded due to the presence of an air table that counteracts the
effects of gravity and friction between the disk and the table surface. Since the torque at the
base is a function of the second derivative of the tip position, second-order models are often
used to describe the vibrations at the tip of this FLR. This model is derived based on the
assumption of small deflections in the link, which allows us to approximate the dynamics
of the FLR as linear. The input to this model is the motor angle θm. The dynamics of the
proposed lumped-parameter model are obtained by applying Newton’s second law:

m · L2 · θ̈t = Γ (2)

where θ̈t is the angular acceleration (rad.s−2) of the tip and the link deflection equation:

Γ = c · (θm − θt) (3)

Combining (2) and (3) and taking Laplace transforms on the resulting equation,
the transfer function between the tip and motor angles is defined by:

G(s) =
θt(s)
θm(s)

=
v2

s2 + v2 (4)

where v is the frequency of the single vibration mode of our system, which is given by:

v =

√
c

m · L2 (5)

Based on Equation (4), we obtain the transfer function between the coupling torque
and the motor angle assuming zero initial conditions:

GΓ(s) =
Γ(s)

θm(s)
=

c · s2

s2 + v2 (6)

3. Fractional Order Model of the Flexible Link

Some systems have energy diffusion phenomena that can be better modeled using
fractional order differentiation. Theoretical and experimental evidence shows that this
phenomenon appears in FLR and is mainly associated with internal structural viscoelastic
damping. As stated in the Introduction, this effect has been usually modeled by adding
a damping term with a fractional order time derivative between 0 and 2 to the Euler–
Bernoulli equation.

3.1. The Fractional Order Model

One main contribution of this paper is postulating a model for our FLR based on
the fractional generalization of Newton’s second law of motion. Then, we generalize
the second-order ordinary differential equation of Newtonian mechanics by changing
the order of the time derivative in the left-hand side of the Equation (2) to an arbitrary
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real number λ defined in the interval [1, 2]. This yields fractional differential equations
such as the ones described in [14,34,35]. This hypothesis is supported by recent studies of
physics in which second-order classical wave equations, the Schrodinger equation, the Dirac
equation and several others were generalized, changing some integer order derivatives
with fractional order derivatives. Then, Equation (2) becomes

m · L2 · Dλθt(t) = Γ(t) (7)

which, combined with (3) gives

m · L2 · Dλθt(t) = c · (θm(t)− θt(t)) (8)

Taking Laplace transforms on this equation assuming zero initial conditions, we obtain

sλ · θt(s) +
c

m · L2 · θt(s) =
c

m · L2 · θm(s)

Thus,

Gλ(s) =
θt(s)
θm(s)

=
v2

sλ + v2 , v =

√
c

m · L2 (9)

and, based on this equation,

Gλ
Γ (s) =

Γ(s)
θm(s)

=
c · sλ

sλ + v2 (10)

Note that Equations (9) and (10) become, respectively, (4) and (6) if λ = 2.

3.2. The Resonant Frequency

The resonant frequency ωr is the frequency at which
∣∣Gλ(j ·ω)

∣∣ reaches its maximum
value. Then, the frequency response of (9) is obtained taking into account that (j ·ω)λ =
ωλ · ej· π2 ·λ = ωλ ·

(
cos(π

2 · λ) + j · sin(π
2 · λ)

)
:

Gλ(j ·ω) =
v2

ωλ ·
(
cos
(

π
2 · λ

)
+ j · sin

(
π
2 · λ

))
+ v2 (11)

Let us represent by f (ω) the denominator of this equation. Then, the module squared
of this function is:

| f (ω)|2 =
(

cos
(π

2
· λ
)
·ωλ + v2

)2
+ sin2

(π

2
· λ
)
·ω2·λ (12)

Equating to zero the derivative of | f (ω)|2 with respect to ω yields

∂| f (ω)|2
∂ω

= ωλ + v2 · cos
(π

2
· λ
)
= 0 (13)

from which we obtain

ωr =
(
−v2 · cos

(π

2
· λ
)) 1

λ (14)

This expression shows that if 0 < λ ≤ 1 then the resonant frequency ωr does not exist.

3.3. Experimental Validation of the Dynamic Model

In this subsection, experiments justify the interest of the proposed model and the use
of a constant fractional order λ that does not depend on payload changes. This is carried
out by comparing the fitting to experimental data obtained from the motor encoder and



Fractal Fract. 2023, 7, 504 8 of 27

the strain gauges of (1) the undamped integer order model (UD-IOM) given in (6), (2) the
damped integer order model (D-IOM) given by

GΓ(s) =
Γ(s)

θm(s)
=

c · s2

s2 + µ · s + v2 (15)

(3) the integer order model with fractional order damping (D-FOM) given by

GΓ(s) =
Γ(s)

θm(s)
=

c · s2

s2 + µ · sα + v2 (16)

and (4) the fractional order model (UD-FOM) given in (10).
As a first step, the parameters of these four models are identified from collected data

of the motor angle θm and the coupling torque Γ. The model is identified using the previous
experimental measures, the Matlab software and the Mean Square Error (MSE) as the
fitting function to be minimized. The identification method is presented in Algorithm 1:

Algorithm 1 Model-based identification system algorithm

1. Collect experimental input–output data that represent the system’s behavior to be
modeled.
2. Define transfer function structure.
3. Create an initial model using the transfer function with arbitrary coefficients.
4. Estimate the model parameters using optimization in Matlab to estimate the model
parameters based on the data collected in step 1.
5. Evaluate the model obtained by computing the MSE which is the mean square of the
difference between the predicted output of the system defined by ŷ and the experimental
output defined by y.
6.
if MSE > εm (ŷ is different from y) then

