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Abstract: Modeling data transmission problems in graph theory is internalized to the existence
of fractional flows, and thus can be surrogated to be characterized by a fractional factor in
diversified settings. We study the fractional factor framework in the network environment when
some sites are damaged. The setting we focus on refers to the lower and upper fractional degrees
described by two functions on the vertex set. It is determined that G is fractional (g, f , n) critical

if δ(G) ≥ b a2+b2+2ab+2a+2b−3
4a c + n and I(G) >

n+b (a+b−1)2

2a + 2b−1
a c

2 , where 1 ≤ a ≤ b and b ≥ 2.

Keywords: graph; isolated toughness; fractional (g, f )-factor; fractional (g, f , n)-critical graph

1. Introduction

The graphs we discuss in this article are undirected, finite, and simple. We denote
i(G) as the cardinality of the isolated vertex set in G. The operator ∨ in H1 ∨ H2 means
adding edges for all pairs of vertices between H1 and H2. For a subgraph H of graph G,
∗H(·) denotes the graph function, which is restricted to H. Throughout the entire paper,
a, b, k ∈ N with 1 ≤ a ≤ b and b ≥ 2, and h: E(G) → [0, 1] is the fractional indicator
function (FIF). The standard graph notations and terminologies can be referred to in [1].

1.1. Data Transmission in Real-Time Monitoring Network

In traditional graph theory, data transmission (DT) between vertices is accomplished
through the shortest path. However, in communication networks, this naive idea is not
feasible due to the conflict between large data size and the limit of channel capacity. In real
data transmission networks, a large data packet is divided into several small data packets,
transmitted via different channels, and finally assembled at the target site. The feasibility of
DT is quantified by fractional flow, which is represented by the existence of the fractional
factor (FF) in the idealized state. We say a graph G (corresponding to a specific network)
admits a fractional k-factor (FkF) if FIF exists such that dh

G(x) = ∑x′∈N(x) h(xx′) = k for
each x ∈ V(G), where dh

G(x) is the fractional degree (FD) of vertex x. Obviously, the
traditional k-factor is a specific setting of FkF if h becomes binary.

It is noteworthy that the constraint condition on the fractional degree is too strict
for the communication network application, which inquires its value to be equal to k for
each vertex. The fractional [a, b] factor (FabF) is introduced to relax the original fractional
k factor, which requires the fractional degree of each vertex to fall into the interval [a, b],
i.e., a ≤ dh

G(x) ≤ b. FkF is apparently a special version of FabF when interval [a, b] collapses
into a real number k.

However, FabF is not applicable to real networks since it treats all sites equally. In a
real network, each site has its own computability and throughput based on its status, which
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leads to the fractional degree of each site not being the same. To cope with this problem,
fractional (g, f ) factors are utilized. Let g and f be two integer-valued functions on the
vertex set satisfying 0 ≤ g(x) ≤ f (x) for arbitrary vertex x. A fractional (g, f )-factor (Fg f F)
is a spanning subgraph consisting of edge set Eh = {e ∈ E(G)|h(e) > 0} such that

g(x) ≤ dh
G(x) = ∑

x′∈N(x)
h(xx′) ≤ f (x) (1)

for any x ∈ V(G). A graph G admits a Fg f F if FIF satisfies (1). Again, FabF is an extreme
situation of Fg f F if both g and f are constant functions.

Unfortunately, even Fg f F cannot be directly applied to real networks. Imagine that
many stations send data to external stations simultaneously. Due to the limitation of the
channel capacity, parts of stations and channels will be congested. Or in the scenario
of a network attack, parts of the sites under attack will be unable to be used. In this
spirit, the entire network needs to have a monitoring ability to promptly label sites in
congested, damaged, or maintenance status. In real-time data transmission, it is necessary
to delete these specially annotated sites and query the availability of DT in the remaining
subnetworks, that is, to determine the existence of FFs in the remaining subgraph. The
network with real-time monitoring action is called the self-definition network (SDN), and
its difference from traditional networks is similar to the difference between buses and
private cars. In traditional networks, the transmission path of segmented data packets
is determined by algorithm implementation in advance, which cannot be changed. In
self-definition networks, in terms of the real-time monitoring of data, algorithms can
temporarily change transmission paths to avoid congested or damaged sites. The foregoing
circumstances can be characterized by fractional critical graphs. For n ∈ N, G is a fractional
(g, f , n)-critical graph (Fg f nCG) if deleting any n vertices from G, and the resulting subgraph
still admits a Fg f F. Liu [2] determined that G is a Fg f nCG if and only if

