
Citation: Gao, J.; He, S.; Bai, Q.; Liu, J.

A Time Two-Mesh Finite Difference

Numerical Scheme for the Symmetric

Regularized Long Wave Equation.

Fractal Fract. 2023, 7, 487. https://

doi.org/10.3390/fractalfract7060487

Academic Editor: Carlo Cattani

Received: 23 May 2023

Revised: 16 June 2023

Accepted: 16 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Time Two-Mesh Finite Difference Numerical Scheme for the
Symmetric Regularized Long Wave Equation
Jingying Gao *, Siriguleng He *, Qingmei Bai and Jie Liu

School of Mathematics and Big Data, Hohhot Minzu College, Hohhot 010051, China;
baiqingmei@email.imnc.edu.cn (Q.B.); liujieem@email.imnc.edu.cn (J.L.)
* Correspondence: minzugjy@email.imnc.edu.cn (J.G.); t53000839@email.imnc.edu.cn (S.H.)

Abstract: The symmetric regularized long wave (SRLW) equation is a mathematical model used in
many areas of physics; the solution of the SRLW equation can accurately describe the behavior of
long waves in shallow water. To approximate the solutions of the equation, a time two-mesh (TT-M)
decoupled finite difference numerical scheme is proposed in this paper to improve the efficiency
of solving the SRLW equation. Based on the time two-mesh technique and two time-level finite
difference method, the proposed scheme can calculate the velocity u(x, t) and density ρ(x, t) in the
SRLW equation simultaneously. The linearization process involves a modification similar to the
Gauss-Seidel method used for linear systems to improve the accuracy of the calculation to obtain
solutions. By using the discrete energy and mathematical induction methods, the convergence results
with O(τ2

C + τF + h2) in the discrete L∞-norm for u(x, t) and in the discrete L2-norm for ρ(x, t) are
proved, respectively. The stability of the scheme was also analyzed. Finally, some numerical examples,
including error estimate, computational time and preservation of conservation laws, are given to
verify the efficiency of the scheme. The numerical results show that the new method preserves
conservation laws of four quantities successfully. Furthermore, by comparing with the original
two-level nonlinear finite difference scheme, the proposed scheme can save the CPU time.

Keywords: SRLW equation; finite difference; time two-mesh; convergence analysis; conservation law

1. Introduction

The regularized long wave (RLW) equation [1,2] is a nonlinear partial differential
equation that mainly describes the evolution of waves in shallow water channels and ion
acoustics, etc. It is a simplified version of the more complex Korteweg-de Vries (KdV) equa-
tion [3], which includes higher-order nonlinearities and dispersion effects. The symmetric
regularized long wave (SRLW) equation [4] is a modified version of the RLW equation
that includes a symmetry-breaking term. This term allows for the formation of asym-
metric solutions, making the SRLW equation a more realistic model for waves in shallow
water channels.

In this paper, the following initial boundary value problem of the SRLW equation
is considered:

ut + ρx + uux − uxxt = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

ρt + ux = 0, xL ≤ x ≤ xR, 0 < t ≤ T,

u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), xL ≤ x ≤ xR,

(1)

where u(x, t) and ρ(x, t) are the fluid velocity and the density, respectively.
The SRLW equation has attracted significant attention and has been extensively studied

in the literature. The existence of global attractors of the SRLW equation was studied in [5].
The travelling and solitary wave solutions of the SRLW equation were investigated by
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several methods including the exp-function method [6], the (G′/G)-expansion method [7,8],
the tanh-function method [9,10], the Lie symmetry approach [11], the extended simple
equation method [12], the analytical method [13], the tan ((φ(ξ)/2))-expansion method [14]
and the sine–cosine method [15]. In [16,17], the spectral method and the Fourier pseudo-
spectral method with a constraint operator were developed as approximations for the
nonlinear term of the SRLW equation. Numerical solutions to the SRLW equation have also
been studied by numerous methods, ranging from conservative finite difference schemes to
mixed finite element methods. In their study, Wang et al. [18] introduced three conservative
finite difference schemes that achieve second-order accuracy in both spatial and temporal
domains. Their results indicate that each scheme is able to preserve energy conservation,
but only the first scheme is capable of preserving mass conservation. Yimnet et al. [19]
presented a novel finite difference method for the SRLW equation that utilizes a four-level
average difference technique for solving the fluid velocity independently from the density.
A coupled conservative three-level implicit scheme achieving fourth-order convergence rate
was developed by Hu et al. [20]. Li [21] considered a weighted and compact conservative
difference scheme that is decoupled and linearized in practical computation, thus requiring
only the solution of two tridiagonal systems of linear algebraic equations at each time
step. Bai et al. [22] investigated a two-layer conservative finite difference scheme for
the SRLW equation with homogeneous boundary conditions and analyzed the scheme’s
convergence and stability using a discrete functional analysis method. Xu et al. [23] applied
a mixed finite element method to solve the dissipative SRLW equations with damping term.
He et al. [24] developed a fourth-order accurate compact difference scheme for the SRLW
equation for a single nonlinear velocity form and conducted theoretical analysis using the
discrete energy method.

In terms of numerical computation, the time two-mesh (TT-M) method, when com-
bined with either the finite element method or the finite difference method, offers better
computational efficiency in solving a broad range of nonlinear partial differential equations.
For instance, Liu et al. [25] proposed the fast TT-M finite element method for solving
the fractional water wave model and applied it successfully to other fractional models.
Yin et al. [26] developed a TT-M finite element algorithm for solving a space fractional
Allen-Cahn model and analyzed the problem of parameter selection in detail. The TT-M
finite element method was also leveraged by Liu et al. [27] to numerically solve the 2D
Gray-Scott model with space fractional derivatives. A nonlinear distributed order dif-
fusion model was efficiently solved using the TT-M algorithm in conjunction with the
H1-Galerkin mixed finite element method by Wen et al. [28], both smooth and non-smooth
solutions were considered. Additionally, Tian et al. [29] developed a finite element method
equipped with the TT-M technique to solve the coupled Schrödinger-Boussinesq equa-
tions. Moreover, some studies have investigated combining the TT-M and finite difference
methods to solve nonlinear fractional partial differential equations, such as the works of
Qiu and Xu et al. [30,31], who proposed and analyzed a TT-M algorithm based on finite
difference methods. The TT-M technique was also employed by Niu et al. [32] to develop a
fast high-order compact difference scheme for the nonlinear distributed order fractional
Sobolev model in porous media. Furthermore, He et al. [33] extended the application of
the TT-M method by studying a primary scheme of second-order convergence in time and
fourth-order in space for solving the nonlinear Schrödinger equation with a time two-mesh
high-order compact difference scheme. Despite the extensive research on the TT-M method
in various fields, to the best of our knowledge, no study on the application of the TT-M
method combined with finite difference to the SRLW equation has been discovered. Hence,
investigations on the TT-M finite difference method’s performance when applied to the
SRLW equation are still required.