Repeat steps 4 and 5 until an acceptable level of accuracy is obtained (the value of the
MSE is under the threshold εm).
end if

The trajectory of θm(t) used to identify the dynamic models is a pulse signal 7 s wide
with an amplitude of 1 rad. The pulse signal has a wide frequency content that excites
the system at different frequencies and its impulse-like shape allows for a straightforward
analysis of the system’s response. Hence, for this trajectory, θm(t), the MSE existing
between the experimental torque Γ(t) and the coupling torque responses predicted via the
four fitted models are 0.058 with UD-IOM, 0.00531 with D-IOM, 0.00524 with D-FOM
and 0.00524 with UD-FOM. This means that introducing a fractional order derivative
on the model of our FLR to account for the damping reduces the MSE of the standard
second-order undamped model in 91.21%. Figure 3 presents the motor angle trajectory,
the measured coupling torque and the coupling torque responses predicted via these four
identified models. The proposed model is clearly able to introduce a damping behavior in
the FLR. This model is more valuable and less complicated than an integer order model
with a damping factor. Table 2 highlights that there is a significant difference in the MSE
assessed from the response of the UD-IOM model and the rest: the error obtained from
the first model is 10 times greater than the error of the rest of the models. The MSE has
the same value for the UD-FOM and D-FOM. At this level, we introduce another criterion
in order to evaluate the model quality. Accordingly, the AIC, which stands for Akaike
Information Criterion, is needed to choose between the UD-FOM and D-FOM models as
an additional selective indicator. It measures the relative quality of a model for a given set
of data. It balances the goodness of fit of a model with the number of parameters used to
define the model, penalizing models that are too complex and giving preference to models
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that fit the data well with fewer parameters. In the case of a huge number of observations
(samples) n, its expression is

AIC = 2 · k− 2 · log(Lik) (17)

where k is the number of parameters in the model and Lik is the likelihood function.
Expression (17) can be written in terms of the MSE as:

AIC = 2 · k + n · log(MSE) (18)

In general, a lower AIC score is better. Therefore, when comparing different models,
the model with the lowest AIC score is usually considered the best among the candi-
date models.

Figure 3. Comparison of the Different Predicted Torque Models.

The estimated parameters obtained from the identification process of the four dynamic
models presented, respectively, in (6), (10), (15) and (16) are summarized in Table 2, which
also includes the performance indicators. Parameter c = 1.56 N·m was obtained via direct
experimentation and we assume that it is constant in all present and future experiments.
It can be concluded that the D-FOM and the UD-FOM have the lowest MSE but this last
one has only two parameters to be tuned (λ, v), while the previous one has three (α, µ,
v). The D-IOM has two parameters to be tuned (µ, v) like the UD-FOM, but it has an
MSE slightly higher than the UD-FOM. Moreover, this last model has a lower AIC score
compared to the D-FOM model, so it achieves a similar fit while using fewer parameters.
All this is translated to the fact that the UD-FOM proposed in this paper has the lowest AIC
value and, then, it is the most accurate model that, moreover, has the fewest parameters,
i.e., is the simplest model.
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Table 2. Parameters of the Predicted Models.

α λ µ v MSE AIC(·104)

UD-IOM xx 2.00 xx 10.20 0.05845 −1.4199

D-IOM xx 2.00 1.30 10.20 0.00531 −2.6192

UD-FOM xx 1.92 xx 10.02 0.00524 −2.6258

D-FOM 0.9 2.00 1.37 10.50 0.00524 −2.6256

As a second step, we will prove that the fractional parameter λ of the identified UD-
FOM model is invariant with respect to payload changes. Figures 4–6 compare the real and
the predicted coupling torques for several values of the tip mass when integer and fractional
order models are used. The system is excited by a Pseudo-Random Binary Sequence (PRBS)
signal. This kind of signal ensures that the system is excited at a broad range of frequencies
and amplitudes, allowing a more comprehensive analysis of the system’s behavior over
time. The real torque in Figure 4 presents a resonant frequency ωr,nom = 11.86 rad·s−1 for
the nominal payload (mnom = 30 g). The real torque used in Figure 5 presents a resonant
frequency ωr,min = 10.68 rad·s−1 for the maximal payload (mmax = 40 g). The real torque
in Figure 6 presents a resonant frequency ωr,max = 14.93 rad·s−1 for the minimal payload
(mmin = 20 g). The parameters of the damped systems (D-FOM and D-IOM) α and µ
are considered constant for the three payload cases and are identified jointly for the three
experiments in such a way that they give the minimum value of the sum of the MSE in the
three payload cases. Then, α = 0.954 and µ = 1.37 were obtained.

The features of the three estimated torques are shown in Table 3 and with that table
we can see that:

1. The FO of the identified UD-FOM is kept constant during the payload changes, with a
value λ = 1.92.

2. The frequency v changes significantly with the payload, in accordance with expres-
sion (5).

3. The UD-FOM models have the lowest MSE compared to the rest of the models.

Finally, we remark that the identified natural frequencies v are close but not equal to
the resonant frequencies ωr obtained experimentally, because the damping coefficient or
the fractional orders influence their relationship (see, e.g., ref. (14) for the case of UD-FOM).

Table 3. Features of the Predicted Models in the Different Payload Changes.

