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Abstract: The Cauchy problem for the telegraph equation (Dρ
t )

2u(t) + 2αDρ
t u(t) + Au(t) = f (t)

(0 < t ≤ T, 0 < ρ < 1, α > 0), with the Caputo derivative is considered. Here, A is a selfadjoint
positive operator, acting in a Hilbert space, H; Dt is the Caputo fractional derivative. Conditions are
found for the initial functions and the right side of the equation that guarantee both the existence and
uniqueness of the solution of the Cauchy problem. It should be emphasized that these conditions
turned out to be less restrictive than expected in a well-known paper by R. Cascaval et al. where
a similar problem for a homogeneous equation with some restriction on the spectrum of the operator,
A, was considered. We also prove stability estimates important for the application.

Keywords: telegraph-type equations; Caputo derivatives; stability inequalities

1. Introduction

Consider a separable Hilbert space, H, with inner product, (·, ·), and norm, || · ||. Let
A : H → H be an arbitrary selfadjoint unbounded positive operator with a domain of
definition, D(A), assuming that A has a complete orthonormal system of eigenvalues, {vk},
and a innumerable set of positive eigenfunctions, λk. We also assume that the spectrum of
the operator, A, has no finite limit points. In particular, the multiplicity of each eigenvalue,
λk, is finite. Without the loss of generality, we assume that the eigenvalues do not decline
as their numbers rise, i.e., 0 < λ1 ≤ λ2 · · · → +∞.

For vector functions (or just functions), h : R+ → H, fractional integrals and deriva-
tives are defined similarly with scalar functions, and known formulas and qualities are
preserved [1]. Recall that fractional integrals of the order σ < 0 of the function h(t) defined
on R+ have the form (see, e.g., [2])

Jσ
t h(t) =

1
Γ(−σ)

t∫
0

h(ξ)
(t− ξ)σ+1 dξ, t > 0, (1)

supplied the right-hand side exists. Here, Γ(σ) is a Euler’s gamma function. Using this
definition, one can define the Caputo fractional derivative of order ρ ∈ (0, 1):

Dρ
t h(t) = Jρ−1

t
d
dt

h(t).

Note that if ρ = 1, then the fractional derivative coincides with the ordinary classical
derivative of the first order: Dth(t) = d

dt h(t).
Let C[0, T] stand for the set of continuous functions defined by [0, T] with the standard

max-norm || · ||C[0,T], and let C(H) = C([0, T]; H) be a space of continuous H-valued
functions h(t) defined by [0, T], and supplied with the norm

||h||C(H) = max
0≤t≤T

||h(t)||.
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Let ρ ∈ (0, 1) be a fixed number. Consider the following Cauchy problem:
(Dρ

t )
2u(t) + 2αDρ

t u(t) + Au(t) = f (t), 0 < t ≤ T;
lim
t→0

Dρ
t u(t) = ϕ0,

u(0) = ϕ1,

(2)

where f (t) ∈ C(H) and ϕ0, ϕ1 are the known elements of H. We call this problem the
forward problem.

Note that one can study the above equation with the operator D2ρ
t instead of (Dρ

t )
2.

However, these two operators are not the same and the corresponding problems are
completely different (see [3]). As a simple example, we can take the function:

u(t) = tρ−1, t > 0.

It is easy to see that
(Dρ

t )
2 = Dρ(Dρu) 6= D2ρu.

In this paper, following the paper in [3], we consider the telegraph equation in the
form of (2).

Definition 1. If the function u(t) with the properties (Dρ
t )

2u(t), Au(t) ∈ C((0, T]; H) and
u(t), Dρ

t u(t) ∈ C(H) satisfies Condition (2), then it is called the strong solution of the
forward problem.

To formulate the main results of this article for an arbitrary real number, τ, we define
the degree of the operator, A, acting in H as

Aτh =
∞

∑
k=1

λτ
k hkvk, hk = (h, vk).

Naturally, the domain of definition of this operator has the form

D(Aτ) = {h ∈ H :
∞

∑
k=1

λ2τ
k |hk|2 < ∞}.

It immediately follows from this definition that D(Aτ) ⊆ D(Aσ) for any τ ≥ σ.
On the set D(Aτ), we define the inner product

(h, g)τ =
∞

∑
k=1

λ2τ
k hkgk = (Aτh, Aτ g)

Then, D(Aτ) becomes a Hilbert space with the norm ||h||2τ = (h, h)τ .

Theorem 1. Let α > 0, ϕ0 ∈ H and ϕ1 ∈ D(A
1
2 ). Further, let ε ∈ (0, 1) be any fixed number

and f (t) ∈ C([0, T]; D(Aε)). Then, the forward problem has a unique strong solution.
Furthermore, there is a constant, C > 0, such that the following stability estimate holds:

||(Dρ
t )

2u||+ ||Dρ
t u||+ ||Au|| ≤ C

[
t−ρ
(
||ϕ0||+ ||ϕ1|| 1

2

)
+ max

0≤t≤T
|| f (t)||ε

]
, t > 0

Let Ω ⊂ RN be a bounded N-dimensional domain with a sufficiently smooth boundary
∂Ω. Let A0 stand for the operator in L2(Ω): A0h(x) = −4h(x), with the domain of definition
D(A0) = {h ∈ C2(Ω) ∩ C(Ω) : h(x) = 0, x ∈ ∂Ω}, where4 is the Laplace operator. Then
(see, e.g., [4]), A0 has a system of orthonormal eigenfunctions, {vk(x)}, complete in L2(Ω),
and a countable set of non-negative eigenvalues, λk: 0 < λ1(Ω) = λ1 ≤ λ2 · · · → +∞.
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Let A be the operator: Ah(x) = ∑ λkhkvk(x) with D(A) = {h ∈ L2(Ω) : ∑ λ2
kh2

k < ∞}.
Then, one can easily verify that A is a positive selfadjoint extension in L2(Ω) of operator
A0. Hence, one is able to assign Theorem 1 to operator A and, therefore, to the problem:

(Dρ
t )

2u(x, t) + 2αDρ
t u(x, t)−4u(x, t) = f (x, t), x ∈ Ω, 0 < t ≤ T;

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T;
lim
t→0

Dρ
t u(x, t) = ϕ0(x);

u(x, 0) = ϕ1(x),

(3)

where f (x, t) ∈ C(L2(Ω)) and ϕ0(x), ϕ1(x) are known elements of L2(Ω).
For simplicity, one can take N = 1 and Ω = [0, π]. Then, we have the following

problem: 

(Dρ
t )

2u(x, t) + 2αDρ
t u(x, t)− uxx(x, t) = f (x, t), (x, t) ∈ Ω;

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T;

lim
t→0

Dρ
t u(x, t) = ϕ0(x), 0 ≤ x ≤ π;

u(x, 0) = ϕ1(x), 0 ≤ x ≤ π.