The SRLW Equation (1) is a coupled system and most existing schemes found in
the literature are also coupled and require nonlinear implementation, which results in
prolonged CPU processing time. The objective of this paper is to develop a novel difference
scheme that offers the following three main advantages for solving the SRLW equation:
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(i) Based on the time two-mesh technique, we proposed a scheme that achieves decoupling
and the nonlinear term of the system is linearized by using Taylor’s formula for a function
with three variables, which is different from the literature [32,33]. In [32,33], the time
two-mesh scheme is formulated by using Taylor’s formula for a function with one or two
variables. As a result, our scheme becomes a linearized system in approximate numerical
solution and can reduce the computational time. (ii) The scheme’s convergence and stability
have been verified through detailed proof, and the theoretical analysis process is more
complex than that of existing methods, since the linearized scheme contains a function
of three variables. (iii) The linearization process involves a modification similar to the
Gauss-Seidel method used for linear systems to improve the accuracy of the calculation for
solutions. The conservation law of four quantities is preserved in the new scheme at the
discrete level.

The remaining part of this article is organized as follows. In Section 2, some notations
and useful lemmas are given. In Section 3, the TT-M finite difference numerical scheme is
presented. In Section 4, the convergence and stability of the scheme is analyzed. In Section 5,
some numerical results are provided to test the theoretical results and computational
efficiency of the scheme. Finally, in Section 6, we provide the conclusions of the paper.

2. Notations and Some Lemmas

As usual, the time interval (0, T] and spatial interval [xL, xR] are divided into N and J
uniform partitions. The following notations will be used in this paper:

(
un

j

)
x
=

un
j+1 − un

j

h
,
(

un
j

)
x̄
=

un
j − un

j−1

h
,

(
un

j

)
x̂
=

un
j+1 − un

j−1

2h
,

(
un

j

)
t
=

un+1
j − un

j

τ
, un+ 1

2
j =

1
2
(un+1

j + un
j ),

(
un

j

)
xx̄

=
un

j+1 − 2un
j + un

j−1

h2 ,

where τ, h denote the uniform time and spatial step length, respectively, xj = xL + jh,
j = 0, 1, 2, · · · , J, tn = nτ, n = 1, 2, · · · , [T/τ] = N, superscript n denotes a quantity
associated with the time level tn, subscript j denotes a quantity associated with space mesh
point xj. In this paper, M denotes general constant, which may have a different value in a
different place.

Since u → 0 for x → +∞ or x → −∞, we may assume un
−1 = un

J+1 = 0, 1 ≤ n ≤ N
for simplicity, where j = −1 and J + 1 are ghost points. Let Hh,0 denote the set of mesh
functions un defined on Ih with boundary conditions un

−1 = un
0 = un

J = un
J+1 = 0. For

any two mesh functions un, wn ∈ Hh,0, we define the discrete inner product and norms
as follows:

(un, wn) = h
J−1

∑
j=1

un
j wn

j , ‖un‖ =
√
(un, un), ‖un‖∞ = max

1≤j≤J−1
|un

j |.

Next, we present some useful lemmas.

Lemma 1 (See [24]). For any mesh functions un, wn ∈ Hh,0, we have

(a) (un
x , wn) = −(un, wn

x̄) = −(un, wn
x), (b) (un

xx̄, wn) = −(un
x , wn

x), (c) (un
x̂ , wn) = −(un, wn

x̂).

Lemma 2 (See [33,34]). Assume that a sequence of non-negative real numbers
{

aj
}∞

j=0 satisfying

an+1 ≤ α + β
n

∑
j=0

ajτ, n ≥ 0,

then there has the inequality an+1 ≤ (α + τβa0)eβ(n+1)τ, where α ≥ 0, β and τ are positive constants.
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Lemma 3 (See [22,34]). For any discrete mesh function un ∈ Hh,0, there exists constants C1 and
C2, such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖.

3. The TT-M Finite Difference Scheme

In this paper, we studied a TT-M finite difference fast numerical method for the
SRLW Equation (1). In order to give the TT-M finite difference scheme, firstly, the time
interval (0, T] is partitioned uniformly into P coarse time intervals and then each of them
is divided into s(2 ≤ s ∈ Z+) fine time intervals. The coarse time mesh with the nodes
tks = kτC(k = 1, . . . , P) satisfying 0 = t0 < ts < t2s < · · · < tPs = T and the fine time mesh
with the nodes tn = nτF(n = 1, 2, . . . , Ps = N) satisfying 0 = t0 < t1 < t2 < · · · < tPs = T,
where τC = sτF and τF are the coarse time and the fine time step size, respectively.

Secondly, the truncation errors of the problem (1) are considered, let vn
j = u

(
xj, tn

)
,

ϕn
j = ρ

(
xj, tn

)
be the exact solutions of u(x, t) and ρ(x, t) in term of the point

(
xj, tn

)
, then

we have

Ern
j = (vn

j )t + (ϕn+1
j )x̂ − (vn

j )xx̄t +
1
3

{
vn+ 1

2
j (vn+ 1

2
j )x̂ +

[
(vn+ 1

2
j )2

]
x̂

}
, (2)

Esn
j = (ϕn

j )t + (vn
j )x̂, (3)

vn
0 = vn

J = 0, ϕn
0 = ϕn

J = 0,

v0
j = v0(xL + jh), ϕ0

j = ϕ0(xL + jh).

By Taylor series expansion, we have

Ern
j = (ut + ρx − uxxt + uux)(xj ,tn) = O(h2 + τ),

Esn
j = (ρt + ux)(xj ,tn) = O(h2 + τ).

Next, based on Equations (2) and (3), a TT-M finite difference scheme for problem (1)
is constructed with three steps.

Step 1: on the coarse time mesh, let uks
C,j = u

(
xj, tks

)
, ρks

C,j = ρ
(
xj, tks

)
be the numerical

solutions of of u(x, t) and ρ(x, t) in term of the point
(
xj, tks

)
, then the coarse time nonlinear

finite difference scheme is given as

(uks
C,j)t + (ρ

(k+1)s
C,j )x̂ − (uks

C,j)xx̄t +
1
3

{
uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ +

[
(uks+ 1

2
C,j )2

]
x̂

}
= 0, (4)

(ρks
C,j)t + (uks

C,j)x̂ = 0, (5)

uks
C,0 = uks

C,J = 0, ρks
C,0 = ρks

C,J = 0, k = 0, 1, . . . , P,
u0

C,j = u0(xL + jh), ρ0
C,j = ρ0(xL + jh), j = 1, 2, . . . , J − 1,

where uks+ 1
2

C,j = 1
2 (u

(k+1)s
C,j + uks

C,j).

Step 2: based on the solutions uks
C , ρks

C at time levels tks obtained from step 1, we
apply the Lagrange’s linear interpolation formula to compute uks−l

C , ρks−l
C at time levels

tks−l(l = 1, 2, . . . , s− 1 and k = 1, 2, . . . , P, ks− l = n), we have

uks−l
C =

tks−l − tks
t(k−1)s − tks

u(k−1)s
C +

tks−l − t(k−1)s

tks − t(k−1)s
uks

C =
l
s

u(k−1)s
C + (1− l

s
)uks

C , (6)

ρks−l
C =

tks−1 − tks
t(k−1)s − tks

ρ
(k−1)s
C +

tks−1 − t(k−1)s

tks − t(k−1)s
ρks

C =
l
s

ρ
(k−1)s
C + (1− l

s
)ρks

C . (7)
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Remark 1. The Equation (7) is only employed for theoretical analysis of the scheme. In numerical
simulation, the coarse numerical solutions ρks−l

C are not needed for computation since they are not
used in step 3.