UD-FOM D-FOM UD-IOM D-IOM

mmin

v 14.749 14.881 10.22 15.012

λ 1.92 2 2 2

MSE 0.00708 0.00719 0.150182 0.0072

mnom

v 10.311 12.2426 11.4142 11.5179

λ 1.92 2 2 2

MSE 0.01662 0.01664 0.0742 0.016715

mmax

v 10.2402 11.501 11.6735 11.251

λ 1.92 2 2 2

MSE 0.0207 0.0213 0.0772 0.0211
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4. General Control Scheme

The control system presented in this work incorporates a feedback mechanism using
the angle of the actuator, denoted θm, and the moment at the base of the link, denoted Γ.
This control scheme, outlined and described in detail in the references [33,36], involves a
nested structure consisting of two control loops based on the motor angle and the coupling
torque:

1. The inner loop employs the measured motor angle, θm, to regulate the motor position.
It effectively gets out the effects of non-linear Coulomb friction and time-varying
viscous friction. Moreover, in order to ensure a faster dynamic response of the servo-
controlled motor compared to the flexible link, this inner loop was implemented with
a high-gain controller.

2. The outer loop focuses on controlling the position of the payload at the tip to mitigate
the occurrence of mechanical vibrations and ensure good trajectory tracking.

The control scheme presented here entails the use of the outer loop’s control law
output as a reference for the inner loop, splitting the control system design into two stages.
The motor is then controlled in a manner that maximizes its response rapidity within the
limits of saturation levels. To address the design of the outer loop, the singular perturbation
theory is employed, which allows us to neglect the inner loop dynamics in the case that it
is sufficiently fast. Subsequently, the outer loop controller is tuned to achieve the wanted
performance related to the positioning of the tip. Both control loops are then merged into a
singularly perturbed model and a stability analysis of the closed-loop plant is conducted.

4.1. The Inner Loop

The control scheme described in [36] is currently employed in this work. It is a robust
controller based on two-degree-of-freedom PIDs. It incorporates a feedback term in order
to compensate for the coupling torque—which makes the controlled motor dynamics less
affected by the motion of the link—and mitigate the impact of Coulomb friction. This
feedback term simplifies the motor model used in the controller design.

Hence, based on this simplified model, a two-degree-of-freedom PID control scheme
is designed, as depicted in Figure 7. The control scheme consists of two PID controllers
that incorporate a low-pass filter:

Cm1(s) =
a2 · s2 + a1 · s + a0

s · (s + c)
(19)

Cm2(s) =
b1 · s + b0

s + c
(20)

According to the method outlined in [32], a pole-placement technique is implemented.
The four poles of the closed-loop system are located at the same position, denoted z.
Additionally, the two zeros are also positioned at z. As a result, two out of the four poles
are eliminated by the two zeros, which gives the simplified closed-loop transfer function:

θm(s)
θ∗m(s)

= M(s) =
1

(1 + ε · s)2 , ε = −1
z

(21)

By employing this control mechanism, precise trajectory tracking and rapid motor
positioning are assured through effective compensation for disturbances such as unmodeled
friction components and robustness against motor parameter uncertainties. To achieve very
fast motor movements, a high value for |z| is selected, i.e., a small ε is looked for.
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Figure 7. Inner Control Loop Scheme.

4.2. The Outer Loop

In order to remove vibrations in the flexible link, an outer control loop is designed
by combining the input-state linearization technique and singular perturbation theory.
The nonlinear controller proposed in [36] for a haptic device was adapted to suit our
1-DOF linear flexible link robot. By applying the principles of singular perturbation theory,
the controller was initially designed assuming M(s) = 1 and, then, the stability of the
closed-loop system including (21) was assessed.

The system to be controlled is characterized by the transfer function G(s) as given in
Equation (9). By considering Figure 8 and employing the input-state linearization technique
to G(s), the control law obtained is:

θ∗m(s) = θ∗t (s) +
(

sλ · θ∗t (s) + C(s) · (θ∗t (s)− θt(s))
)

(22)

In this context, θt(s) corresponds to the intended trajectory of the manipulator, θm(s)
denotes the control signal produced by the outer loop that acts as the reference for the
enclosed loop and C(s) represents the controller used in the outer loop.

In Figure 8, θt is estimated using measurements of θm and Γ. Specifically, θt is calculated
as mentioned in Equation (3), which gives θt(t) = θm(t)− Γ(t)

c . If the measurements of the
coupling torque were affected by a disturbance d′(t), this would yield a modified estimated
moment value Γe(t) = Γ(t) + d′(t). Consequently, the estimated value of θt would be
modified, becoming:

θe
t (t) = θm(t)−

Γe(t)
c

= θm(t)−
Γ(t)

c
+ d(t) (23)

Representing the disturbance in the estimation of the tip position as d(t) = − d′(t)
c ,

Figure 8 depicts the structure of our control system with the presence of this sensor distur-
bance.

After performing certain operations, the transfer matrix that establishes the relation-
ship between θt(t) and θ∗m(t) with θ∗t (t) and d(t) is determined:

(
θt(s)
θ∗m(s)

)
=

(
M(s) · Gλ(s) ·

(
C(s) + sλ

)
−M(s) · Gλ(s) · (C(s)− 1)

C(s) + sλ −C(s) + 1

)
1 + M(s) · Gλ(s) · (C(s)− 1)

·
(

θ∗t (s)
d(s)

)
(24)

and substituting Gλ(s) by its expression defined in (9) into this,

(
θt(s)
θ∗m(s)

)
=

 v2 ·M(s) ·
(

C(s) + sλ
)

−v2 ·M(s) · (C(s)− 1)(
C(s) + sλ

)
·
(

v2 + sλ
)
−(C(s)− 1) ·

(
v2 + sλ

) 
sλ + v2 + v2 ·M(s) · (C(s)− 1)︸ ︷︷ ︸

P(s)

·
(

θ∗t (s)
d(s)

)
(25)
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Figure 8. Outer Control Loop Scheme.