In this case, we know that the eigenvalues and eigenfunctions have the form: λk = k2

and vk = sin(kx). From this, we see that whenever α /∈ N, then α2 6= λk for all k. Otherwise,
for some k, we may have the equality, α2 = λk.

The telegraph equation first appeared in the work of Oliver Heaviside in 1876. When
simulating the passage of electrical signals in marine telegraph cables, he obtained the
following equation:

utt + aut + bu− cuxx = 0,

where a and b are non-negative constants, and c is a positive constant (see, e.g., [5,6]).
Then, specialists came to this equation when modeling various physical processes. A small
overview of various applications of the telegraph equation is given in [7]. This is shown
in the theory of superconducting electrodynamics, where it illustrates the propagation
electromagnetic waves in superconducting media (see, e.g., [8]). In [7], the propagation
of digital and analog signals through media, which, in general, are both dissipative and
dispersive, is modeled using the telegraph equation. Some applications of the telegraph
equation to the theory of random walks are contained in [9]. Another field of application of
the telegraph equation is the biological sciences (see, e.g., [5,10,11]).

In recent decades, fractional calculus has attracted the attention of many mathemati-
cians and researchers as non-integer derivative operators have come to play a larger role in
describing physical phenomena, modeling more accurately and efficiently than classical
derivatives [12–14]. Various forms of the time-fractional telegraph equation was considered
by a number of researchers (see, e.g., [15–17]), with the elliptic part of the equation in the
form Au(x, t) = uxx(x, t). Thus, in the works of ref. [18] (in the case of ρ = 1/2) and
ref. [19] (in the case of fractional derivatives of rational order, ρ = m/n, with m < n), fun-
damental solutions for problem (2) are constructed. In the work of ref. [20], a fundamental
solution of the Cauchy problem in cases x ∈ R and x ∈ R+ is found using Fourier–Laplace
transforms and their inverse transforms. Additionally, for the case of a bounded spatial
domain, the solution of the boundary value problem is found in the form of a series using
the Sine–Laplace transformation method.

The authors of [21] studied problem (2) in a bounded spatial domain, with operator
A = (−4)β/2, β ∈ (0, 2], and they found the formal analytical solutions under nonhomo-
geneous Dirichlet and Neumann boundary conditions by using the method of separation
of variables. The obtained solutions are expressed as a Fourier series through multivari-
ate Mittag-Leffler-type functions. However, it should be noted that the authors did not
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study the convergence and differentiability of these series, i.e., it is not shown whether the
function represented by these series is really the solution of the problems under study.

A number of specialists have developed efficient and optimally accurate numerical
algorithms for solving problem (2) for different operators, A. Reviews of some works in
this direction are contained in the papers in [7,22].

The closest to our article is the fundamental work of R. Cascaval et al. [3]. In this paper,
problem (2) is considered for a homogeneous equation in the case when the parameter, α2, is
not included in the spectrum of the operator, A. The main goal of this paper is to study the
asymptotic behavior of the solution, u(t), of problem (2) for large t. The authors succeeded
in proving the existence of a solution, v(t), of the equation 2αDρ

t v(t) + Av(t) = 0, for which
the asymptotic relation,

u(t) = v(t) + o(v(t)), t→ +∞,

is valid.
We note that, in this paper, it was also conjectured that for the existence and uniqueness

of a strong solution to problem (2) (recall that, in this paper, a homogeneous equation is
considered, and it is assumed that α2 is not included in the spectrum of the operator, A), the
initial functions must be from the following classes: ϕ0 ∈ D(A

1
2 ) and ϕ1 ∈ D(A). However,

as Theorem 1 shows, for problem (2) (even in a more general case), to be well posed, it
suffices to require much fewer conditions on the initial functions. We also emphasize the
importance of the stability estimate obtained in Theorem 1, which was not known even for
the homogeneous telegraph equation.

The present paper consists of four sections: Section 2 provides some background and
preliminaries for the forward problem. Here, we prove several important lemmas. In
Section 3, complete proof of the existence and uniqueness of the solution to problem (1) is
provided. Moreover, we present here the stability result for the same problem. The article
ends with the Conclusion.

2. Preliminaries

In this part, we recall several data about the Mittag-Leffler functions, differential and
integral equations, which we will utilize in the following parts.

For 0 < ρ < 1 and an arbitrary complex number µ, by Eρ,µ(z), we denote the Mittag-
Leffler function of a complex argument, z, with two parameters:

Eρ,µ(z) =
∞

∑
k=0

zk

Γ(ρk + µ)
. (4)

If the parameter µ = 1, then we have the classical Mittag-Leffler function: Eρ(z) = Eρ,1(z).
Prabhakar (see [23]) introduced the function, Eγ

ρ,µ(z), of the form

Eγ
ρ,µ(z) =

∞

∑
k=0

(γ)k
Γ(ρk + µ)

· zk

k!
, (5)

where z ∈ C, ρ, µ, and γ are arbitrary positive constants, and (γ)k is the Pochhammer
symbol. When γ = 1, one has E1

ρ,µ(z) = Eρ,µ(z). We also have [23]

E2
ρ,µ(z) =

1
ρ

(
Eρ,µ−1(z) + (1− ρ + µ)Eρ,µ(z)

)
. (6)

Obviously, since Eρ,µ(z) is an analytic function of z, then it is bounded for |z| ≤ 1.
We also note the notorious asymptotic assess of the Mittag-Leffler function (see, e.g., [24]
(p. 133)):
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Lemma 1. Let µ be an arbitrary complex number. Further, let β be a fixed number, such that
π
2 ρ < β < πρ and β ≤ | arg z| ≤ π. Then, the following asymptotic estimate holds:

Eρ,µ(z) = −
z−1

Γ(ρ− µ)
+ O(|z|−2), |z| > 1.