f (S)− g(T) + ∑
x∈T

dG−S(x) ≥ max{ f (U) : U ⊆ S, |U| = n} (2)

for any disjoint subsets S and T of V(G) with |S| ≥ n.
The fractional (a, b, n)-critical graph (FabnCG) and fractional (k, n)-critical graph

(FknCG) can be regarded as the special case of Fg f nCG when (g(x), f (x)) = (a, b) and
(g(x), f (x)) = (k, k) for all vertices in G, respectively.

1.2. Network Stability Based on Graph Parameter

As a salient graph-theoretic variable, isolated toughness (IT) is introduced by [3] which
is formulated by

I(G) = min
{

|S|
i(G− S)

∣∣∣S ⊂ V(G), i(G− S) > 1
}

,

and specifically I(G) = +∞ for complete graphs since no S satisfies the constraint condition.
In computer networks, isolated toughness is utilized to quantify the stability of the network.
The greater the isolated toughness, the more robust the network, and the network is more
vulnerable to intrusion, on the contrary. For the network corresponding to the non-complete
graph, the target sites of the network attack are stated by S, which minimizes the ratio
|S|/i(G− S). From this perspective, analyzing the isolated toughness of the network is
beneficial to identify the target sites for network attacks.

1.3. Motivation

It is well known that the more robust the network, the higher the construction costs.
In the real network, it is not necessary to build a fully connected network topology, and
actually, most networks present sparse structures. Network designers often struggle with
the issue of finding a balance between budget and network performance, and it is a crux to
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simultaneously balance the stability and the feasibility of DT in networks. Thankfully, the
theoretical results show isolated toughness pertinent to the fractional factor, and it becomes
an intriguing topic both in graph theory and computer networks.

In the early years, Ma and Liu [4] determined the sharp IT bound for a graph
G, admitting a FkF. Nevertheless, the study has stagnated for a long time since 2006.
Gao and Wang [5] argued that G is a Fg f nCG if I(G) ≥ b2+bn−b+a

a and δ(G) ≥ bn
a +

(b+2)2

4a + b − 1 (i.e., δ(G) ≥ d bn
a + (b+2)2

4a + b − 1e), where a and b are the lower bound
of g and upper bound of f , respectively. However, the counterexample only shows that
the I(G) bound is tight in a very special case (i.e., g(x) = f (x), which equals to a con-
stant for each vertex x). Recently, there has been a dramatic breakthrough in the isola-
tion toughness bound of fractional critical graphs. Gao et al. [6] proposed the sharp IT
bound for FknCGs. This conclusion was extended by Gao et al. [7], i.e., G is a FabnCG if
δ(G) ≥ a + n and I(G) > a− 1+ n+1

na,b
, where 2 ≤ a ≤ b and na,b ≥ 2 is an integer satisfying

(na,b − 1)a ≤ b ≤ na,ba− 1.
Wei et al. [8] investigated the existence of FF from high-dimensional space, and the results

for the correspondingH-factors are characterized in surface forms. Dimitrov and Hosam [9]
proposed the independent set neighborhood union bound for FF in a specific setting.
Zhou [10] determined a generalized binding number bound for fractional ID-factor-critical
graphs, where the deleted vertex subset is an independent set of the graph. More recent
results on factor in graphs can be referred to in [11–13].

The optimal isolated toughness condition in the fractional critical setting has cardinal
engineering significance. It tells network designers that in order to ensure that the remain-
ing subnetwork data transmission is still feasible under a certain degree of network attack
(where n sites are simultaneously destroyed), large isolated toughness parameter values
are needed. At the same time, this threshold value also provides the lowest budget for
building the corresponding network.

Since the fractional [a, b]-factor is only an extreme circumstance of Fg f F when both g
and f are constant functions on V(G), it is natural to ask the following question (raised by
Gao et al. [7]):

• What is the sharp IT bound for Fg f nCGs?