The sensors used to measure the vibrations in the experimental platform are strain
gauges [37]. They are often used in robotic systems due to several advantages that make
them highly recommended in applications. Their main advantages are recapitulated in the
following: (1) they enable the measurement of vibrational signals as well as deflections,
(2) they are easily implemented and used and can be reusable and (3) they are relatively low
cost. However, strain gauges have several drawbacks [11,36], such as: (1) huge temperature
variations, (2) high-frequency noise capable of saturating the actuators and (3) offset, which
leads to a steady-state error that affects the end position of the link [38]. These drawbacks
will be addressed in the next section.

5. Control Robust to Strain Gauge Disturbances

Good trajectory tracking is a pledge of an efficient FLR controller. Therefore, some
external and internal conditions should be taken into consideration when designing this
control such as its ability to remove sensor disturbances such as the offset and the high-
frequency noise [36] and its robustness to payload changes.

5.1. Strain Gauge Offset Disturbance Removal

Take into account the transfer function presented in Equation (25), which establishes
the relationship between θt(s) and d(s):

θt(s)
d(s)

= P1,2(s) = −
v2 ·M(s) · (C(s)− 1)

sλ + v2 + v2 ·M(s) · (C(s)− 1)
(26)

As the offset can be represented as a step disturbance d(s) = d̂
s , the steady state error

eθt induced in θt can be assessed by applying the final value theorem:

eθt = lim
s→0

s · P1,2(s) · d(s) = −ω2 · M(0) · (C(0)− 1)
v2 + v2 ·M(0) · (C(0)− 1)

· d̂ (27)

Considering that M(0) = 1, the aforementioned equation indicates that C(0) must be
adjusted to a value of 1 to ensure that eθt becomes zero. Therefore, the controller structure
should take the following form:

C(s) = Ĉ(s) + 1, Ĉ(0) = 0 (28)

This implies that Ĉ(s) should have a zero at the origin to effectively eliminate the
steady-state error caused by the offset of the strain gauges.

5.2. High-Frequency Noise Reduction

We represent the sensor noise by an unbiased high-frequency noise with an unknown
statistical description, as was described in [39] from a relatively recent and non-standard
analysis viewpoint. Then, this noise has a spectrum located at the highest frequency zone.
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The control signal θ∗m(t) is susceptible to amplified noise due to high-frequency noise
in the sensor, which can result in actuator saturation, which ultimately leads to the rise
of insufficient dynamic performance and potential instability. Let us examine the transfer
function given in Equation (25), which establishes the relationship between θ∗m(s) and d(s):

θ∗m(s)
d(s)

= P2,2(s) = −
(C(s)− 1) ·

(
v2 + sλ

)
sλ + v2 + v2 ·M(s) · (C(s)− 1)

(29)

By considering a controller in the form of Equation (28), we can deduce that:

P2,2(s) = −
Ĉ(s) ·

(
v2 + sλ

)
sλ + v2 · (1 + M(s) · Ĉ(s)) (30)

Assuming that the high-frequency noise in the strain gauge signal is represented by
a sinusoidal signal with a significantly high frequency, the frequency response of P2,2 as
ω → ∞ demonstrates the impact of the amplification of this noise on the control signal θ∗m of
the outer loop. To further analyze this behavior, we divide the numerator and denominator
of P2,2(s) by sλ resulting in:

lim
ω→∞

|P2,2(j ·ω)| = lim
ω→∞

|Ĉ(j ·ω)| ·
∣∣∣∣1 + v2·e−j· π2 ·λ

ωλ

∣∣∣∣∣∣∣1 + v2 · e−j· π2 ·λ ·
(

1
ωλ + M(j·ω)·Ĉ(j·ω)

ωλ

)∣∣∣ (31)

Assuming that
lim

ω→∞
|Ĉ(j ·ω)| = 0 (32)

it is easy to prove that expression (31) becomes limω→∞ |P2,2(j ·ω)| = 0. Then, the impact
of a high-frequency noise component of the signal θ∗m(t) can be significantly diminished
if condition (32) is verified. This condition involves that Ĉ(s) must be strictly proper.
However, since high gains are used to close the inner loop, the influence of θ∗m(t) high-
frequency noise on the motor input is significantly amplified. As a result, the motor is prone
to saturation. To avoid this undesirable effect, it is crucial to guarantee that condition (32)
is satisfied.

6. Control Robust to Payload Changes

Variations in the payload mass m directly impact the natural vibration frequency v,
as expressed in Equation (9). These changes in frequency can potentially lead to under-
damped or unstable closed-loop systems. To address this issue, this section focuses on
the development of a controller C(s) to be incorporated in the control system shown in
Figure 8 which enhances the robustness to payload changes. Additionally, the controller
should exhibit robustness to the two disturbances studied in the previous section. Then,
conditions (28) and (32) must be verified.