Corollary 1. Under the conditions of Lemma 1, one has

|Eρ,µ(z)| ≤
M

1 + |z| , |z| ≥ 0,

where M is a constant, independent of z.

We also use the following estimate for sufficiently large λ > 0 and α > 0, 0 < ε < 1:

|tρ−1Eρ,µ(−(α−
√

α2 − λ)tρ)| ≤ tρ−1M
1 +
√

λtρ
≤ Mλε− 1

2 t2ερ−1, t > 0, (7)

which is easy to verify. Indeed, let (λ)
1
2 tρ < 1, then t < λ

− 1
2ρ and

tρ−1 = tρ−2ερt2ερ−1 < λε− 1
2 t2ερ−1.

If (λ)
1
2 tρ ≥ 1, then λ−

1
2 ≤ tρ and

λ−
1
2 t−1 = λε− 1

2 λ−εt−1 ≤ λε− 1
2 t2ρε−1.

Lemma 2. If ρ > 0 and λ ∈ C, then (see [25] (p. 446))

Dρ
t Eρ,1(λtρ) = λEρ,1(λtρ) t > 0. (8)

The following lemma is an extension of the result of [3], where the authors considered
only a homogeneous equation with an extra condition, α2 6= λ.

Lemma 3. Let g(t) ∈ C[0, T] and ϕ0, ϕ1 be known numbers. Then, the unique solution of the
Cauchy problem, 

(Dρ
t )

2y(t) + 2αDρ
t y(t) + λy(t) = g(t), 0 < t ≤ T;

lim
t→0

Dρ
t y(t) = ϕ0;

y(0) = ϕ1,

(9)

has the form

y(t) =

{
y1(t), α2 6= λ;
y2(t), α2 = λ.

(10)

Here,

y1(t) =

(√
α2 − λ + α

)
ϕ1

2
√

α2 − λ
Eρ,1

((
−α +

√
α2 − λ

)
tρ
)

+

(√
α2 − λ− α

)
ϕ1

2
√

α2 − λ
Eρ,1

((
−α−

√
α2 − λ

)
tρ
)

+
1

2
√

α2 − λ

(
Eρ,1

((
−α +

√
α2 − λ

)
tρ
)
− Eρ,1

((
−α−

√
α2 − λ

)
tρ
))

ϕ0

+
1

2
√

α2 − λ

∫ t

0
(t− τ)ρ−1Eρ,ρ

((
−α +

√
α2 − λ

)
(t− τ)ρ

)
g(τ)dτ
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− 1

2
√

α2 − λ

∫ t

0
(t− τ)ρ−1Eρ,ρ

((
−α−

√
α2 − λ

)
(t− τ)ρ

)
g(τ)dτ,

y2(t) = tρE2
ρ,1+ρ(−αtρ)ϕ0 + αtρE2

ρ,1+ρ(−αtρ)ϕ1 + Eρ,1(−αtρ)ϕ1

+
∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ)g(τ)dτ.

Proof. We utilize the Laplace transform to prove the lemma. Let us be reminded that the
Laplace transform of a function, f (t), is defined as (see [26])

L[ f ](s) = f̂ (s) =
∫ ∞

0
e−st f (t)dt.

The inverse Laplace transform is defined by

L−1[ f̂ ](t) =
1

2πi

∫
C

est f̂ (s)ds,

where C is a contour parallel to the imaginary axis and to the right of the singularities of f̂ .
Let us apply the Laplace transform to Equation (9). Then, Equation (9) becomes:

s2ρŷ(s) + 2αsρŷ(s) + λŷ(s)− s2ρ−1y(0)− sρ−1 lim
t→0

Dρ
t y(t)− 2αsρ−1y(0) = ĝ(s),

it follows from this

ŷ(s) =
ĝ(s) + s2ρ−1y(0) + sρ−1 lim

t→0
Dρ

t y(t) + 2αsρ−1y(0)

s2ρ + 2αsρ + λ
. (11)

Case 1. Let α2 6= λ.
Write ŷ(s) = ŷ0(s) + ŷ1(s), where

ŷ0(s) =
(s2ρ−1 + 2αsρ−1)ϕ0 + sρ−1 ϕ1

s2ρ + 2αsρ + λ
, ŷ1(s) =

ĝ(s)
s2ρ + 2αsρ + λ

.

Furthermore,
y(t) = L−1[ŷ0(s)] + L−1[ŷ1(s)].

As in the work in [3], when we apply the inverse Laplace transform, we obtain the following
expression:

L−1[ŷ0(s)] =

(√
α2 − λ + α

)
ϕ1 + ϕ0

2
√

α2 − λ
Eρ,1

((
−α +

√
α2 − λ

)
tρ
)

(12)

+

(√
α2 − λ− α

)
ϕ1 − ϕ0

2
√

α2 − λ
Eρ,1

((
−α−

√
α2 − λ

)
tρ
)

.

For the second term of y(t), one can obtain the inverse by splitting the function, ŷ1,
into simpler functions:

L−1[ŷ1(s)] = L−1
[

ĝ(s)
s2ρ + 2αsρ + λ

]
= L−1

[
1

s2ρ + 2αsρ + λ

]
∗ L−1[ĝ(s)]. (13)

Using f ∗ g, we denote the Laplace convolution of functions defined by

f ∗ g(t) =
∫ t

0
f (τ)g(t− τ)dτ.



Fractal Fract. 2023, 7, 483 7 of 17

The following simple observations show that

L−1
[

1
s2ρ + 2αsρ + λ

]
= L−1

[
1

2
√

α2 − λ

(
1

sρ + α−
√

α2 − λ
− 1

sρ + α +
√

α2 − λ

)]

=
1

2
√

α2 − λ
L−1

[
1

sρ + α−
√

α2 − λ

]
− 1

2
√

α2 − λ
L−1

[
1

sρ + α +
√

α2 − λ

]
,

or (see [3])

1

2
√

α2 − λ
L−1

[
1

sρ + α−
√

α2 − λ

]
=

tρ−1

2
√

α2 − λ
Eρ,ρ

((
−α +

√
α2 − λ

)
tρ
)

and

1

2
√

α2 − λ
L−1

[
1

sρ + α +
√

α2 − λ

]
=

tρ−1

2
√

α2 − λ
Eρ,ρ

((
−α−

√
α2 − λ

)
tρ
)

.