Step 3: based on all the coarse numerical solutions un
C,j(n = 0, 1, 2, . . . , Ps = N,

j = 1, 2, . . . , J − 1) obtained in the first two steps, Taylor’s formula is used to construct
a linearized system on the fine time mesh, which is expressed as follows. Let
un

F,j = u
(

xj, tn
)
, ρn

F,j = ρ
(
xj, tn

)
be the numerical solutions of u(x, t) and ρ(x, t) in term

of the point
(

xj, tn
)

on the fine time mesh, then

(un
F,j)t + (ρn+1

F,j )x̂ − (un
F,j)xx̄t +

1
6h

[
f (un+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)

+ fx(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j−1 − un+ 1
2

C,j−1)

+ fy(u
n+ 1

2
C,j+1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j − un+ 1
2

C,j )

+ fz(u
n+ 1

2
C,j−1, un+ 1

2
C,j , un+ 1

2
C,j+1)(u

n+ 1
2

F,j+1 − un+ 1
2

C,j+1)

]
= 0,

(8)

(ρn
F,j)t + (un

F,j)x̂ = 0, (9)

un
F,0 = un

F,J = 0, ρn
F,0 = ρn

F,J = 0,

u0
F,j = u0(xL + jh), ρ0

F,j = ρ0(xL + jh),

j = 1, . . . , J − 1, n = 0, 1, 2, . . . , N,

where f (x, y, z) = (z− x)y + z2 − x2 and

fx(x, y, z) = −y− 2x, fy(x, y, z) = z− x, fz(x, y, z) = y + 2z

are the three partial derivatives of f (x, y, z) with respect to x, y, z.

Remark 2. Our method, similarly to the Gauss-Seidel method applied to linear systems, has been
modified in order to enhance the accuracy of fine mesh solutions un+1

F by using un
F in calculation.

4. Convergence Analysis and Stability of the TT-M Finite Difference Scheme

The focus of this section is on performing convergence analysis of the nonlinear system
specifically on the coarse time mesh.

Theorem 1. Suppose that the exact solutions vn, ϕn to the initial boundary value problem Equation (1)
is sufficiently smooth and let un

C, ρn
C be the numerical solutions on the coarse time mesh. Then,

‖vn − un
C‖∞ ≤ O(h2 + τC), ‖ϕn − ρn

C‖ ≤ O(h2 + τC).

Proof. Denote eks
C,j = vks

j − uks
C,j, ηks

C,j = ϕks
j − ρks

C,j, 1 ≤ j ≤ J − 1, 0 ≤ k ≤ P. Subtracting
Equation (4) from Equation (2) and Equation (5) from Equation (3), we obtain

Erks
C,j =(eks

C,j)t + (η
(k+1)s
C,j )x̂ − (eks

C,j)xx̄t

+
1
3

{
vks+ 1

2
j (vks+ 1

2
j )x̂ +

[
(vks+ 1

2
j )2

]
x̂

}
− 1

3

{
uks+ 1

2
C,j (uks+ 1

2
C,j )x̂ +

[
(uks+ 1

2
C,j )2

]
x̂

}
,

(10)

Esks
C,j = (ηks

C,j)t + (eks
C,j)x̂. (11)
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The proof contains two cases. Firstly, we consider the case of n = ks(k = 0, 1, 2, . . . , P),
then n + 1 = (k + 1)s. The initial and boundary condition satisfies

e0
C,j = 0, η0

C,j = 0,

un
C,0 = un

C,J = 0, ρn
C,0 = ρn

C,J = 0.

Taking the inner product (·, ·) on both sides of Equation (10) with en+1
C + en

C, we have

(Ern
C, en+1

C + en
C) = ((en+1

C )t, en
C + en

C) + ((ηn+1
C )x̂, en+1

C + en
C)

− ((en
C)xx̄t, eks+1

C + en
C) + h

J−1

∑
j=1

(I + II)(en+1
C,j + en

C,j),
(12)

where

I =
1
3

[
vn+ 1

2
j (vn+ 1

2
j )x̂ − un+ 1

2
C,j (un+ 1

2
C,j )x̂

]
, II =

1
3

{[
(vn+ 1

2
j )2

]
x̂
−
[
(un+ 1

2
C,j )2

]
x̂

}
.

Notice that
((en

C)t, en+1
C + en

C) =
1

τC
(‖en+1

C ‖2 − ‖en
C‖2), (13)

((ηn+1
C )x̂, en+1

C + en
C) = −h

J−1

∑
j=1

[
ηn+1

C,j (en+1
C,j + en

C,j)x̂

]
, (14)

− ((en
C)xx̄t, en+1

C + en
C) =

1
τC

(‖en+1
C,x ‖

2 − ‖en
C,x‖2), (15)

h
J−1

∑
j=1

I · (en+1
C,j + en

C,j) =−
2
3

h
J−1

∑
j=1

(en+ 1
2

C,j · v
n+ 1

2
j )x̂en+ 1

2
C,j

− 2
3

h
J−1

∑
j=1

(en+ 1
2

C,j )x̂(e
n+ 1

2
C,j+1 + en+ 1

2
C,j−1)u

n+ 1
2

C,j ,

(16)

h
J−1

∑
j=1

II · (en+1
C,j + en

C,j) =
2
3

h
J−1

∑
j=1

(vn+ 1
2

j · en+ 1
2

C,j )x̂en+ 1
2

C,j

− 2
3

h
J−1

∑
j=1

un+ 1
2

C,j en+ 1
2

C,j (en+ 1
2

C,j )x̂,

(17)

then substituting Equations (13)–(17) into (12), we have

‖en+1
C ‖2 + ‖en+1

C,x ‖
2 = ‖en

C‖2 + ‖en
C,x‖2 + τCh

J−1

∑
j=1

[
ηn+1

C,j (en+1
C,j + en

C,j)x̂

]

+
2
3

τCh
J−1

∑
j=1

[
(en+ 1

2
C,j )x̂(e

n+ 1
2

C,j+1 + en+ 1
2

C,j−1)u
n+ 1

2
C,j + un+ 1

2
C,j en+ 1

2
C,j (en+ 1

2
C,j )x̂

]
+ τC(Ern

C, en+1
C + en

C).

(18)

From Cauchy–Schwarz inequality, we obtain

(Ern
C, en+1

C + en
C) ≤ ‖Ern

C‖2 +
1
2
(‖en+1

C ‖2 + ‖en
C‖2).
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Using Lemma 1, the Equation (18) can be rewritten as

‖en+1
C ‖2 + ‖en+1

C,x ‖
2 ≤ ‖en

C‖2 + ‖en
C,x‖2

+ MτC(‖ηn+1
C ‖2 + ‖en+1

C ‖2 + ‖en
C‖2 + ‖en+1

C,x ‖
2 + ‖en

C,x‖2) + τC‖Ern
C‖2.

(19)

Similarly, taking the inner product (·, ·) on both sides of Equation (11) with ηn+1
C + ηn

C,
we obtain

‖ηn+1
C ‖2 = ‖ηn

C‖2 − τCh
J−1

∑
j=1

(en
C,j)x̂(η

n+1
C,j + ηn

C,j) + τC(Esn
C, ηn+1

C + ηn
C). (20)

From the Cauchy–Schwarz inequality, we have

(Esn
C, ηn+1

C + ηn
C) ≤ ‖Esn

C‖2 +
1
2
(‖ηn+1

C ‖2 + ‖ηn
C‖2).