Based on the FO model defined in Equation (9), the first path of the Nyquist diagram
(indicated in Figure 9 in brown color) corresponds to the frequency response of Gλ(s),
where ω is defined in the interval 0 < ω < ∞. This plot shows that the system exhibits
a small positive phase margin. Therefore, though the closed-loop system is stable, its
phase margin has to be increased in order to improve the damping. It can be achieved
by designing a phase lead controller Ĉ(s). Let us assume that such a controller is an FO
derivative controller:

Ĉ(s) = kd · sβ, 0 < β < 2 (33)

The FO operator sβ is often approximated numerically. We use in this paper the
Grünwald–Letnikov definition based on the backward difference.

The evident simplest choice for (33) is the classical integer order derivative controller,
which is obtained by making β = 1 in this expression. It verifies that Ĉ(0) = 0 and can
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improve the damping of the closed-loop system ζ by increasing its phase margin φm in
π
2 rads. However, we cannot achieve desired closed-loop settling time ts because we
can only tune one parameter, kd, in this structure. Then, we tune the two parameters
β > 0 and kd of controller (33) by using a frequency domain technique and the following
approximate relations: φm ≈ 100ζ—which is an expression originally developed for second
order systems (e.g., ref. [40])—and ts ≈ 2π/ωc.

(−1, 0)

φ
φ

ωc

ωc

̟2

sλ+̟2

̟2

sλ+̟2Kd · sβ·

Figure 9. Nyquist Plots.

The blue line of Figure 9 represents the first path of the Nyquist diagram of the
open-loop transfer function of the controlled system:

L(j ·ω, v) = Ĉ(j ·ω) · Gλ(j ·ω, v) = kd · (j ·ω)β · v2

(j ·ω)λ + v2 (34)

in which the dependence on v has been made explicit in L() and Gλ(). The gain crossover
frequency ωc and the phase margin φm are highlighted in this plot. According to this
diagram, the control system is designed such that ωc > ωr. Next, we develop some results
useful for designing a control system robust to payload changes.

Lemma 1. Consider the frequency response L(j · ω, v) given by (34). Its phase is a decreasing
function with ω that decreases from π

2 · β rads to π
2 · (β− λ) rads. Moreover, changes in the value

of v only produce a homothety of the Nyquist plot of L(j ·ω, v) with the center in the origin.

Proof. The phase of (34) is

arg(L(j ·ω, v)) =
π

2
· β− arctan

(
sin
(

π
2 · λ

)
·ωλ

cos
(

π
2 · λ

)
·ωλ + v2

)
(35)

Differentiating this expression with respect to ω yields

∂arg(L(j ·ω, v))

∂ω
= − λ ·v2 · sin

(
π
2 · λ

)
·ωλ−1

ω2·λ + 2 ·v2 · cos
(

π
2 · λ

)
·ωλ + v4 (36)
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Since 1 < λ ≤ 2, we have that cos(π
2 · λ) ≤ 0 and sin(π

2 · λ) ≥ 0. Then, the numerator
of (36) is positive and, taking into account that

ω2·λ + 2 ·v2 · cos
(π

2
· λ
)
·ωλ + v4 ≥ ω2·λ − 2 ·v2 ·ωλ + v4 =

(
ωλ −v2

)2
≥ 0 (37)

its denominator is also positive. Then, ∂arg(L(j·ω,v))
∂ω < 0, i.e., the phase of L(j · ω, v) is a

decreasing function with ω. The range of variation of arg(L(j ·ω, v)) is easily obtained
from (35) by making the limits of arg(L(j ·ω, v)) when ω → 0 and ω → ∞.

Moreover, expression (34) can be written for x = ω/v
2
λ as

L(j · x, v) = kd ·v
2·β
λ (j · x)β · 1

(j · x)λ + 1
(38)

which illustrates that the shape of L(j ·ω, v) is the same for any v and, in this expression,

variations of v only produce changes in the scaling factor v
2·β
λ .

Theorem 1. For a given controller Ĉ(j · ω) of the form (33), the phase margin of the open-loop
transfer function (34) is non increasing with v, i.e., dφm

dv ≤ 0, if it is verified that 1 < λ ≤ 2,
0 < β < λ and

ωc >

(
−v2

cos
(

π
2 · λ

)) 1
λ

(39)

Proof. First of all, note that condition (39) is the same as

v2 + cos
(π

2
· λ
)
·ωλ

c < 0 (40)

and, taking into account that λ > 1, this inequality implies that

0 <
v2

cos
(

π
2 · λ

) + ωλ
c ≤ cos

(π

2
· λ
)
·v2 + ωλ

c (41)

Next, assume the open-loop frequency response (34). The relationship among its phase
margin φm, its gain crossover frequency ωc and its natural frequency v, is given by, e.g.,
ref. [41]:

kd · (j ·ωc)
β · v2

(j ·ωc)λ + v2 = −ej·φm (42)

Equating magnitudes in this expression and squaring yields

k2
d ·ω

2·β
c ·v4 = ω2·λ

c + 2 · cos
(π

2
· λ
)
·v2 ·ωλ

c + v4 (43)

and equating phases

π

2
· β + π − arctan

(
sin
(

π
2 · λ

)
·ωλ

cos
(

π
2 · λ

)
·ωλ + v2

)
= φm (44)

Differentiating expression (44) with respect to v (note that v and ω are linked by (43)),
we obtain that

dφm

dv
= −sin

(π

2
· λ
)
·v ·ωλ−1

c · λ ·v · dωc
dv − 2 ·ωc

ω2·λ
c + 2 · cos

(
π
2 · λ

)
·v2 ·ωλ

c + v4
(45)