Plugging this function into (13) and combining it with (12), we have:

y(t) =

(√
α2 − λ + α

)
ϕ1

2
√

α2 − λ
Eρ,1

((
−α +

√
α2 − λ

)
tρ
)

+

(√
α2 − λ− α

)
ϕ1

2
√

α2 − λ
Eρ,1

((
−α−

√
α2 − λ

)
tρ
)

+
1

2
√

α2 − λ

(
Eρ,1

((
−α +

√
α2 − λ

)
tρ
)
− Eρ,1

((
−α−

√
α2 − λ

)
tρ
))

ϕ0

+
1

2
√

α2 − λ

∫ t

0
(t− τ)ρ−1Eρ,ρ

((
−α +

√
α2 − λ

)
(t− τ)ρ

)
g(τ)dτ

− 1

2
√

α2 − λ

∫ t

0
(t− τ)ρ−1Eρ,ρ

((
−α−

√
α2 − λ

)
(t− τ)ρ

)
g(τ)dτ.

Case 2. Let α2 = λ. In this case, (11) has the following form:

ŷ(s) =
ĝ(s) + s2ρ−1y(0) + sρ−1 lim

t→0
Dρ

t y(t) + 2αsρ−1y(0)

(sρ + α)2 .

Therefore,

ŷ(s) =
sρ−1

sρ + α
y(0) +

αsρ−1

(sρ + α)2 y(0) +
sρ−1

(sρ + α)2 lim
t→0

Dρ
t y(t) +

1
(sρ + α)2 ĝ(s).

Passing to the inverse Laplace transform (see [26] (p. 226, E67)):

y(t) = L−1
[

sρ−1

sρ + α
y(0)

]
+ L−1

[
αsρ−1

(sρ + α)2 y(0)
]
+ L−1

[
sρ−1

(sρ + α)2 lim
t→0

Dρ
t y(t)

]

+L−1
[

1
(sρ + α)2 ĝ(s)

]
,

one has
y(t) = Eρ,1(−αtρ)ϕ1 + αtρE2

ρ,1+ρ(−αtρ)ϕ1 + tρE2
ρ,1+ρ(−αtρ)ϕ0

+
∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ)g(τ)dτ.
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Remark 1. A similar result can also be obtained using the Melling transform (see [27]).

Lemma 4. Let g(t) ∈ C[0, T].Then, the unique solution of the Cauchy problem{
Dρ

t u(t) + 2αu(t) + α2 J−ρ
t u(t) = J−ρ

t g(t), 0 < t ≤ T;
u(0) = 0,

(14)

where 0 < ρ < 1 and α ∈ C, has the form

u(t) =
∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ)g(τ)dτ.

Proof. Allow us to apply the Laplace transform to Equation (14). Then, Equation (14)
becomes:

sρû(s)− sρ−1u(0) + 2αû(s) + α2s−ρû(s) = s−ρ ĝ(s),

It follows from this that

û(s) =
s−ρ ĝ(s)

sρ + 2α + α2s−ρ =
ĝ(s)

(sρ + α)2 .

Passing to the inverse Laplace transform, we obtain:

u(t) = L−1[ 1
(sρ + α)2

]
∗ L−1[ĝ(s)].

The first term in the convolution is known (see [26] (p. 226, E67)), and one has

u(t) =
∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ)g(τ)dτ.

Lemma 5. The solution to the Cauchy problem{
Dρ

t u(t)− λu(t) = f (t), 0 < t ≤ T;
u(0) = 0,

(15)

where 0 < ρ < 1 and λ ∈ C, has the form

u(t) =
∫ t

0
(t− τ)ρ−1Eρ,ρ(λ(t− τ)ρ) f (τ)dτ.

The proof of this lemme for λ ∈ R can be found in [28] (p. 231). In a complex case,
similar ideas will lead us to the same conclusion.

Regarding the operator, Eρ,µ(tρ A) : H → H, defined by the spectral theorem of J. von
Neumann:

Eρ,µ(tρ A)g =
∞

∑
k=1

Eρ,µ(tρλk)gkvk,

here and throughout below, by gk, we will denote the Fourier coefficients of a vector, g ∈ H:
gk = (g, vk).
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Lemma 6. Let α > 0. Then, for any g(t) ∈ C(H), one has Eρ,µ(−Stρ)g(t) ∈ C(H) and
SEρ,µ(−Stρ)g(t) ∈ C((0, T]; H). Furthermore, the following values hold:

||Eρ,µ(−tρS)g(t)||C(H) ≤ M||g(t)||C(H), (16)

||SEρ,µ(−tρS)g(t)|| ≤ C1t−ρ||g(t)||C(H), t > 0. (17)

If g(t) ∈ D(A
1
2 ) for all t ∈ [0, T], then

||SEρ,µ(−tρS)g(t)||C(H) ≤ C2 max
0≤t≤T

||g(t)|| 1
2
, (18)

||AEρ,µ(−tρS)g(t)|| ≤ C3t−ρ max
0≤t≤T

||g(t)|| 1
2
, t > 0. (19)

Here, S has two states: S− and S+,

S− = αI − (α2 I − A)
1
2 , S+ = αI + (α2 I − A)

1
2 .

Proof. By using Parseval’s equality, one has

||Eρ,µ(−S−tρ)g(t)||2 =
∞

∑
k=1

∣∣∣∣Eρ,µ

(
−
(

α−
√

α2 − λk

)
tρ

)
gk(t)

∣∣∣∣2.