Using Lemma 1, the Equation (20) can be rewritten as

‖ηn+1
C ‖2 ≤ ‖ηn

C‖2 + MτC(‖en
C,x‖2 + ‖ηn+1

C ‖2 + ‖ηn
C‖2) + τC‖Esn

C‖2. (21)

Add Equations (19) and (21), we obtain

‖en+1
C ‖2 + ‖en+1

C,x ‖
2 + ‖ηn+1

C ‖2 ≤ ‖en
C‖2 + ‖en

C,x‖2 + ‖ηn
C‖2

+ MτC(‖ηn+1
C ‖2 + ‖ηn

C‖2 + ‖en+1
C ‖2 + ‖en

C‖2 + ‖en+1
C,x ‖

2 + ‖en
C,x‖2)

+ τC‖Ern
C‖2 + τC‖Esn

C‖2.

(22)

Let Bn
C = ‖en

C‖2 + ‖en
C,x‖2 + ‖ηn

C‖2, then Equation (22) becomes

Bn+1
C − Bn

C ≤ MτC(Bn+1
C + Bn

C) + MτC(h2 + τC)
2,

and obtain
(1−MτC)(Bn+1

C − Bn
C) ≤ 2MτCBn

C + MτC(h2 + τC)
2.

By taking τC small enough so that (1−MτC) > λ > 0, then

Bn+1
C − Bn

C ≤ MτCBn
C + MτC(h2 + τC)

2. (23)

Summing from 0 to P− 1 inequalities in Equation (23), we have

BP
C − B0

C ≤ MτC

P−1

∑
n=1

Bn
C + M(h2 + τC)

2,

and using Lemma 2, we obtain

BP
C ≤ [B0

C + M(h2 + τC)
2]eMPτC . (24)

From Equation (24) and the initial and boundary condition, we have

‖en
C‖ < O(h2 + τC), ‖en

C,x‖ < O(h2 + τC), ‖ηn
C‖ < O(h2 + τC). (25)

Then using Lemma 3, we obtain

‖en
C‖∞ < O(h2 + τC). (26)
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Secondly, we consider the case of n = ks− l, (l = 1, 2, . . . , s− 1 and k = 1, 2, . . . , P, ks−
l = n). Based on the Lagrange’s interpolation formula, we obtain

vks−l =
tks−l − tks

t(k−1)s − tks
v(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
vks

=
l
s

v(k−1)s + (1− l
s
)vks +

v′′(θ1)

2
(t− t(k−1)s)(t− tks), θ1 ∈ (t(k−1)s, tks),

(27)

ϕks−l =
tks−l − tks

t(k−1)s − tks
ϕ(k−1)s +

tks−l − t(k−1)s

tks − t(k−1)s
ϕks

=
l
s

ϕ(k−1)s + (1− l
s
)ϕks +

ϕ′′(θ2)

2
(t− t(k−1)s)(t− tks), θ2 ∈ (t(k−1)s, tks).

(28)

Subtracting Equation (27) from (6), we have

vks−l − uks−l
C =

l
s
(v(k−1)s − u(k−1)s

C ) + (1− l
s
)(vks − uks

C )

+
v′′(θ1)

2
(t− t(k−1)s)(t− tks).

Subtracting Equation (28) from (7), we obtain

ϕks−l − ρks−l
C =

l
s
(ϕ(k−1)s − ρ

(k−1)s
C ) + (1− l

s
)(ϕks − ρks

C )

+
ϕ′′(θ2)

2
(t− t(k−1)s)(t− tks).

Using (25), (26) and triangle inequality, we conclude

‖eks−l
C ‖∞ ≤ O(h2 + τC), ‖ηks−l

C ‖ ≤ O(h2 + τC).

We obtain the result of Theorem 1 by synthesizing the aforementioned two cases.

Next, we give the convergence analysis of the scheme on the fine time mesh.

Theorem 2. Suppose that the exact solutions vn, ϕn to the initial boundary value problem Equation (1)
is sufficiently smooth and let un

F, ρn
F be the numerical solutions on the fine time mesh. Then,

‖vn − un
F‖∞ ≤ O(h2 + τ2

C + τF), ‖ϕn − ρn
F‖ ≤ O(h2 + τ2

C + τF).

Proof. Assume en
F,j = vn

j − un
F,j, ηn

F,j = ϕn
j − ρn

F,j, 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N, Subtracting
Equation (8) from Equation (2) and Equation (9) from Equation (3), we obtain

Ern
F,j = (en

F,j)t + (ηn+1
F,j )x̂ − (en

F,j)xx̄t +
1

6h
[( fxen+ 1

2
F,j−1 + fyen+ 1

2
F,j + fzen+ 1

2
F,j+1) + Q], (29)

Esn
F,j = (ηn

F,j)t + (en
F,j)x̂, (30)

where
Q =

1
2
[( fxx(e

n+ 1
2

C,j−1)
2 + fyy(e

n+ 1
2

C,j )2 + fzz(e
n+ 1

2
C,j+1)

2]

+ [ fxyen+ 1
2

C,j−1en+ 1
2

C,j + fxzen+ 1
2

C,j−1en+ 1
2

C,j+1 + fyzen+ 1
2

C,j en+ 1
2

C,j+1],

and fxx = fxx(ξ, ε, δ), fyy = fyy(ξ, ε, δ), fzz = fzz(ξ, ε, δ), fxy = fxy(ξ, ε, δ), fxz = fxz(ξ, ε, δ),
fyz = fyz(ξ, ε, δ) are the second order partial derivatives of f (x, y, z), ξ ∈ (vn

j−1, un
C,j−1),

ε ∈ (vn
j , un

C,j), δ ∈ (vn
j+1, un

C,j+1).



Fractal Fract. 2023, 7, 487 9 of 21

Taking the inner product (·, ·) on both sides of Equation (29) with en+1
F + en

F, we have

‖en+1
F ‖2 + ‖en+1

F,x ‖
2 = ‖en

F‖2 + ‖en
F,x‖2 + τFh

J−1

∑
j=1

{
ηn+1

F,j

[
(en+1

F,j )x̂ + (en
F,j)x̂

]}

− τF
3

J−1

∑
j=1

( fxen+ 1
2

F,j−1 + fyen+ 1
2

F,j + fzen+ 1
2

F,j+1)e
n+ 1

2
F,j −

τF
3

J−1

∑
j=1

Qen+ 1
2

F,j + 2τF(Ern
F, en+ 1

2
F ).

(31)

Using fy = 1
2 ( fx + fz) and fxx = −2, fyy = 0, fzz = 2, fxy = −1, fxz = 0, fyz = 1, we obtain

J−1

∑
j=1

( fxen+ 1
2

F,j−1 + fyen+ 1
2

F,j + fzen+ 1
2

F,j+1)e
n+ 1

2
F,j

= −( fxen+ 1
2

F,x̄ , en+ 1
2

F ) +
3
h
( fyen+ 1

2
F , en+ 1

2
F ) + ( fzen+ 1

2
F,x , en+ 1

2
F ),

(32)

J−1

∑
j=1

Qen+ 1
2

F,j =
1
2

J−1

∑
j=1

[ fxx(e
n+ 1

2
C,j−1)

2 + fyy(e
n+ 1

2
C,j )2 + fzz(e

n+ 1
2

C,j+1)
2]en+ 1

2
F,j

+
J−1

∑
j=1

[ fxyen+ 1
2

C,j−1en+ 1
2

C,j + fxzen+ 1
2

C,j−1en+ 1
2

C,j+1 + fyzen+ 1
2

C,j en+ 1
2

C,j+1]e
n+ 1

2
F,j

= ((en+ 1
2

C )2
x, en+ 1

2
F )− ((en+ 1

2
C )2, en+ 1

2
F,x ) + (en+ 1

2
C,x , en+ 1

2
C en+ 1

2
F )− (en+ 1

2
C , (en+ 1

2
C en+ 1

2
F )x).

(33)