In addition, to pursue the optimal topology structure parameter, the following intuitive
problem on minimum degree is proposed:

• Can the minimum degree bound δ(G) ≥ bn
a + (b+2)2

4a + b− 1 of Gao and Wang [5] be
strengthened or not?

1.4. Main Result and Counterexamples

Motivated by the aforementioned questions, in this contribution, we determine the
tight IT bound for Fg f nCGs, which both improves the previous bound in [5] and answers
the open question raised by [7].

Theorem 1. Let G be a graph, and a, b, n be positive integers with 1 ≤ a ≤ b and b ≥ 2. Let g
and f be integer-valued functions on V(G) such that a ≤ g(x) ≤ f (x) ≤ b for all x ∈ V(G). If

δ(G) ≥ b a2+b2+2ab+2a+2b−3
4a c+ n and I(G) >

n+b (a+b−1)2
2a + 2b−1

a c
2 , then G is a Fg f nCG.

Theorem 1 has explicitly guiding significance in network designing, where the tight IT
bound provides the characteristics that a network topology needs to possess under specific
network vulnerability conditions. Specifically, the network is not necessary to be fully
connected. As long as the IT parameter meets the lower bound requirement, theoretically,
data transmission services can be maintained when a specific number of sites are attacked.

For shorthand notation, we define

Θ := a2 + b2 + 2ab + 2a + 2b− 3,
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and
Φ := (a + b− 1)2.

In the following four counterexamples (from G1 to G4), for given S and T, we assume
f (x) = g(x) = a for all x ∈ S and f (x) = g(x) = b for all x ∈ T, and these graphs are not
Fg f nCGs, which are assessed by (2).

It is identified that bn
a + (b+2)2

4a + b − 1 > Θ
4a + n, which reveals that the minimum

degree condition improves the previous bound stated by Gao and Wang [5]. We now show
that δ(G) ≥ b Θ

4a c+ n is tight to ensure a meaningful I(G) bound. If a 6≡ b(mod2), then
focusing on G1 = Kb b2−a2+2b−3

4a c+n
∨ (K a+b+1

2
∪ Kt) with δ(G1) = b a2+b2+2ab−2a+2b−3

4a c+ n,

and t ∈ N is a large number. Clearly, the value of I(G1) can be taken to be arbitrarily large
since t is a large number. Set S = V(Kb b2−a2+2b−3

4a c+n
) and T = V(K a+b+1

2
), then

f (S)− g(T) + ∑
x∈T

dG1−S(x)−max{ f (U) : U ⊆ S, |U| = n}

= ab b2 − a2 + 2b− 3
4a

c − (a + b + 1)b
2

+
a + b + 1

2
a + b− 1

2

≤ a
b2 − a2 + 2b− 3

4a
− a + b + 1

2
b− a + 1

2
= −1,

which implies that G1 is not a Fg f nCG. If a ≡ b(mod2), then considering G2 = (K a+b
2
∪

Kt)∨Kb b2−a2+2a+2b−3
4a c+n

with δ(G2) = b a2+b2+2ab−2a+2b−3
4a c+ n, and t ∈ N is a large number.

Obviously, the value of I(G2) can be taken to be arbitrarily large since t is a large number.
Set S = V(Kb b2−a2+2a+2b−3

4a c+n
) and T = V(K a+b

2
), then

f (S)− g(T) + ∑
x∈T

dG2−S(x)−max{ f (U) : U ⊆ S, |U| = n}

= ab b2 − a2 + 2a + 2b− 3
4a

c − (a + b)b
2

+
a + b

2
a + b− 2

2

≤ a
b2 − a2 + 2a + 2b− 3

4a
− a + b

2
b− a + 2

2
= −3

4
,

which reveals that G2 is not a Fg f nCG.
The sharpness of the IT bound in Theorem 1 is showcased by considering the following

instances. If b 6≡ a(mod2), then consider G3 = Kn+b Φ
2a +

2b−1
a c−(a+b−1) ∨ (2K a+b+1

2
), where

b ≥ a ≥ 1 and b ≥ 2 are integers. We directly obtain (for δ(G3) part, it can be identified by
checking b = a + 1 and b ≥ a + 2, respectively)