Fractal Fract. 2023, 7, 504 18 of 27

Differentiating expression (43) with respect to v and ωc, we obtain that

2 ·
((

k2
d ·ω

2·β
c − 1

)
·v3 − cos

(
π
2 · λ

)
·v ·ωλ

c

)
· dv+(

β · k2
d ·v4 ·ω2·β−1

c − λ · cos
(

π
2 · λ

)
·v2 ·ωλ−1

c − λ ·ω2·λ−1
c

)
· dωc = 0

(46)

Substituting (43) in the first and second terms of the left side member of (46) and
operating yields

2 · ωλ
c

v ·
(

ωλ
c + v2 · cos

(
π
2 · λ

))
· dv+

1
ωc
·
(
−(λ− β) ·ωλ

c ·
(

ωλ
c + cos

(
π
2 · λ

)
·v2

)
+ β ·v2 ·

(
v2 + cos

(
π
2 · λ

)
·ωλ

c

))
· dωc = 0

(47)

and then

dωc

dv
= 2 · ωλ+1

c
v
· ωλ

c + v2 · cos
(

π
2 · λ

)
(λ− β) ·ωλ

c ·
(
ωλ

c + cos
(

π
2 · λ

)
·v2

)
− β ·v2 ·

(
v2 + cos

(
π
2 · λ

)
·ωλ

c
) (48)

Substituting (48) in (45) and operating gives

dφm

dv
=

−2 · β · sin
(

π
2 · λ

)
·v ·ωλ

c

(λ− β) ·ωλ
c ·
(
ωλ

c + cos
(

π
2 · λ

)
·v2

)
− β ·v2 ·

(
v2 + cos

(
π
2 · λ

)
·ωλ

c
) (49)

In this expression:

1. Since λ > β and inequalities (40) and (41) are verified, the denominator is greater than
zero.

2. Since 1 < λ ≤ 2, the numerator is less than or equal to zero.

Then, the right side member of (49) is less than or equal to zero and the theorem is
proven.

Remark 1. In expression (48), both the numerator and denominator are positive, because (41) is
verified and the denominator is the same as the one of (49). Then, under the conditions of this
theorem, ωc is increasing with v.

Next, we propose a theorem that facilitates the verification of condition (39).

Theorem 2. Consider the open-loop transfer function (34) whose gain crossover frequency is
represented by ωc. Assume that 1 < λ ≤ 2 and 0 < β < λ. Moreover, assume a value of the
natural frequency of the link v− that is greater than one and verifies condition (39). Then, function

h(v) = v2 + cos
(π

2
· λ
)
·ωλ

c (50)

is less than zero in the interval v− ≤ v < ∞.

Proof. First, note that ωc is a function of v, according to (43). For this reason, h has a single
argument v. Differentiating expression (50), we obtain that

dh(v)

dv
= 2 ·v + λ · cos

(π

2
· λ
)
·ωλ−1

c · dωc

dv
(51)

Substituting (48) in (51) and operating yields

dh(v)
dv =

2
v ·

λ·ωλ
c ·(v2+cos( π

2 ·λ)·ωλ
c )·(ωλ

c +cos( π
2 ·λ)·v2)−β·v2·(ω2·λ

c +2·cos( π
2 ·λ)·v2·ωλ

c +v4)
(λ−β)·ωλ

c ·(ωλ
c +cos( π

2 ·λ)·v2)−β·v2·(v2+cos( π
2 ·λ)·ωλ

c )

(52)

If this expression is particularized at v−, we have the following:
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1. Since (39) is verified, inequalities (40) and (41) are also verified. Then, the left addend
of the numerator is negative.

2. Since inequality (37) is verified, the right addend of the numerator is also negative.
3. The denominator is equal to the denominator of (49). Theorem 1 proved that it is

positive.

The consequence of these three items is that dh(v)
dv < 0 at v−.

Subsequently, we will prove by contradiction that h(v) is negative in the interval
v− ≤ v < ∞. Assume a value v+ at which h(v+) > 0. Expression (38) shows that
ωc varies continuously with v. Then, h(v) is a continuous function and, consequently,
if h(v−) < 0 and h(v+) > 0, a value v0 exists such that h(v0) = 0 and h(v) < 0 in the
interval v ∈ [v−, v0). The following relation can be established:

h(v0) = h(v−) +
∫ v0

v−

(
dh
dv

)
· dv (53)

and, since it has been proved above that dh
dv < 0 if h(v) < 0, the previous integral in the

interval [v−, v0] is negative. Consequently, h(v0) < h(v−) < 0, which is in contradiction
with the previous condition that h(v0) = 0.

Assume that 1 < λ ≤ 2 and the payload m varies in the range [m, m]. Then, the
natural frequency varies in the range [v, v] obtained from the previous interval through
(5). In the following, we propose a procedure to design controllers robust to payload
changes, i.e., to v changes, that verify the specifications of a minimum phase margin φ

m
(at

m) and a minimum gain crossover frequency ωc (at m) in all the range [m, m]:

1. Choose the gain crossover frequency ωc corresponding to v. It must verify condition
(39) and, according to Remark 1, it is the minimum ωc achieved in the interval [v, v].

2. Apply Equation (43) to the pair
(
v, ωc

)
. This gives the relation

kd =
χ

ω
β
c

, χ =

√
ω2·λ

c + 2 · cos
(

π
2 · λ

)
·v2 ·ωλ

c + v4

v2 (54)

Then, to calculate kd, we need to obtain the value of β, which will be done in the next
step.