Using Lemma 1 and the Cauchy–Schwarz inequality, we have

τF
3
( fxen+ 1

2
F,x̄ , en+ 1

2
F )− τF

h
( fyen+ 1

2
F , en+ 1

2
F )− τF

3
( fzen+ 1

2
F,x , en+ 1

2
F )

≤ MτF(‖e
n+ 1

2
F,x ‖

2 + ‖en+ 1
2

F ‖2),
(34)

− τF
3
((en+ 1

2
C )2

x, en+ 1
2

F ) +
τF
3
((en+ 1

2
C )2, en+ 1

2
F,x )

− τF
3
(en+ 1

2
C,x , en+ 1

2
C en+ 1

2
F ) +

τF
3
(en+ 1

2
C , (en+ 1

2
C en+ 1

2
F )x)

≤ MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2 + ‖en+ 1
2

F ‖2 + ‖en+ 1
2

F,x ‖
2),

(35)

2τF(Ern
F, en+ 1

2
F ) ≤ τF‖Ern

F‖2 + MτF‖e
n+ 1

2
F ‖2. (36)

Substituting Equations (34) and (35) into (31), then

‖en+1
F ‖2 + ‖en+1

F,x ‖
2

≤ ‖en
F‖2 + ‖en

F,x‖2 + MτF(‖ηn+1
F ‖2 + ‖en+1

F ‖2 + ‖en
F‖2 + ‖en+1

F,x ‖
2 + ‖en

F,x‖2)

+ MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2) + τF‖Ern
F‖2.

(37)

Taking the inner product (·, ·) on both sides of Equation (30) with ηn+1
F + ηn

F , we obtain

‖ηn+1
F ‖2 ≤ ‖ηn

F‖2 + MτF(‖en
F,x‖2 + ‖ηn+1

F ‖2 + ‖ηn
F‖2) + τF‖Esn

F‖2. (38)
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Add Equations (37) and (38), we have

‖en+1
F ‖2 + ‖en+1

F,x ‖
2 + ‖ηn+1

F ‖2 ≤ ‖en
F‖2 + ‖en

F,x‖2 + ‖ηn
F‖2

+ MτF(‖ηn+1
F ‖2 + ‖ηn

F‖2 + ‖en+1
F ‖2 + ‖en

F‖2 + ‖en+1
F,x ‖

2 + ‖en
F,x‖2)

+ MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2)

+ τF‖Ern
F‖2 + τF‖Esn

F‖2.

(39)

Let Bn
F = ‖en

F‖2 + ‖en
F,x‖2 + ‖ηn

F‖2, then

Bn+1
F − Bn

F ≤ MτF(Bn+1
F + Bn

F) + MτF(‖e
n+ 1

2
C ‖2

∞‖e
n+ 1

2
C ‖2 + ‖en+ 1

2
C ‖2

∞‖e
n+ 1

2
C,x ‖

2)

+τF‖Ern
F‖2 + τF‖Esn

F‖2,

and obtain
(1−MτF)(Bn+1

F − Bn
F) ≤ 2MτFBn

F + MτF(h4 + τ4
C + τ2

F).

By taking τF small enough so that (1−MτF) > λ > 0, then

Bn+1
F − Bn

F ≤ MτF(h4 + τ4
C + τ2

F) + MτFBn
F. (40)

Summing from 0 to N − 1 inequalities in Equation (40), we obtain

BN
F ≤ B0

F + M(h4 + τ4
C + τ2

F) + MτF

N−1

∑
n=0

Bn
F. (41)

Using Lemma 2, we obtain

BN
F ≤ [B0

F + M(h4 + τ4
C + τ2

F)]e
MNτF . (42)

From Equation (42) and the initial and boundary condition, we have

‖en
F‖ ≤ O(h2 + τ2

C + τF), ‖en
F,x‖ ≤ O(h2 + τ2

C + τF), ‖ηn
F‖ < O(h2 + τ2

C + τF). (43)

Using Lemma 3, it led to
‖en

F‖∞ ≤ O(h2 + τ2
C + τF). (44)

This completes the proof of Theorem 2.

Next, we prove stability of the scheme on the coarse time mesh.

Theorem 3. Suppose that u0 ∈ Hh,0[xL, xR], if τC and h are sufficiently small, then the proposed
scheme (4)–(5) is stable with respect to the initial conditions.

Proof. The proof contains two cases. Firstly, we consider the case of n = ks(k = 0, 1, 2, . . . , P).
Taking the inner product (·, ·) on both sides of Equation (4) with un+1

C + un
C, we have∥∥∥un+1

C

∥∥∥2
− ‖un

C‖
2 +

∥∥∥un+1
C,x

∥∥∥2
−
∥∥un

C,x
∥∥2

+ τCh
J−1

∑
j=1

[−ρn+1
C,j (un+1

C,j )x̂ − ρn+1
C,j (un

C,j)x̂] = 0.
(45)

Taking the inner product (·, ·) on both sides of Equation (5) with ρn+1
C + ρn

C, we obtain

‖ρn+1
C ‖2 − |ρn

C‖2 + τCh
J−1

∑
j=1

[(un
C,j)x̂ρn+1

C,j + (un
C,j)x̂ρn

C,j] = 0. (46)
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Add Equations (45) and (46), we obtain

‖un+1
C ‖2 + ‖un+1

C,x ‖
2 + ‖ρn+1

C ‖2 = ‖un
C‖2 + ‖un

C,x‖2 + ‖ρn
C‖2

+ τCh
J−1

∑
j=1

ρn+1
C,j (un+1

C,j )x̂ − τCh
J−1

∑
j=1

(un
C,j)x̂ρn

C,j

≤ ‖un
C‖2 + ‖un

C,x‖2 + |ρn
C‖2

+ MτC(‖ρn+1
C ‖2 + ‖ρn

C‖2 + ‖un+1
C ‖2 + ‖un

C‖2 + ‖un+1
C,x ‖

2 + ‖un
C,x‖2).

(47)

Let Dn
C = ‖un

C‖2 + ‖un
C,x‖2 + ‖ρn

C‖2, then Equation (47) becomes

Dn+1
C − Dn

C ≤ MτC(Dn+1
C + Dn

C),

and obtain
(1−MτC)(Dn+1

C − Dn
C) ≤ 2MτCDn

C.

By taking τC small enough so that 1−MτC > λ > 0, then

Dn+1
C − Dn

C ≤ MτCDn
C. (48)

Summing from 0 to P− 1 inequalities in Equation (48), we have

DN
C ≤ D0

C + MτC

N−1

∑
n=0

Dn
C,

and using Lemma 2, we obtain
DN

C ≤ D0
CeMT , (49)

that is
‖un

C‖2 + ‖un
C,x‖2 + ‖ρn

C‖2 ≤ M(‖u0
C‖2 + ‖u0

C,x‖2 + ‖ρ0
C‖2).