δ(G3) = n + bΦ
2a

+
2b− 1

a
c − (a + b− 1) +

a + b− 1
2

≥ bΘ
4a
c+ n

and

I(G3) =
n + b Φ

2a +
2b−1

a c − (a + b− 1) + 2 a+b−1
2

2

=
n + b Φ

2a +
2b−1

a c
2

.
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Set S = V(Kn+b Φ
2a +

2b−1
a c−(a+b−1)) and T = V(2K a+b+1

2
), then

f (S)− g(T) + ∑
x∈T

dG3−S(x)−max{ f (U) : U ⊆ S, |U| = n}

= abΦ
2a

+
2b− 1

a
c − a(a + b− 1)− 2b

a + b + 1
2

+ 2
a + b + 1

2
(

a + b + 1
2

− 1)

≤ a(
Φ
2a

+
2b− 1

a
)− a(a + b− 1)− (a + b + 1)(b + 1− a)

2
= −1.

Thus, G3 is not a Fg f nCG.
If b ≡ a(mod2), then consider G4 = Kn+b Φ

2a +
2b−1

a c−(a+b−2) ∨ (2K a+b
2
) where b ≥ a ≥ 1

and b ≥ 2 are integers. We directly obtain

δ(G4) = n + bΦ
2a

+
2b− 1

a
c − (a + b− 2) +

a + b− 2
2

≥ bΘ
4a
c+ n

and

I(G4) =
n + b Φ

2a +
2b−1

a c − (a + b− 2) + 2 a+b−2
2

2

=
n + b Φ

2a +
2b−1

a c
2

.

Set S = V(Kn+b Φ
2a +

2b−1
a c−(a+b−2)) and T = V(2K a+b

2
), then

f (S)− g(T) + ∑
x∈T

dG4−S(x)−max{ f (U) : U ⊆ S, |U| = n}

= abΦ
2a

+
2b− 1

a
c − a(a + b− 2)− 2b

a + b
2

+ 2
a + b

2
(

a + b
2
− 1)

≤ a(
Φ
2a

+
2b− 1

a
)− a(a + b− 2)− (a + b)(

b− a
2

+ 1)

= −1
2

.

Thus, G4 is not a Fg f nCG.

Remark 1. By observation, it can be seen that the sharp IT bound for Fg f nCGs cannot directly
derive the tight IT condition for FabnCGs determined by Gao et al. [7]. We explain its intrinsic
mechanism. In the setting of the FabnCG, the feasible interval of FD for each vertex is [a, b].
Nevertheless, from the above counterexample, in the extreme Fg f nCG setting, g(x) = f (x) = a
for some vertices, while g(x) = f (x) = b for other parts of vertices. It is well-known that Fg f F
degenerates to FabF iff (g(x), f (x)) = (a, b) for all vertices. The extreme setting of the g and f
functions mentioned in the above counterexample makes it impossible to bespeak the characteristic
in a fractional [a, b] factor setting.

Remark 2. The celebrated Lemma 2.2 in Liu and Zhang [14] has by now become an invaluable
tool in the study of subgraphs in special divisions, and its slightly improved version is used in the
next section.

The detailed proof of Theorem 1 is presented in the subsequent section.
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2. Proof of Theorem 1

We only consider that G is not complete because the result for the complete graph can
be immediately obtained by δ(G) ≥ b Θ

4a c+ n. Assume that G satisfies the hypothesis of
Theorem 1 but is not a Fg f nCG. According to the sufficient and necessary condition stated
in Liu [2], there exist disjoint subsets S and T of V(G) with |S| ≥ n satisfying

a(|S| − n)− b|T|+ ∑
x∈T

dG−S(x) (3)

≤ f (S)− g(T) + ∑
x∈T

dG−S(x)−max{ f (U) : U ⊆ S, |U| = n} ≤ −1.

We choose S and T with the smallest value of |T|. Thus, |T| ≥ 1, and dG−S(x) ≤ b− 1
for any x ∈ T.

Let l be the number of the Kb components in H′ = G[T] and let T0 be the set of vertices
in H′, whose degree is zero in G− S. Let H be the subgraph obtained from H′ by deleting
T0 and Kb components. Let S′ be a set of vertices that contains exactly b− 1 vertices in each
component of Kb in H′.