According to Corollary 1, we write the following:

||Eρ,µ(−(α−
√

α2 − λk)tρ)g(t)||2 ≤ M2
∞

∑
k=1

∣∣∣∣ gk(t)
1 + |α−

√
α2 − λk|tρ

∣∣∣∣2 ≤ M2||g(t)||2,

which concludes the assertion (16). On the other hand,

||S−Eρ,µ(−tρS−)g(t)||2 ≤ M2
∞

∑
k=1

|α−
√

α2 − λk|2|gk(t)|2

(1 + tρ|α−
√

α2 − λk|)2
,

uλk (t) =
|α−

√
α2 − λk|2|gk(t)|2

(1 + tρ|α−
√

α2 − λk|)2
∼

λk→∞
vλk (t) =

λk|gk(t)|2

(1 + tρ
√

λk)2 ,

∞

∑
k=1

vλk (t) =
∞

∑
k=1

λk|gk(t)|2

(1 + tρ
√

λk)2 ≤ t−2ρ||g(t)||2, t > 0.

We have used the notation here: uλk ∼
λk→∞

vλk means lim
λk→∞

uλk
vλk

= 1. Therefore,

||S−Eρ,µ(−tρS−)g(t)||2 ≤ M2Ct−2ρ||g(t)||2 = C1t−2ρ||g(t)||2, t > 0.

Obviously, if g(t) ∈ D(A
1
2 ) for all t ∈ [0, T], then

||S−Eρ,µ(−tρS−)g(t)||C(H) ≤ C2 max
0≤t≤T

||g(t)|| 1
2
,

||AEρ,µ(−tρS−)g(t)|| ≤ C3t−ρ max
0≤t≤T

||g(t)|| 1
2
, t > 0.

A similar estimate is proven in precisely the same way, with the operator, S−, replaced
by the operator, S+.
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Lemma 7. Let α > 0 and λk 6= α2 for all k. Then, for any g(t) ∈ C(H), one has R−1Eρ,µ(−Stρ)g(t),
SR−1Eρ,µ(−Stρ)g(t) ∈ C(H), and AR−1Eρ,µ(−tρS)g(t) ∈ C((0, T], H). Furthermore, the fol-
lowing values hold:

||R−1Eρ,µ(−tρS)g(t)||C(H) ≤ C4||g(t)||C(H), (20)

||SR−1Eρ,µ(−tρS)g(t)||C(H) ≤ C5||g(t)||C(H), (21)

||AR−1Eρ,µ(−tρS)g(t)|| ≤ C6t−ρ||g(t)||C(H), t > 0. (22)

Here,
R−1 = (α2 I − A)−

1
2 .

Proof. In proving the lemma, we use Parseval’s equality and Corollary 1 similarly to the
proof of Lemma 6:

||R−1Eρ,µ(−tρS−)g(t)||2 ≤ M2
∞

∑
k=1

∣∣∣∣ 1√
α2 − λk

gk(t)
1 + tρ|α−

√
α2 − λk|

∣∣∣∣2,

uλk (t) =
|gk(t)|2

|
√

α2 − λk|2|(1 + tρ|α−
√

α2 − λk|)2
∼

λk→∞
vλk (t) =

|gk(t)|2

λk(1 + tρ
√

λk)2 ,

∞

∑
k=1

vλk (t) =
∞

∑
k=1

|gk(t)|2

λk(1 + tρ
√

λk)2 ≤ C∗||g(t)||2.

Therefore,

||R−1Eρ,µ(−tρS−)g(t)||2 ≤ M2C∗||g(t)||2C(H) = C4||g(t)||2C(H).

Similarly,

||S−R−1Eρ,µ(−tρS−)g(t)||2 ≤ M2
∞

∑
k=1

∣∣∣∣ |α−
√

α2 − λk|√
α2 − λk

gk(t)
1 + tρ|α−

√
α2 − λk|

∣∣∣∣2,

uλk (t) =
|α−

√
α2 − λk|2|gk(t)|2

|
√

α2 − λk|2|(1 + tρ|α−
√

α2 − λk|)2
∼

λk→∞
vλk (t) =

|gk(t)|2

(1 + tρ
√

λk)2 ,

∞

∑
k=1

vλk (t) =
∞

∑
k=1

|gk(t)|2

(1 + tρ
√

λk)2 ≤ ||g(t)||
2.

It remains to prove estimate (22). We consider the case with the operator S−. We have

||AR−1Eρ,µ(−tρS−)g(t)||2 ≤ M2
∞

∑
k=1

∣∣∣∣ 1√
α2 − λk

λkgk(t)
1 + tρ|α−

√
α2 − λk|

∣∣∣∣2,

uλk (t) =
λ2

k |gk(t)|2

|
√

α2 − λk|2|(1 + tρ|α−
√

α2 − λk|)2
∼

λk→∞
vλk (t) =

λ2
k |gk(t)|2

λk(1 + tρ
√

λk)2 ,

∞

∑
k=1

vλk (t) =
∞

∑
k=1

λk|gk(t)|2

(1 + tρ
√

λk)2 ≤ t−2ρ||g(t)||2, t > 0.

Then,

||AR−1Eρ,µ(−tρS−)g(t)||2 ≤ M2C∗∗t−2ρ||g(t)||2C(H) = C6t−2ρ||g(t)||2C(H), t > 0.

Similar estimates are proven in precisely the same way for the operator, S+.
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Lemma 8. Let α > 0 and λk 6= α2 for all k. Then, for any g(t) ∈ C([0, T]; D(Aε)), with
0 < ε < 1, we have

∣∣∣∣∣∣∣∣ t∫
0

(t− τ)ρ−1 AR−1Eρ,ρ(−(t− τ)ρS)g(τ)dτ

∣∣∣∣∣∣∣∣ ≤ C max
0≤t≤T

||g(t)||ε, (23)

∣∣∣∣∣∣∣∣ t∫
0

(t− τ)ρ−1SR−1Eρ,ρ(−(t− τ)ρS)g(τ)dτ

∣∣∣∣∣∣∣∣ ≤ C max
0≤t≤T

||g(t)||ε, (24)

∣∣∣∣∣∣∣∣ t∫
0

(t− τ)ρ−1R−1Eρ,ρ(−(t− τ)ρS)g(τ)dτ

∣∣∣∣∣∣∣∣ ≤ C max
0≤t≤T

||g(t)||ε. (25)

Proof. Let

Sj(t) =
j

∑
k=1

 t∫
0

ηρ−1Eρ,ρ(−(α−
√

α2 − λk)η
ρ)gk(t− η)dη

 λk√
α2 − λk

vk.