Secondly, we consider the case of n = ks− l, (l = 1, 2, . . . , s− 1 and k = 1, 2, . . . , P, ks− l = n).
From Equations (6) and (7), we obtain

‖uks−l
C ‖ ≤ l

s
‖u(k−1)s

C ‖+ (1− l
s
)‖uks

C ‖ ≤ M(‖u0
C‖+ ‖u0

C,x‖+ ‖ρ0
C‖),

‖ρks−l
C ‖ ≤ l

s
‖ρ(k−1)s

C ‖+ (1− l
s
)‖ρks

C ‖ ≤ M(‖u0
C‖+ ‖u0

C,x‖+ ‖ρ0
C‖).

The results obtained in the aforementioned two cases mean that the solution of scheme (4)–(5)
is stable on the coarse time mesh. This completes the proof of Theorem 3.

Next, we present stability analysis of the scheme on the fine time mesh.

Theorem 4. Suppose that u0 ∈ Hh,0[xL, xR], if τF and h are sufficiently small, then the proposed
scheme (8)–(9) is stable with respect to the initial conditions.
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Proof. Taking the inner product (·, ·) on both sides of Equation (8) with un+1
F + un

F, we have

1
τF

(‖un+1
F ‖2 + ‖un+1

F,x ‖
2) =

1
τF

(‖un
F‖2 + ‖un

F,x‖2)

− h
J−1

∑
j=1

[−ρn+1
F,j (un+1

F,j )x̂ − ρn+1
F,j (un

F,j)x̂]

− 1
3

J−1

∑
j=1

[(un+ 1
2

C,j+1 − un+ 1
2

C,j−1)u
n+ 1

2
C,j + (un+ 1

2
C,j+1)

2 − (un+ 1
2

C,j−1)
2]un+ 1

2
F,j

− 1
3

J−1

∑
j=1

( fxun+ 1
2

F,j−1 + fyun+ 1
2

F,j + fzun+ 1
2

F,j+1)u
n+ 1

2
F,j

+
1
3

J−1

∑
j=1

( fxun+ 1
2

C,j−1 + fyun+ 1
2

C,j + fzun+ 1
2

C,j+1)u
n+ 1

2
F,j .

(50)

From the Cauchy–Schwarz inequality, we obtain

− 1
3

J−1

∑
j=1

[(un+ 1
2

C,j+1 − un+ 1
2

C,j−1)u
n+ 1

2
C,j + (un+ 1

2
C,j+1)

2 − (un+ 1
2

C,j−1)
2]un+ 1

2
F,j

≤ M(‖un+ 1
2

C ‖2
∞‖u

n+ 1
2

C ‖2 + ‖un+ 1
2

C ‖2
∞‖u

n+ 1
2

C,x ‖
2 + ‖un+ 1

2
F ‖2 + ‖un+ 1

2
F,x ‖

2),

(51)

− 1
3

J−1

∑
j=1

( fxun+ 1
2

F,j−1 + fyun+ 1
2

F,j + fzun+ 1
2

F,j+1)u
n+ 1

2
F,j ≤ M(‖un+ 1

2
F ‖2 + ‖un+ 1

2
F,x ‖

2), (52)

1
3

J−1

∑
j=1

( fxun+ 1
2

C,j−1 + fyun+ 1
2

C,j + fzun+ 1
2

C,j+1)u
n+ 1

2
F,j

≤ M(‖un+ 1
2

C ‖2 + ‖un+ 1
2

C,x ‖
2 + ‖un+ 1

2
F ‖2 + ‖un+ 1

2
F,x ‖

2),

(53)

then substituting Equations (51)–(53) into (50), we have

‖un+1
F ‖2 + ‖un+1

F,x ‖
2 ≤ ‖un

F‖2 + ‖un
F,x‖2 + τFh

J−1

∑
j=1

[ρn+1
F,j (un+1

F,j )x̂ + ρn+1
F,j (un

F,j)x̂]

+ MτF(‖u
n+ 1

2
C ‖2

∞‖u
n+ 1

2
C ‖2 + ‖un+ 1

2
C ‖2

∞‖u
n+ 1

2
C,x ‖

2 + ‖un+ 1
2

C ‖2 + ‖un+ 1
2

C,x ‖
2)

+ MτF(‖u
n+ 1

2
F ‖2 + ‖un+ 1

2
F,x ‖

2).

(54)

Taking the inner product (·, ·) on both sides of Equation (9) with ρn+1
F + ρn

F, we obtain

‖ρn+1
F ‖2 = ‖ρn

F‖2 − τFh
J−1

∑
j=1

[(un
F,j)x̂ρn+1

F,j + (un
F,j)x̂ρn

F,j]. (55)

Add Equations (54) and (55), we obtain

‖un+1
F ‖2 + ‖un+1

F,x ‖
2 + ‖ρn+1

F ‖2 ≤ ‖un
F‖2 + ‖un

F,x‖2 + ‖ρn
F‖2

+ MτF(‖un+1
F ‖2 + ‖un

F,x‖2 + ‖un+1
F,x ‖

2 + ‖un
F,x‖2 + ‖ρn+1

F ‖2 + ‖ρn
F‖2)

+ MτF(‖u
n+ 1

2
C ‖2

∞‖u
n+ 1

2
C ‖2 + ‖un+ 1

2
C ‖2

∞‖u
n+ 1

2
C,x ‖

2 + ‖un+ 1
2

C ‖2 + ‖un+ 1
2

C,x ‖
2).

(56)
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Let Dn
F = ‖un

F‖2 + ‖un
F,x‖2 + ‖ρn

F‖2, then combine with the result of Theorem 3, the
Equation (56) becomes

Dn+1
F − Dn

F ≤ MτF(Dn+1
F + Dn

F) + MτF(‖u0
C‖2 + ‖u0

C,x‖2),

and obtain

(1−MτF)(Dn+1
F − Dn

F) ≤ 2MτFDn
F + MτF(‖u0

C‖2 + ‖u0
C,x‖2).

By taking τF small enough so that 1−MτF > λ > 0, then

Dn+1
F − Dn

F ≤ MτFDn
F + MτF(‖u0

C‖2 + ‖u0
C,x‖2). (57)

Summing from 0 to N − 1 inequalities in Equation (57), we obtain

N−1

∑
n=0

(Dn+1
F − Dn

F) ≤ MτF

N−1

∑
n=0

Dn
F + M(‖u0

C‖2 + ‖u0
C,x‖2), (58)

and then

DN
F ≤ D0

F + MτF

N−1

∑
n=0

Dn
F + M(‖u0

C‖2 + ‖u0
C,x‖2). (59)

Using Lemma 2, we obtain

DN
F ≤ [D0

F + M‖u0
C‖2 + ‖u0

C,x‖2)]eMT , (60)

that is

‖un
F‖2 + ‖un

F,x‖2 + ‖ρn
F‖2 ≤ M(‖u0

F‖2 + ‖u0
F,x‖2 + ‖ρ0

F‖2 + ‖u0
C‖2 + ‖u0

C,x‖2). (61)

Notice that ‖u0
C‖2 = ‖u0

F‖2, ‖u0
C,x‖2 = ‖u0

F,x‖2, then

‖un
F‖2 + ‖un

F,x‖2 + ‖ρn
F‖2 ≤ M(‖u0

F‖2 + ‖u0
F,x‖2 + ‖ρ0

F‖2), (62)

which indicates that the solution of scheme (8)–(9) is stable on the fine time mesh. This
completes the proof of Theorem 4.