If |V(H)| = 0, then in view of (3), δ(G) ≥ b Θ
4a c+ n ≥ b + n + b b−1

a c (verify separately
for three scenarios: b = a, b = a + 1, and b ≥ a + 2), we yield

n + 1 + b b− 1
a
c

= b + n + b b− 1
a
c − (b− 1)

≤ bΘ
4a
c+ n− (b− 1)

≤ |S| ≤ b(|T0|+ l)− 1
a

+ n,

i.e., b = a + a( b−1
a −

a−1
a ) ≤ a + ab b−1

a c ≤ b(|T0|+ l)− 1 which implies i(G− S ∪ S′) =
|T0|+ l ≥ 2. With the aid of the definition of IT, we deduce

I(G) ≤ |S ∪ S′|
i(G− S− S′)

≤
b b(|T0|+l)−1

a + n + l(b− 1)c
|T0|+ l

≤
b(b− 1 + b

a )(|T0|+ l) + n− 1
a c

|T0|+ l

= b− 1 +
n + b b(|T0|+l)−1

a c
|T0|+ l

.

Let b(|T0| + l) − 1 = ma + c, where m ∈ N and c ∈ {0, · · · , a − 1}. Then, by 1
a ≤

c+1
a ≤ 1 and n ≥ 1, we infer

b− 1 + max{
n + b b(|T0|+l)−1

a c
|T0|+ l

}

= b− 1 + max{
n + b(|T0|+l)−1

a − c
a

|T0|+ l
}

= b− 1 +
b
a
+ max{

n− c+1
a

|T0|+ l
},

which implies that b− 1 + n+b b(|T0 |+l)−1
a c

|T0|+l reaches the maximum value when |T0|+ l reaches
its lower bound 2. Hence,

I(G) ≤ b− 1 +
n + b 2b−1

a c
2

,

which contradicts I(G) >
n+b Φ

2a +
2b−1

a c
2 and b− 1 ≤ Φ

4a .
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Hence, we have V(H) 6= ∅. Let H = H1 ∪ H2, where H1 is the union of components
of H, which satisfies that dG−S(v) = b − 1 for each vertex v ∈ V(H1) and H2 = H − H1.
Assume that Ii and Ci = V(Hi)− Ii are the maximum independent set and the covering set of
Hi, where i ∈ {1, 2}. Furthermore, denote I(i) = {v ∈ I1, dH1(v) = b− i} for 1 ≤ i ≤ b and

b
∑

i=1
|I(i)| = |I1|. Using the definition of H and H2, we verify that each component of H2 has a

vertex of degree at most b− 2 in G− S. Clearly, if H2 6= ∅, then b ≥ 3, and I2 can be selected
by the algorithm in [6].

Set W = V(G) − S − T and U = S ∪ S′ ∪ NG−S(I1) ∪ NG−S(I2). The subsequent
derivation is divided into two situations.

Case 1. |T0|+ l ≥ 1.
First, we analyze the circumstances if H1 = ∅ or H2 = ∅.

Claim 1. If |T0|+ l ≥ 1, then |I2| 6= 0.

Proof. Suppose |I2| = 0. Then |I1| 6= 0 by |V(H)| > 0. Hence, |T0|+ l + |I1| ≥ 2.
We partition I1 into two subsets.

I11: v ∈ I11 if there exists v′ ∈ I1 \ {v} such that NG−S(v) ∩ NG−S(v′) 6= ∅;
I12: v ∈ I12 if there is no intersection between NG−S(v) and NG−S(I1 \ {v}).

In light of Lemma 2.2 in Liu and Zhang [14], we yield

a(|S| − n) ≤ |V(H1)|+ b|T0|+ lb− 1 ≤ (b− 1
2
)|I11|+ (b− 1)|I12|+ b(|T0|+ l)− 1

and
|S| ≤ (

b
a
− 1

2a
)|I11|+

b− 1
a
|I12| −

1
a
+

b(|T0|+ l)
a

+ n.