We may write

||Sj(t)||2 =
j

∑
k=1

∣∣∣∣ λk√
α2 − λk

∣∣∣∣2
∣∣∣∣∣∣

t∫
0

ηρ−1Eρ,ρ(−(α−
√

α2 − λk)η
ρ)gk(t− η)dη

∣∣∣∣∣∣
2

.

Apply estimate (7) to a large enough k ≥ j0 to obtain

||Sj(t)||2 ≤ C
j

∑
k=j0

[ t∫
0

η2ερ−1 λk√
λk

λ
ε− 1

2
k |gk(t− η)|dη

]2

.

Minkowski’s inequality implies

||Sj(t)||2 ≤ C
[ t∫

0

η2ερ−1
( j

∑
k=j0

λ2ε
k |gk(t− η)|2

) 1
2

dη

]2

≤ C max
0≤t≤T

||g(t)||2ε.

Since
t∫

0

(t− τ)ρ−1 AR−1Eρ,ρ(−(t− τ)ρS−)g(τ)dτ = lim
j→∞

Sj(t),

this implies the assertions of Equations (23)–(25) are obtained in the same way as in the
proof of (23), combining the fact that D(Aε) ⊂ D(Aε−1/2) ⊂ D(Aε−1).

Lemma 9. Let α > 0 and g(t) ∈ C(H). Then,∣∣∣∣∣∣∣∣J−ρ
t

( ∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ)g(τ)dτ

)∣∣∣∣∣∣∣∣
C(H)

≤ M
Γ(ρ)

T3ρ

2ρ3 (2+ ρ)||g(t)||C(H). (26)

Proof. For convenience, let us denote the argument of J−ρ
t by

F(t) =
∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ)g(τ)dτ.

According to (6)



Fractal Fract. 2023, 7, 483 12 of 17

F(t) =
1
ρ

∫ t

0
(t− τ)2ρ−1Eρ,2ρ−1(−α(t− τ)ρ)g(τ)dτ +

1 + ρ

ρ

∫ t

0
(t− τ)2ρ−1Eρ,2ρ(−α(t− τ)ρ)g(τ)dτ,

Then,

max
0≤t≤T

||J−ρ
t F(t)|| = max

0≤t≤T
||
∫ t

0
F(τ)(t− τ)ρ−1dτ|| ≤ max

0≤t≤T

∫ t

0
||F(τ)|||t− τ|ρ−1dτ

≤ ||F(t)||C(H) max
0≤t≤T

∫ t

0
|t− τ|ρ−1dτ = ||F(t)||C(H) max

0≤t≤T

tρ

ρ
≤ Tρ

ρ
||F(t)||C(H).

Thus, we need to estimate ‖F(t)‖C(H), and this can be performed as follows:

||F(t)||C(H) ≤
1
ρ

∣∣∣∣ ∫ t

0
(t− τ)2ρ−1Eρ,2ρ−1(−α(t− τ)ρ)g(τ)dτ

∣∣∣∣
C(H)

+
1 + ρ

ρ

∣∣∣∣ ∫ t

0
(t− τ)2ρ−1Eρ,2ρ(−α(t− τ)ρ)g(τ)dτ

∣∣∣∣
C(H)

≤ 1
ρ

∣∣∣∣Eρ,2ρ−1(−α(t− τ)ρ)g(t)
∣∣∣∣

C(H)
max

0≤t≤T

∫ t

0
|(t− τ)|2ρ−1dτ

+
1 + ρ

ρ

∣∣∣∣Eρ,2ρ(−α(t− τ)ρ)g(t)
∣∣∣∣

C(H)
max

0≤t≤T

∫ t

0
|(t− τ)|2ρdτ.

Using estimate (16),

||F(t)||C(H) ≤
MT2ρ

2ρ2 (2 + ρ)||g(t)||C(H). (27)

3. Proof of Theorem on the Forward Problem

In this part, we prove Theorem 1.

Proof. In accordance with the Fourier method, we will seek the solution to this problem in
the form

u(t) =
∞

∑
k=1

Tk(t)vk, (28)

where Tk(t) is a solution to the problem
(Dρ

t )
2Tk(t) + 2αDρ

t Tk(t) + λkTk(t) = fk(t),
lim
t→0

Dρ
t Tk(t) = ϕ0k,

Tk(0) = ϕ1k,

(29)

Apply Lemma 3 to obtain

Tk(t) =

{
y1k(t), α2 6= λk;
y2(t), α2 = λk.

(30)

Therefore, we have two cases:
Case I: α2 6= λk for all k ∈ N. We have

u(t) =
1
2

[
Eρ,1

(
−S−tρ

)
+ Eρ,1

(
−S+tρ

)]
ϕ1 +

α

2
R−1Eρ,1(−S−tρ)ϕ1 (31)

−α

2
R−1Eρ,1(−S+tρ)ϕ1 +

1
2

[
R−1Eρ,1(−S−tρ)− R−1Eρ,1(−S+tρ)

]
ϕ0
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+
1
2

∫ t

0
(t− τ)ρ−1

[
R−1Eρ,ρ

(
−S−(t− τ)ρ

)
− R−1Eρ,ρ

(
−S+(t− τ)ρ

)]
f (τ)dτ.

Case II: ∃k0 ∈ N, such that α2 = λk0 .
For simplicity, we assume that there is only one λk0 of this kind. Then, the solution is

u(t) =
1
2

[
Ẽρ,1(−S−tρ) + Ẽρ,1(−S+tρ)

]
ϕ1 +

α

2
R−1Ẽρ,1(−S−tρ)ϕ1 (32)

− α

2
R−1Ẽρ,1(−S+tρ)ϕ1 +

1
2

[
R−1Ẽρ,1(−S−tρ)− R−1Ẽρ,1(−S+tρ)

]
ϕ0 + αtρE2

ρ,1+ρ(−αtρ)ϕ1k0 vk0

+Eρ,1(−αtρ)ϕ1k0 vk0 + tρE2
ρ,1+ρ(−αtρ)ϕ0kvk0 +

∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ) fk0 (τ)vk0 dτ

+
1
2

∫ t

0
(t− τ)ρ−1

[
R−1Ẽρ,ρ

(
−S−(t− τ)ρ

)
− R−1Ẽρ,ρ

(
−S+(t− τ)ρ

)]
f (τ)dτ,

which we can denote by using the following equation:

Ẽρ,µ(−Stρ)g = ∑
k 6=k0

Eρ,µ

(
−
(

α±
√

α2 − λk

)
tρ

)
gkvk.