5. Numerical Results

This section provides some numerical examples aimed at demonstrating the accuracy
and computational time of the TT-M finite difference scheme that was discussed in Section 3.
All simulations were implemented using a Intel(R) i7-10710U 1.61 GHz CPU and 16 GB
memory personal computer running Windows 10 and Matlab R2019b. The SRLW equation
is represented in the following formation:

ut + ρx + uux − uxxt = 0, −40 ≤ x ≤ 40, 0 < t ≤ 4,
ρt + ux = 0, −40 ≤ x ≤ 40, 0 < t ≤ 4,
u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, 0 < t ≤ 4,
u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), −40 ≤ x ≤ 40.

and consider the following initial conditions

u0(x) =
5
2

sech2
√

5
6

x, ρ0(x) =
5
3

sech2
√

5
6

x.
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The exact solitary wave solution [4] of the SRLW Equation (1) has the following form

u(x, t) =
3
(
v2 − 1

)
v

sech2

(√
v2 − 1

4v2 (x− vt)

)
,

ρ(x, t) =
3
(
v2 − 1

)
v2 sech2

(√
v2 − 1

4v2 (x− vt)

)
,

which takes the form of

u(x, t) =
5
2

sech2
√

5
6

(
x− 3

2
t
)

, ρ(x, t) =
5
3

sech2
√

5
6

(
x− 3

2
t
)

,

when we set v = 1.5.
Next, we presented some values of error, convergence rate, conservation laws and

long time simulation of the proposed scheme.

5.1. Error and Convergence Rate

We define the error and convergence rate by the following formula:

em(h, τ) = ‖vn − un
m‖∞, ηm(h, τ) = ‖ϕn − ρn

m‖,

uRatex
m = log2

(
em(2h, 4τ)

em(h, τ)

)
, ρRatex

m = log2

(
ηm(2h, 4τ)

ηm(h, τ)

)
,

uRatet
m = log2

(
em(2h, 2τ)

em(h, τ)

)
, ρRatet

m = log2

(
ηm(2h, 2τ)

ηm(h, τ)

)
,

where m represents the TT-M finite difference scheme or the standard nonlinear finite dif-
ference (SNFD) scheme in [22]. We set τC = 4τF in the whole numerical illustration process.

In order to illustrate the advantage of this approach, we calculated the error, conver-
gence rate and computational time of the presented scheme and compared these numerical
results with those obtained from scheme in [22]. Tables 1 and 2 present discrete norm
errors, the corresponding convergence rates and the time cost for both the TT-M finite
difference scheme and the SNFD scheme in [22] under τF = h2 and h = τF, respectively.
We recorded the error of both schemes at the final time t = 4 for various mesh steps. The
results from the new scheme show nearly identical important values as those obtained by
the SNFD scheme in [22]. In term of the convergence rate, the results indicate that both the
TT-M finite difference scheme and the SNFD scheme achieve approximately second-order
convergence in space when τF = h2 and first-order in time when h = τF, which confirming
the theoretical results in Theorem 2. Especially, the proposed scheme achieves a remark-
able reduction in computation time of over 30 percent as compared to the SNFD scheme
under τF = h2 and nearly half the computational time of the SNFD scheme under h = τF.
The obtained results demonstrate a clear improvement achieved by our scheme over the
previous method reported by [22].

The 3D images of numerical solutions of u(x, t) and ρ(x, t) computed by the present
scheme were shown in Figure 1. From the graph, one can see the propagation state of waves
over a period of time. Figure 2 illustrates the exact and numerical solutions of u(x, t) and
ρ(x, t) at t = 4 obtained by the present scheme. It is evident that our numerical solutions
exhibit an excellent correspondence with the exact solution. Furthermore, the CPU times of
the two schemes are plotted in Figure 3 under τF = h2 and h = τF, respectively. From the
figure, it is also can be seen that the present scheme can significantly decrease computation
time. To sum up, compared with the method in [22], the scheme proposed in this paper not
only ensures error and convergence order, but also greatly reduces computational time.
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Table 1. The errors and convergence rates with τF = h2.

SNFD Scheme in [22]

(h, τF) eSNFD(h, τF) uRatex
SNFD ηSNFD(h, τF) ρRatex

SNFD CPU(s)(
1
2 , 1

4

)
8.2798× 10−2 — 2.9797× 10−1 — 0.14(

1
4 , 1

16

)
2.0361× 10−2 2.02 7.3503× 10−2 2.02 0.51(

1
8 , 1

64

)
5.0629× 10−3 2.01 1.8306× 10−2 2.01 12.30(

1
16 , 1

256

)
1.2641× 10−3 2.00 4.5719× 10−3 2.00 136.31(

1
32 , 1

1024

)
3.1597× 10−4 2.00 1.1427× 10−3 2.00 1943.47

Present scheme

(h, τF) eTT−M(h, τF) uRatex
TT−M ηTT−M(h, τF) ρRatex

TT−M CPU(s)(
1
2 , 1

4

)
8.3934× 10−2 — 3.0015× 10−1 — 0.10(

1
4 , 1

16

)
2.0360× 10−2 2.04 7.3555× 10−2 2.03 0.30(

1
8 , 1

64

)
5.0616× 10−3 2.01 1.8308× 10−2 2.01 7.53(

1
16 , 1

256

)
1.2639× 10−3 2.00 4.5721× 10−3 2.00 76.99(

1
32 , 1

1024

)
3.1596× 10−4 2.00 1.1427× 10−3 2.00 1297.88

Table 2. The errors and convergence rates with h = τF.

SNFD Scheme in [22]

(h, τF) eSNFD(h, τF) uRatet
SNFD ηSNFD(h, τF) ρRatet

SNFD CPU(s)(
1
8 , 1

8

)
3.1920× 10−2 — 1.1381× 10−1 — 2.47(

1
16 , 1

16

)
1.5552× 10−2 1.04 5.5256× 10−2 1.04 14.09(

1
32 , 1

32

)
7.6748× 10−3 1.02 2.7221× 10−2 1.02 109.20(

1
64 , 1

64

)
3.8121× 10−3 1.01 1.3509× 10−2 1.01 770.01(

1
128 , 1

128

)
1.8997× 10−3 1.00 6.7298× 10−3 1.00 5792.53

Present scheme

(h, τF) eTT−M(h, τF) uRatet
TT−M ηTT−M(h, τF) ρRatet

TT−M CPU(s)(
1
8 , 1

8

)
3.1962× 10−2 — 1.1414× 10−1 — 1.49(

1
16 , 1

16

)
1.5540× 10−2 1.04 5.5323× 10−2 1.04 7.10(

1
32 , 1

32

)
7.6694× 10−3 1.02 2.7237× 10−2 1.02 51.40(

1
64 , 1

64

)
3.8102× 10−3 1.01 1.3513× 10−2 1.01 414.33(

1
128 , 1

128

)
1.8991× 10−3 1.00 6.7308× 10−3 1.01 3289.71

(a) (b)

Figure 1. Three−dimensional images of u(x, t) (a) and ρ(x, t) (b) with h = 1/8, τF = 1/64.
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(a) (b)

Figure 2. Exact and numerical solution of u(x, t) (a) and ρ(x, t) (b) at t = 4 with h = 1/8, τF = 1/64.

(a) (b)

Figure 3. Comparison of CPU times with τF = h2 (a) and h = τF (b) based on the data in
Tables 1 and 2.