Moreover,
|S ∪ S′ ∪ NG−S(I1)|

≤ (
b
a
− 1

2a
)|I11|+

b− 1
a
|I12| −

1
a
+

b(|T0|+ l)
a

+ n

+l(b− 1) + (b− 1− 1
2
)|I11|+ (b− 1)|I12|

= (b− 1 +
b
a
− a + 1

2a
)|I11|+ (b− 1 +

b− 1
a

)|I12|+
b
a
|T0|

+(b− 1 +
b
a
)l + n− 1

a

≤ (b− 1 +
b
a
)(|T0|+ l) + (b− 1 +

b
a
− 1

a
)|I1|+ n− 1

a

≤ (b− 1 +
b
a
)(|I1|+ |T0|+ l) + n− 2

a
,

and thus

I(G) ≤ |S ∪ S′ ∪ NG−S(I1)|
i(G− S ∪ S′ ∪ NG−S(I1))

≤
b(b− 1 + b

a )(|I1|+ |T0|+ l) + n− 2
a c

|I1|+ l + |T0|

= b− 1 +
b b(|I1|+l+|T0|)−2

a c+ n
|I1|+ l + |T0|

.

Let b(|I1| + l + |T0|) − 2 = m1a + c1, where m1 ∈ N and c1 ∈ {0, · · · , a − 1}. Then,
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we obtain

b− 1 + max{
b b(|I1|+l+|T0|)−2

a c+ n
|I1|+ l + |T0|

}

= b− 1 + max{
b(|I1|+l+|T0|)−2−c1

a + n
|I1|+ l + |T0|

}

= b− 1 +
b
a
+ max{

n− 2+c1
a

|I1|+ l + |T0|
}.

If n = 1 and c1 = a − 1, then n− 2+c1
a

|I1|+l+|T0|
is negative, thus I(G) < b − 1 + b

a , which

contradicts I(G) >
n+b Φ

2a +
2b−1

a c
2 ≥ b− 1 +

n+b 2b−1
a c

2 ≥ b− 1 +
1+( 2b−1

a −
a−1

a )
2 = b− 1 + b

a .

Hence, n− 2+c1
a

|I1|+l+|T0|
is a non-negative term and it reaches the maximum value when |T0|+ l +

|I1| reaches its lower bound. Therefore,

I(G) ≤ b− 1 +
b 2b−2

a c+ n
2

,

which contradicts the hypothesis of I(G) >
n+b Φ

2a +
2b−1

a c
2 and the truth that b− 1 ≤ Φ

4a .

Remark 3. It can be concluded that we always check that I(G) reaches the maximum value when
|T0|+ l + |I1|+ |I2| (some terms may become zero in a special setting) arrives at the lower bound. In
the following arguments, the trick is the same as the aforementioned discussion, and we will skip the
illustration of these details.

Claim 2. If |T0|+ l ≥ 1, then |I1| 6= 0.

Proof. If |I1| = 0. We yield |I2| 6= 0 by V(H) 6= ∅, and hence b ≥ 3 and |T0|+ l + |I2| ≥ 2.
Let v1, v2, · · · , v|I2| be vertices in I2 such that dG−S(v1) ≤ b − 2 and dG−S(v1) ≤

dG−S(v2) ≤ · · · ≤ dG−S(v|I2|). Then |V(T)| = |V(H2)|+ |T0|+ bl,

a(|S| − n) ≤ b|T| − dG−S(T)− 1

≤ b|T0|+ bl +
|I2|

∑
i=1

(dG−S(vi) + 1)(b− dG−S(vi))− 1,

and
|S| ≤ b(|T0|+ l)

a
+

∑
|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
+ n− 1

a
.

We infer i(G−U) ≥ 2 where U = S ∪ S′ ∪ NG−S(I2) and

|U| ≤ |S|+ |S′|+ |NG−S(I2)|

≤ b(|T0|+ l)
a

+
∑
|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
+ n− 1

a
+ l(b− 1) +

|I2|

∑
i=1

dG−S(vi)

=
b|T0|

a
+ l(b− 1 +

b
a
) +

|I2|

∑
i=1

(−
d2

G−S(vi)

a
+

a + b− 1
a

dG−S(vi) +
b
a
) + n− 1

a

≤ b|T0|
a

+ l(b− 1 +
b
a
) + |I2|(−

( a+b−1
2 )2

a
+

a + b− 1
a

a + b− 1
2

+
b
a
) + n− 1

a

=
b|T0|

a
+ l(b− 1 +

b
a
) + (

Φ
4a

+
b
a
)|I2|+ n− 1

a

≤ (
Φ
4a

+
b
a
)(|T0|+ l + |I2|) + n− 1

a
.
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According to the definition of IT, we verify