3. In accordance with Theorems 1 and 2, the minimum phase margin in the range [v, v]
is located at v. This value is represented by φ

m
. Then, applying condition (42) to v

and substituting kd by (54) yields

χ ·
(

j · ωc

ωc

)β

· v2

(j ·ωc)λ + v2 = −ej·φ
m (55)

This complex equation can be transformed into two real equations that allow us to
obtain the two values ωc and β.

4. Obtain kd from the left side equation of (54) using the already calculated χ and the
fractional order β calculated in the previous step.

5. Then, the designed controller is

C(s) = 1 + kd · sβ (56)

which can be modified as

CM(s) = 1 +
kd · sβ

(1 + δ · s)n (57)

where n = 1 if β < 1 and n = 2 if 1 ≤ β < 2 in order to fulfill the high-frequency
noise condition (32). In this expression, δ is chosen small enough to not modify
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the frequency characteristic of the open-loop transfer function L(j ·ω, v). Since this
modification produces a phase lag in L(j ·ω, v), a criterion to design δ is to choose a
value such that the minimum phase margin φ

m
is reduced by up to 10% of its initially

designed value (or, alternatively, increase φ
m

in a quantity that accounts for the phase
margin reduction subsequently caused by introducing (1 + δ · s)n).

This algorithm is not iterative: once φ
m

and ωc have been defined, the algorithm gives
or does not give the solution in a single realization. If the algorithm fails to give a solution,
specifications have to be changed. Typically, the problem can be solved by reducing ωc.

7. Application to a Single Lumped Mass Flexible Link Manipulator

In this Section, FO controllers are designed for the robotic setup described in Section 2.
First, a controller CM(s) is designed to apply the procedure described in Sections 5 and
6 to UD-FOM (9), (10). Then, a controller C′M(s) is designed using UD-IOM (4), (6) and
the procedure described in Section 5, in such a way that it has the same specifications as
CM(s) for the nominal payload, in order to make a fair comparison between controllers
and assess the effect of using the fractional order model instead of the integer one in the
controller design.

7.1. Design of the Controllers

The application of the procedure of Section 6 to design CM(s) is as follows:

1. The gain crossover frequency corresponding to the minimum natural frequency
v = 9.42 rad·s−1 is chosen as ωc = 16 rad·s−1. Note that the condition v > 1 of
Theorem 2 is verified. Then, it is the minimum ωc achieved in the interval [v, v].

2. Application of the right side equation of (54) gives χ = 0.81.
3. The minimum phase margin in all the intervals is chosen as φ = 70◦. Then, the

solution of (55) is ωc = 22.33 rad·s−1 and β = 0.65.
4. Obtain kd from the left side equation of (54) and the fractional order β calculated in

the previous step. We obtain kd = 0.148.
5. The proper controller is designed by choosing δ = 0.16 and n = 2 instead of n = 1 (as

stated in the procedure) in order to enhance the filtering of high-frequency noise.

Then, the designed controller is

CM(s) = 1 +
0.148 · s0.65

(1 + 0.16 · s)2 (58)

The gain crossover frequency and the phase margin of the UD-FOM (9), (10) with
controller (58) at the nominal payload mnom = 30 g are ωc,nom = 19.73 rad·s−1 and φnom =
70.087◦, respectively.

Subsequently, a control system with the same structure as the previous controller is
designed, but assuming the standard undamped integer order model UD-IOM, i.e, all
the parameters of the control system are tuned to this model making λ = 2 in all the
expressions of Section 5. In order to make a fair comparison with the previous design,
this controller is tuned to have the same frequency specifications ωc,nom and φnom as the
previous controller at the nominal payload.

Imposing the complex condition (42) and making λ = 2, φ = φnom and ωc = ωc,nom in
this equation, we obtain kd = 0.241 and β = 0.65. Then, the controller designed using the
integer order model is

C′M(s) = 1 +
0.241 · s0.65

(1 + 0.16 · s)2 (59)

Figure 10 illustrates the variations of the gain crossover frequency ωc and the margin
phase φm of the open-loop transfer function in function of the payload, when using the
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two controllers CM and C′M and including or not including the inner loop motor dynamics,
i.e., in the cases:

LM(j ·ω, v) = ĈM(j ·ω) · G1.92(j ·ω, v)
L′M(j ·ω, v) = Ĉ′M(j ·ω) · G1.92(j ·ω, v)
LMM(j ·ω, v) = ĈM(j ·ω) · G1.92(j ·ω, v) ·M(j ·ω)
LM′M(j ·ω, v) = Ĉ′M(j ·ω) · G1.92(j ·ω, v) ·M(j ·ω)

(60)

In these expressions, M(s) has its poles in z = −80 (see expression (21)). We notice in
this figure that

1. The plots of ωc and φm intersect at the nominal payload in the cases of LM(j ·ω, v)
and L′M(j ·ω, v) .

2. ωc is decreasing with m (increasing with v) as stated in Remark 1.
3. φm is increasing with m (decreasing with v) as stated in Theorem 1.
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Figure 10. Open-loop Frequency Characteristics using Controllers (58) and (59).