5.2. Conservative Approximations

To further verify the accuracy of the new scheme, we calculate four conservation laws
of the SRLW Equation (1), such as:

Q1 =
1
2

∫ ∞

−∞
ρdx, Q2 =

1
2

∫ ∞

−∞
udx,

Q3 =
1
2

∫ ∞

−∞
(u2 + u2

x + ρ2)dx, Q4 =
1
2

∫ ∞

−∞
(ρu +

1
6

u3)dx.

Afterwards, employing discrete forms, we are able to compute four approximate conserva-
tive quantities which can be represented as

Q1 =
h
2

J−1

∑
j=0

ρn
j ,

Q2 =
h
2

J−1

∑
j=0

un
j ,

Q3 =
h
2

J−1

∑
j=0

(un
j )

2 +
1

2h

J−1

∑
j=0

(un
j+1 − un

j )
2 +

h
2

J−1

∑
j=0

(ρn
j )

2,

Q4 =
h
2

J−1

∑
j=0

ρn
j un

j +
h

12

J−1

∑
j=0

(un
j )

3.
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The values of four quantities are recorded in Tables 3–6. In Tables 3 and 4, regardless of
the time step and grid spacing, the quantities Q1 and Q2 remain well-preserved at various
times. In Table 5, for the case h = 1/2 and τF = 1/4, one can see that the quantity Q3
experiences a slight increase as time increases, however, as the spatial and temporal step
sizes decrease, the variation of Q3 becomes extremely small. In Table 6, it has been found
that for quantity Q4, there was a minor decline under different mesh steps, but it gradually
rebounded over time. Meanwhile, as the spatial and temporal step sizes decrease, the
Q4 increases slightly. Figure 4 plots the variation curves of four quantities for the case
h = 1/8 and τF = 1/64, which visually demonstrate that our scheme preserves the four
conservation laws.

Table 3. Quantity Q1 under different mesh steps h and τF at various times.

TT-M Finite Difference Scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 0.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 1.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 1.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 2.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 2.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 3.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 3.5 4.4721359549 4.4721359549 4.4721359549 4.4721359549
t = 4.0 4.4721359549 4.4721359549 4.4721359549 4.4721359549

Table 4. Quantity Q2 under different mesh steps h and τF at various times.

TT-M Finite Difference Scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 0.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 1.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 1.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 2.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 2.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 3.0 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 3.5 6.7082039324 6.7082039324 6.7082039324 6.7082039324
t = 4.0 6.7082039323 6.7082039323 6.7082039323 6.7082039323

Table 5. Quantity Q3 under different mesh steps h and τF at various times.

TT-M Finite Difference Scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 17.3814360100 17.3890764778 17.3909982095 17.3914793723
t = 0.5 17.3879364459 17.3894925427 17.3910247524 17.3914810404
t = 1.0 17.4021575260 17.3904434452 17.3910850544 17.3914848239
t = 1.5 17.4178948195 17.3914089843 17.3911453660 17.3914885933
t = 2.0 17.4279575149 17.3919924045 17.3911803618 17.3914907570
t = 2.5 17.4320624736 17.3921089940 17.3911854445 17.3914910387
t = 3.0 17.4298852213 17.3919072419 17.3911710024 17.3914901056
t = 3.5 17.4257242289 17.3915916231 17.3911504036 17.3914888028
t = 4.0 17.4208004460 17.3913048704 17.3911324701 17.3914876800
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Table 6. Quantity Q4 under different mesh steps h and τF at various times.

TT-M Finite Difference Scheme

( 1
2 , 1

4 ) ( 1
4 , 1

16 ) ( 1
8 , 1

64 ) ( 1
16 , 1

256 )

t = 0.0 29.8645685095 29.8270800111 29.8174683777 29.8150480627
t = 0.5 29.5194998279 29.7377964805 29.7949677954 29.8094115019
t = 1.0 29.2953094352 29.6804305056 29.7805099425 29.8057894879
t = 1.5 29.2373157339 29.6665651150 29.7770997278 29.8049405034
t = 2.0 29.3052034101 29.6864373371 29.7822468973 29.8062391542
t = 2.5 29.4333002603 29.7204018949 29.7909264484 29.8084218678
t = 3.0 29.5520897511 29.7519209103 29.7989376025 29.8104338587
t = 3.5 29.6355327196 29.7733189521 29.8043614200 29.8117950932
t = 4.0 29.6765644108 29.7843463859 29.8071613054 29.8124980105

(a) (b)

(c) (d)

Figure 4. Quantities Q1 (a), Q2 (b), Q3 (c) and Q4 (d) under mesh steps h = 1/8, τF = 1/64.

5.3. Long-Time Simulation

Using the parameters h = 0.1, τF = 0.01, xL = −20, xR = 100 and T = 40, the long
time waveforms of u(x, t) and ρ(x, t) generated by the present scheme are illustrated in
Figure 5. The waveforms at t = 20 and 40 demonstrate a significant level of agreement
with the waveforms at t = 0, which also indicates the accuracy of the scheme. Figure 6
displays the computational times of both the SNFD scheme and proposed scheme at long
time. From the graph, it can be seen that the computational time difference between the
two schemes grows increasingly as the simulation time increases, which indicates that
the longer the simulation time, the more computational time can be saved by the scheme
proposed in this paper. This once again proves the advantage of our scheme compared to
the SNFD scheme in [22].
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(a) (b)

Figure 5. Numerical solutions of u(x, t) (a) and ρ(x, t) (b) at long time with h = 1/10, τF = 1/100.

Figure 6. Comparison of computation times of the SNFD scheme in [22] with present scheme at long
time under h = 1/10, τF = 1/100.

6. Conclusions

This paper presents a new time two-mesh finite difference scheme for solving the
symmetric regularized long wave equation, which contains a nonlinear derivative term in
its formulation. Based on the previous work, our aim is to obtain a scheme that is not only
error-preserving but also can save more computational time compared to the scheme in [22].
To achieve this goal, we have constructed a TT-M finite difference scheme that mainly
consists of three steps. Firstly, the time interval is divided into coarse and fine time meshes,
then the nonlinear system is solved on the coarse time mesh; secondly, coarse numerical
solutions on the fine time mesh are computed using an interpolation formula based on
the solutions derived in the step one; lastly, the nonlinear term of the SRLW equation is
linearized using Taylor’s formula for a function with three variables and constructed the
TT-M finite difference linear numerical scheme on the fine time mesh. In terms of theoretical
results, we investigated the convergence and stability of numerical solutions. We observed
that the solutions obtained from our proposed scheme converged to the exact solutions of
the SRLW equation, and the rate of convergence is O(τ2

C + τF + h2). Additionally, τF and h
are sufficiently small, then the proposed scheme (8)–(9) is stable with respect to the initial
conditions on the fine time mesh. The numerical results demonstrated that the proposed
method effectively supported the analysis of the convergence rate. Meanwhile, one can
observe that the errors of u(x, t) and ρ(x, t) in both the SNFD scheme in [22] and the present
scheme are nearly identical, but the proposed scheme can reduce the computational time
compared with the SNFD scheme. In addition, we calculated four conservation laws of the
SRLW equation, regardless of the time step and grid spacing; the four quantities remain
well-preserved at various times. The long time simulation example of the proposed scheme
is also conducted in this part, the result shows that the waveform always maintains its
original state in a long time. The error increases gently as simulation time is extended,
which is a limitation of the proposed scheme and it will be improved by other methods in
our future work. These findings demonstrate that the proposed method is more effective
and yields a better improvement in solving the SRLW equation.
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