I(G) ≤ |U|
i(G−U)

≤
b( Φ

4a +
b
a )(|T0|+ l + |I2|) + n− 1

a c
|I2|+ |T0|+ l

≤
b2( Φ

4a +
b
a ) + n− 1

a c
2

=
n + b Φ

2a +
2b−1

a c
2

,

a contradiction.

From Claims 1 and 2, we check |I1| > 0, |I2| > 0 and b ≥ 3.
Denote v1, v2, · · · , v|I2| as vertices in I2. Then |V(T)| = |V(H1)|+ |V(H2)|+ |T0|+ bl,

a(|S| − n) ≤ b(|T0|+ l) + (b− 1
2
)|I11|+ (b− 1)|I12|+

|I2|

∑
i=1

(dG−S(vi) + 1)(b− dG−S(vi))− 1,

and

|S| ≤ b
a
(|T0|+ l) + (

b
a
− 1

2a
)|I11|+

b− 1
a
|I12|

+
∑
|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
+ n− 1

a
.

We acquire i(G−U) ≥ 3, where U = S ∪ S′ ∪ NG−S(I1) ∪ NG−S(I2),

|U| ≤ |S|+ |S′|+ |C1|+ |NG(I1) ∩W|+ |NG−S(I2)|

≤ b
a
(|T0|+ l) + (

b
a
− 1

2a
)|I11|+

b− 1
a
|I12|+

∑
|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a

+n− 1
a
+ l(b− 1) + (b− 1

2
− 1)|I11|+ (b− 1)|I12|+

|I2|

∑
i=1

dG−S(vi)

≤ b
a
|T0|+ l(b− 1 +

b
a
) + (b− 1 +

b
a
− 1

a
)|I1|+ (

Φ
4a

+
b
a
)|I2|+ n− 1

a

≤ (|T0|+ l + |I1|+ |I2|)(
Φ
4a

+
b
a
) + n− 1

a
,

and hence

I(G) ≤ |U|
i(G−U)

≤
b( Φ

4a +
b
a )(|T0|+ l + |I1|+ |I2|) + n− 1

a c
|I1|+ |I2|+ |T0|+ l

≤
b2( Φ

4a +
b
a ) + n− 1

a c
2

=
n + b Φ

2a +
2b−1

a c
2

,

which contradicts I(G) >
n+b Φ

2a +
2b−1

a c
2 and n ≥ 1.

Case 2. |T0|+ l = 0.
Similar to Case 1, we cope with the circumstances if one of H1 and H2 is empty.

Claim 3. If |T0|+ l = 0, then |I2| 6= 0.

Proof. Suppose |I2| = 0, then we obtain |I1| 6= 0, |V(T)| = |V(H1)| and a(|S| − n) ≤
b|T| − dG−S(T)− 1 = |T| − 1.



Fractal Fract. 2023, 7, 493 10 of 12

If |I1| = 1, then |T| ≤ b− 1, |S| ≤ |T|+an−1
a ≤ n + b−2

a , and

a2 + b2 + 2ab− 2a + 2b− 2
4a

+ n

=
Θ
4a
− 4a− 1

4a
+ n

≤ bΘ
4a
c+ n

≤ δ(G) ≤ |S|+ b− 1

≤ n +
b− 2

a
+ b− 1,

a contradiction (identified by three cases: b = a, b = a + 1 and b ≥ a + 2). Hence, |I1| ≥ 2.
In this case, i(G−U) ≥ |I1| ≥ 2, where U = S ∪ NG−S(I1), and using the deduction

in Claim 1, we obtain

|S| ≤ (
b
a
− 1

2a
)|I11|+

b− 1
a
|I12| −

1
a
+ n <

b|I1|
a

+ n,

|U| ≤ |S|+ |C1|+
k

∑
i=1

(i− 1)|I(i)| ≤ (b− 1 +
b
a
)|I1|+ n− 3

a
.