7.2. Experimental Validation of the Controller

Figures 11–13 show the experimental trajectory tracking of the robot achieved using
controllers CM(s) (58) and C′M(s) (59), in the cases of the nominal (m = 30 g) payload,
and the maximum (m = 40 g) and the minimum (m = 20 g) payloads that have been used
in the design of the robust controller. These experiments were carried out using strain
gauges that have a small offset, as Figure 14 shows in the steady state of an example of
trajectory tracking. These results show that (1) both CM(s) and C′M(s) controllers remove
the steady-state error in the tip position caused by the strain gauge offset; (2) the responses
using C′M(s) are slightly more oscillatory than when using CM(s), especially in the case
of the minimum payload; and (3) the robot’s responses when tracking a trajectory in the
cases of the nominal and the maximum payload are approximately the same using both
controllers. To sum up, both controllers provide good trajectory tracking in the cases of the
nominal and minimum resonant frequencies with steady-state error elimination and zero
overshoot. In the case of the maximum resonant frequency—associated with the minimum
mass m = 20 g—the tip oscillations are completely damped using the CM(s) controller,
while small oscillations remain if C′M(s) is used.



Fractal Fract. 2023, 7, 504 22 of 27

0 0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

0.2

0.25

0.9 1 1.1 1.2 1.3

0.196

0.198

0.2

0.202

Figure 11. Trajectory Tracking using Controllers (58) and (59) with the Nominal Payload (30 g).
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Figure 12. Trajectory Tracking using Controllers (58) and (59) with the Maximum Payload (40 g).
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Figure 13. Trajectory Tracking using Controllers (58) and (59) with the Minimum Payload (20 g).
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Figure 14. Strain Gauge Measurement of the Torque at the Base of the Link when the Robot Performs
a Trajectory.

Finally, we show that the closed-loop behavior is appropriate in the most challenging
case of carrying very low payloads that are outside the payload interval used for the design
of controller (58). Figures 15 and 16 show the responses of both controllers for m = 16 g
and m = 8 g. Large oscillations can be seen in both figures in the responses obtained using
C′M(s), while controller CM(s) still damps the oscillations in the case of m = 16 g and yields
an oscillation of much lower amplitude than the one of C′M(s) in the case of m = 8 g.
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Figure 15. Trajectory Tracking using Controllers (58) and (59) with a Small Payload out of the
Robustness Design Interval (16 g).
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Figure 16. Trajectory Tracking using Controllers (58) and (59) with a Very Small Payload out of the
Robustness Design Interval (8 g).
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7.3. Discussion

At first sight, one might think that using a fractional model of order 1.92 instead of the
well-known integer model of order 2 in the design of the control system of our FLR would
be irrelevant since these are very close orders. However, our analysis and experimental
results show that it makes a significant difference in the closed-loop dynamics when low
payloads have to be translated. Next, we analyze the reason for these differences.

We observe in Figure 10 that:

1. At payloads lower than the nominal payload, the gain crossover frequency of L′M is
higher than that of LM and the gain crossover frequency of LM′M is higher than that
of L′M.

2. At payloads lower than the nominal payload, the gain crossover frequency of LMM is
lower than that of LM and the gain crossover frequency of LM′M is lower than that of
L′M. This can be easily understood because M(s) is a low-pass filter that reduces the
amplitudes of LM and L′M, causing a reduction in the gain crossover frequencies.

3. The effect of adding M(s) to the open loop is a strong reduction in the phase margin
at all the payloads, as a comparison of the middle and lower subplots shows.

4. At payloads lower than the nominal payload, the phase margin of L′M is higher than
that of LM.

5. However, the lower subplot of Figure 10 shows that, at low payloads, the phase
margin of LMM is higher than that of LM′M. This is caused by the fact that, according
to the higher subplot of Figure 10, the gain crossover frequency of LMM is lower
than that of LM′M. Then, M(s) produces less phase lag on LM than on L′M. This
compensates for the positive difference in the phase margin between L′M and LM,
yielding higher phase margins of LMM at low payloads.

This last issue has been corroborated via the experiments carried out with small and
very small payloads.

8. Conclusions

The robust control of very lightweight flexible link robots has been addressed in this
paper. In these robots, it is often assumed that all the mass is lumped in the tip payload.
Then, their dynamics have a single vibration mode with little damping. A control strategy
for this robot needs to guarantee robustness to (1) the nonlinear motor frictions, (2) the
offset and the high-frequency noises of the strain gauge sensor implemented in the robot
platform and (3) the variations of the carried payload. We achieved these objectives in
previous work [31].

Usually, robot damping is modeled by adding to the Euler–Bernoulli beam equation a
term proportional to the angular velocity of the robot (see (15)). However, we have proven
experimentally that, for our specific robot, a better fitting of the damping phenomenon
is achieved modifying Newton’s second law of motion by using an FO derivative of the
angle instead of the standard second order derivative (see (10)). Then, the input-state
feedback linearization method based on the singular perturbation technique and an FO
PD controller—which was used in [31]—was modified to account for such a fractional
order model.

The contributions of this paper are therefore as follows: (1) experimental justification
of the fact that, in some cases, the damping phenomena of the dynamics of flexible link
robots are better fitted using models based on the generalization of Newton’s second law of
motion by using FO differentiation; (2) a new fractional input-state feedback linearization
scheme; (3) a lemma and two theorems that allowed us to define a procedure to tune the FO
controller embedded in this control scheme; and (4) proving analytically and experimentally
the advantage of this new control system based on the FOM over the previous control
based on the input-state feedback linearization method that, though yielding an FO PD
controller, its design was based on the standard integer order model. These advantages are
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noticeable at low and very low payloads, cases in which the natural vibration frequency of
the robot becomes very high and the closed-loop control is prone to instability.

Our future work will be focused on extending this FOM and controller to multi-
link robots.
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