In the case when there are several indices, k ∈ N, such that α2 = λk, we can repeat the
same argument with a slight modification in the finite number of terms (as noted above,
the multiplicity of each eigenvalue, λk, is finite).

We show that u(t) is a solution to problem (2), in the above cases, according to
Definition 1.

Since both cases are studied in a precisely similar way, we will consider only Case II.
According to (6), we write (32) as follows:

u(t) =
1
2

[
Ẽρ,1(−S−tρ) + Ẽρ,1(−S+tρ)

]
ϕ1 +

α

2
R−1Ẽρ,1(−S−tρ)ϕ1 (33)

−α

2
R−1Ẽρ,1(−S+tρ)ϕ1 +

1
2

[
R−1Ẽρ,1(−S−tρ)− R−1Ẽρ,1(−S+tρ)

]
ϕ0

+Eρ,1(−αtρ)ϕ1k0 vk0 +
αtρ

ρ
Eρ,ρ(−αtρ)ϕ1k0 vk0 +

2αtρ

ρ
Eρ,1+ρ(−αtρ)ϕ1k0 vk0

+
2tρ

ρ
Eρ,1+ρ(−αtρ)ϕ0k0 vk0 +

1
ρ

∫ t

0
(t− τ)2ρ−1Eρ,2ρ−1(−α(t− τ)ρ) fk0(τ)vk0 dτ

+
tρ

ρ
Eρ,ρ(−αtρ)ϕ0k0 vk0 +

1 + ρ

ρ

∫ t

0
(t− τ)2ρ−1Eρ,2ρ(−α(t− τ)ρ) fk0(τ)vk0 dτ

+
1
2

∫ t

0
(t− τ)ρ−1

[
R−1Ẽρ,ρ(−S−(t− τ)ρ)− R−1Ẽρ,ρ(−S+(t− τ)ρ)

]
f (τ)dτ.

Estimate ‖u(t)‖C(H) using (16) and (20), Corollary 1, (25):

||u(t)||C(H) ≤ (M + αC4)||ϕ1||+ C4||ϕ0||+
(

M +
3αMTρ

ρ

)
|ϕ1k0 |+

3MTρ

ρ
|ϕ0k0 |

+
MT2ρ

ρ2 (2 + ρ) max
0≤t≤T

| fk0(t)|+ C max
0≤t≤T

|| f (t)||ε.

Next, we prove that this series converges after applying the operator, A, and the
derivatives, (Dρ)2

t and Dρ
t .
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Let us estimate Au(t). If Sj(t) is a partial sum of (33), then

ASj(t) =
1
2

j

∑
k=1
k 6=k0

[
Eρ,1

(
−
(

α−
√

α2 − λk

)
tρ

)
ϕ1k + Eρ,1

(
−
(

α +
√

α2 − λk

)
tρ

)
ϕ1k

+
α√

α2 − λk
Eρ,1

(
−
(

α−
√

α2 − λk

)
tρ

)
ϕ1k −

α√
α2 − λk

Eρ,1

(
−
(

α +
√

α2 − λk

)
tρ

)
ϕ1k

+
1√

α2 − λk
Eρ,1

(
−
(

α−
√

α2 − λk

)
tρ

)
ϕ0k −

1√
α2 − λk

Eρ,1

(
−
(

α +
√

α2 − λk

)
tρ

)
ϕ0k

+
1√

α2 − λk

∫ t

0
(t− τ)ρ−1Eρ,ρ

(
−
(

α−
√

α2 − λk

)
(t− τ)ρ

)
fk(τ)dτ

− 1√
α2 − λk

∫ t

0
(t− τ)ρ−1Eρ,ρ

(
−
(

α +
√

α2 − λk

)
(t− τ)ρ

)
fk(τ)dτ

]
λkvk

+
2αtρ

ρ
Eρ,1+ρ(−αtρ)ϕ1k0 λk0 vk0 +

tρ

ρ
Eρ,ρ(−αtρ)ϕ0k0 λk0 vk0 +

2tρ

ρ
Eρ,1+ρ(−αtρ)ϕ0k0 λk0 vk0

+Eρ,1(−αtρ)ϕ1k0 λk0 vk0 +
1
ρ

∫ t

0
(t− τ)2ρ−1Eρ,2ρ−1(−α(t− τ)ρ) fk0(τ)λk0 vk0 dτ

+
αtρ

ρ
Eρ,ρ(−αtρ)ϕ1k0 λk0 vk0 +

1 + ρ

ρ

∫ t

0
(t− τ)2ρ−1Eρ,2ρ(−α(t− τ)ρ) fk0(τ)λk0 vk0 dτ

Using Equations (19) and (22) and Corollary 1 and (23) consequently for the above-given
expression, we obtain:

||ASj(t)|| ≤C3t−ρ||ϕ1|| 1
2
+ αC6t−ρ||ϕ1||+ C6t−ρ||ϕ0||+ α2(M +

3αMTρ

ρ
)|ϕ1k0 |

+
3α2MTρ

ρ
|ϕ0k0 |+

α2MT2ρ

ρ2 (2 + ρ) max
0≤t≤T

| fk0(t)|+ C max
0≤t≤T

|| f (t)||ε, t > 0.