Hence,

I(G) ≤ |U|
i(G−U)

≤
b(b− 1 + b

a )|I1|+ n− 3
a c

|I1|
≤ b− 1 +

n + b 2b−3
a c

2
,

which contradicts the hypothesis of isolated toughness and b− 1 ≤ Φ
4a .

Claim 4. If |T0|+ l = 0, then |I1| 6= 0.

Proof. Suppose |I1| = 0, then |I2| 6= 0 and hence b ≥ 3.
If |I2| = 1, then we set dmin = min{dG−S(v)|v ∈ H2} and z ∈ V(H2) such that

dG−S(z) = dmin, thus dmin ∈ {1, · · · , b− 2}. Hence, we deduce

a(|S| − n) ≤ b|T| − dG−S(T)− 1 ≤ |T|(b− dmin)− 1,

|S| ≤ |T|(b− dmin) + an− 1
a

≤ (dmin + 1)(b− dmin)− 1
a

+ n,

and

δ(G) ≤ dmin + |S| ≤ dmin +
(dmin + 1)(b− dmin)− 1

a
+ n

= −
d2

min
a

+
(b + a− 1)dmin

a
+

b− 1
a

+ n

≤ −
( a+b−1

2 )2

a
+

(b + a− 1) a+b−1
2

a
+

b− 1
a

+ n

=
a2 + b2 + 2ab− 2a + 2b− 3

4a
+ n,

which reveals

δ(G) ≤ b a2 + b2 + 2ab− 2a + 2b− 3
4a

c+ n = bΘ
4a
c+ n− 1.

A contradiction to the hypothesis of δ(G).



Fractal Fract. 2023, 7, 493 11 of 12

Hence, we obtain |I2| ≥ 2. Let v1, v2, · · · , v|I2| be vertices in I2. We have |V(T)| =
|V(H2)|, and

|S| ≤ ∑
|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
+ n− 1

a
.

We infer i(G−U) ≥ |I2| ≥ 2 where U = S ∪ NG−S(I2), and in view of the discussion
in Claim 2, we yield

|U| ≤ |S|+ |NG−S(I2)| ≤ (
Φ
4a

+
b
a
)|I2|+ n− 1

a
.

Using the same fashion as presented before, we obtain

I(G) ≤ |U|
i(G−U)

≤
b( Φ

4a +
b
a )|I2|+ n− 1

a c
|I2|

≤
b2( Φ

4a +
b
a ) + n− 1

a c
2

=
n + b Φ

2a +
2b−1

a c
2

,

which contradicts I(G) >
n+b Φ

2a +
2b−1

a c
2 .

It is verified from Claims 3 and 4 that |I1| ≥ 1, |I2| ≥ 1 and b ≥ 3. We verify that
i(G−U) ≥ 2, where U = S ∪ NG−S(I1) ∪ NG−S(I2),

|U| ≤ (
Φ
4a

+
b
a
)(|I1|+ |I2|) + n− 1

a
,

and

I(G) ≤ |U|
i(G−U)

≤
b( Φ

4a +
b
a )(|I1|+ |I2|) + n− 1

a c
|I1|+ |I2|

≤
b2( Φ

4a +
b
a ) + n− 1

a c
2

=
n + b Φ

2a +
2b−1

a c
2

,

which contradicts I(G) >
n+b Φ

2a +
2b−1

a c
2 .

Therefore, contradictions are derived in all situations, and Theorem 1 follows. �

3. Future Works

The main contribution of our article provides an IT bound for a graph to be a Fg f nCG
and demonstrates its optimality in light of counterexamples. However, there is still a
significant gap between the theoretical results and practical applications. The following
intriguing issues are related to the network applications and can be considered future
research topics:

1. Is there a linear (quadratic) complexity approximation algorithm to calculate the IT
value of a given graph?

2. The existence proof in this article cannot elaborate on FF. However, in practical
applications, assume the network graph G is known to have a FF; to pave the way for
application, an effective algorithm needs to be designed to obtain the specific FF, i.e.,
input (sub)graph G and output the FIF h.
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3. It is imperative to demystify the mechanism that determines the specific forms of
functions g and f . For instance, assuming that we obtain the computing ability and
throughput of each site in the network, how can we reasonably identify g and f ?
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