Hence, it is sufficient to have ϕ0 ∈ H, ϕ1 ∈ D(A
1
2 ) and f (t) ∈ C([0, T]; D(Aε)) for

having Au(t) ∈ C((0, T]; H).
Let us now estimate Dρ

t u(t). If Sj(t) is a partial sum of (33), then, by (8), (14), and (15),
we see that

Dρ
t Sj(t) =

1
2

j

∑
k=1
k 6=k0

[
−
(

α−
√

α2 − λk

)
Eρ,1

(
−
(

α−
√

α2 − λk

)
tρ

)
ϕ1k

−
(

α +
√

α2 − λk

)
Eρ,1

(
−
(

α +
√

α2 − λk

)
tρ

)
ϕ1k

−
α
(

α−
√

α2 − λk

)
√

α2 − λk
Eρ,1

(
−
(

α−
√

α2 − λk

)
tρ

)
ϕ1k

+
α
(

α +
√

α2 − λk

)
√

α2 − λk
Eρ,1

(
−
(

α +
√

α2 − λk

)
tρ

)
ϕ1k

−α−
√

α2 − λk√
α2 − λk

Eρ,1

(
−
(

α−
√

α2 − λk

)
tρ

)
ϕ0k

+
α +

√
α2 − λk√

α2 − λk
Eρ,1

(
−
(

α +
√

α2 − λk

)
tρ

)
ϕ0k
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−α−
√

α2 − λk√
α2 − λk

∫ t

0
(t− τ)ρ−1Eρ,ρ

(
−
(

α−
√

α2 − λk

)
(t− τ)ρ

)
fk(τ)dτ

+
α +

√
α2 − λk√

α2 − λk

∫ t

0
(t− τ)ρ−1Eρ,ρ

(
−
(

α +
√

α2 − λk

)
(t− τ)ρ

)
fk(τ)dτ

]
vk

− tρα

ρ
Eρ,ρ(−αtρ)ϕ0k0 vk0 −

α2tρ

ρ
Eρ,ρ(−αtρ)ϕ1k0 vk0 −

2α2tρ

ρ
Eρ,ρ+1(−αtρ)ϕ1k0 vk0

−αEρ,1(−αtρ)ϕ1k0 vk0 −
2αtρ

ρ
Eρ,ρ+1(−αtρ)ϕ0k0 vk0

−2α
∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ) fk0(τ)vk0 dτ

−α2 J−ρ
t

( ∫ t

0
(t− τ)2ρ−1E2

ρ,2ρ(−α(t− τ)ρ) fk0(τ)vk0 dτ

)
+ J−ρ

t fk0(t)vk0

Applying Equations (17) and (21), Corollary 1 and (24), and (26), for the corresponding
terms of the above expression, we have:

||Dρ
t Sj(t)|| ≤ C5||ϕ0||+ (C1t−ρ + αC5)||ϕ1||+

3Mα2Tρ

ρ
|ϕ1k0 |+

3MαTρ

ρ
|ϕ0k0 |+

TMρ

ρ
max

0≤t≤T
| fk0 |

+
2Mα2T2ρ

2ρ2 (2 + ρ) max
0≤t≤T

| fk0 |+
MT3ρ(2 + ρ)

Γ(ρ)2ρ3 max
0≤t≤T

| fk0 |+ C max
0≤t≤T

|| f (t)||ε, t > 0.

If ϕ1, ϕ0 ∈ H and f (t) ∈ C([0, T]; D(Aε)), then we have Dρ
t u(t) ∈ C((0, T]; H)).

Further, Equation (2) implies (Dρ
t )

2u(t) = −2αDρ
t u(t)− Au(t) + f (t). Therefore, arguing

as above, we find that (Dρ
t )

2u(t) ∈ C((0, T]; H).
Using Equation (18) and similar ideas as in the proof of the above estimate, we have

||Dρ
t Sj(t)|| ≤ C5||ϕ0||+ C2||ϕ1|| 1

2
+ αC5||ϕ1||+

3Mα2Tρ

ρ
|ϕ1k0 |+

3MαTρ

ρ
|ϕ0k0 |

+
2Mα2T2ρ

2ρ2 (2+ ρ) max
0≤t≤T

| fk0 |+
MT3ρ(2 + ρ)

Γ(ρ)2ρ3 max
0≤t≤T

| fk0 |+
Tρ

ρ
max

0≤t≤T
| fk0 |+C max

0≤t≤T
|| f (t)||ε.

If ϕ1 ∈ D(A
1
2 ),ϕ0 ∈ H and f (t) ∈ C([0, T]; D(Aε)), then we have Dρ

t u(t) ∈ C(H).
Let us prove the uniqueness of the solution. We use a standard technique based on the

completeness of the set of eigenfunctions, {vk}, in H.
Let u(t) be a solution to the problem

(Dρ
t )

2u(t) + 2αDρ
t u(t) + Au(t) = 0, 0 < t ≤ T;

lim
t→0

Dρ
t u(t) = 0,

u(0) = 0.

(34)

Set uk(t) = (u(t), vk). Then, by virtue of Equation (34) and the selfadjointness of operator A,

(Dρ
t )

2uk(t) = (
(

Dρ
t )

2u(t), vk
)
= (−2αDρ

t u(t)− Au(t), vk) =

= (−2αDρ
t u(t), vk)− (Au(t), vk) = −2α(Dρ

t u(t), vk)− (u(t), Avk) =

= −2αDρ
t uk(t)− λkuk(t).
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Hence, we have the following problem for uk(t):
(Dρ

t )
2uk(t) + 2αDρ

t uk(t) + λku(t) = 0, 0 < t ≤ T;
lim
t→0

Dρ
t uk(t) = 0,

uk(0) = 0.

Lemma 3 implies that uk(t) ≡ 0 for all k. Consequently, due to the completeness of the
system of eigenfunctions {vk}, we have u(t) ≡ 0, as required.

4. Conclusions

As noted above, fractional telegraph equations model various physical and biological
processes. Therefore, the numerical solution of Cauchy problems for such equations
is important. For this, in turn, it is necessary to make sure that the solution depends
continuously on the initial data and the right side of the equation. Moreover, one should
have a representation for the solution, for example, in the form of a Fourier series in terms
of eigenfunctions of the elliptic part of the equation. This is exactly what is conducted in
Theorem 1.

In addition, in Theorem 1, conditions are found on the initial functions and the right
side of the equation that guarantee both the existence and the uniqueness of the solution of
the Cauchy problem. It should be emphasized that these conditions turned out to be less
stringent than expected in a well-known article by R. Cascaval et al. [3], where a similar
problem was considered for a homogeneous equation and with some restriction on the
spectrum of the operator, A.

It should be noted that despite the importance for applications, inverse problems for
fractional telegraph equations have not yet been studied. In our next works, we will study
inverse problems of finding the right side of the equation, i.e., source functions.
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