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Abstract: Fractal geometries consistently provide solutions to several electromagnetic design prob-
lems. In this paper, fractal geometries such as Hilbert and Moore curves are used to design efficient
High-Impedance Surfaces. Modern communication devices have many sensors that are needed to
communicate wirelessly. The critical component of wireless communications is antennas. Planar
microstrip patch antennas are popular due to their low profile, compactness, and good radiation
characteristics. The structural disadvantages of microstrip antennas are that they have surface waves
that propagate over the ground plane. High-Impedance Surface (HIS) planes are a prominent solution
to minimize and eliminate surface waves. The HIS structures behave as active LC filters that suppress
surface waves at their resonance frequency. The resonance frequency of the structure is obtained by
its LC equivalent or by analyzing the reflection phase characteristics. This work presents conventional
HIS structures similar to mushroom HIS and fractal HIS such as Hilbert curve and Moore curve
HIS. The HIS reflection phase characteristics are obtained by applying periodic boundary conditions
with plane wave illumination. The results were obtained in terms of the reflection phase angle.
The conventional mushroom structures show narrow band characteristics at given dimensions of
10 mm× 10 mm and 20 mm× 20 mm. These structures are helpful in the replacement of PEC ground
planes for patch antennas under sub-6 GHz. The Hilbert and Moore fractals are also designed and
have a multiband response that can be useful for L, S, and C band applications. Another design
challenge of HIS is protrusions, which make design difficult. The work also presents the effect of
having vias and the absence of vias on reflection phase characteristics. The response shows the least
and no significant effect of vias under the x-band operation.

Keywords: fractals; high-impedance surface; Hilbert curves; Moore curves; mushroom HIS;
ground plane

1. Introduction

In modern communications, antennas are integrated into the structure of devices
or other objects to improve aesthetics, functionality, and performance. Day by day, the
device size gets smaller, i.e., multiple sensors and other subcomponents are placed closer.
Modern communications use microstrip patch antennas due to their versatile designs, low
profile, and compactness. The patch antennas have good gain and radiation characteristics;
however, these patch antennas suffer from surface wave radiation. The conventional patch
antennas are structured with a Perfect Electric Conductor (PEC) ground plane followed
by a thin substrate and radiating patch. The ground plane in patch antennas reflects the
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backward radiation in the forward direction, improving the gain. However, it carries image
currents that result in lateral radiation and surface waves. The forward radiation and lateral
surface wave radiation are shown in Figure 1a. In this scenario, when patch antennas are
placed in a small footprint, it leads to multipath interference and mutual coupling, etc. To
overcome these effects, High-Impedance Surfaces are a potential solution.
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Figure 1. The Radiation (a) from the PEC Ground plane, (b) from HIS Ground plane.

When PEC is used as the ground plane to produce constructive interference, the
ground plane of the radiating patch must be placed around 0.25λ. However, in practical
applications, thin substrates have been used, and thickness is much less than 0.25λ resulting
in a destructive interference. The HIS as ground plane provides an in-phase reflection of
the incident and reflected waves and creates a constructive interference even at thinner
substrates (� λ). Thus, HIS improves the performance of the antenna.

High-Impedance Surfaces, often known as HISs, are a specific kind of surface that
may be included in the design of antennas to boost their overall performance. In the HIS
plane, a thin layer of small metal patches that are separated periodically are put over a
ground plane. This arrangement constitutes an electromagnetic filter. The HIS helps to
filter the number of surface waves that are reflected from the ground plane, which in turn
helps to enhance the antenna’s overall efficiency. The radiation with eliminated surface
waves is shown in Figure 1b. The radiation from the monopole placed over the PEC and
HIS planes is shown in Figure 1. A wide range of different mushroom structures, cross,
and other designed surfaces, can be utilized to produce the High-Impedance Structures. In
comparison to more conventional antennas, HIS antennas provide several distinct benefits.
Because they may be built to have a reduced profile, they are well suited for usage in
applications in which there are small-size antennas designed by HIS and have been used
successfully in a wide range of contexts, including wireless communication, radar, and
satellite communications, amongst others.

The functional aspect of mushroom HIS is coined by Sivenpiper et al. [1]. The work
incorporates the design of mushroom structures and lumped circuit analysis of its charac-
teristics [2–4]. The conventional HIS mushroom is shown in Figure 2. It consists of small
metallic patches that are periodically separated and soldered to the ground plane using
vias. These connecting patches are referred to as protrusions. This arrangement constitutes
a parallel lumped circuit capacitor and inductor. The periodically separated gaps between
mushrooms are modeled as capacitors, while the connecting protrusions with the ground
plane are modeled as an inductor. This shunted LC circuit models a filter that can eliminate
surface waves at its resonance frequency. The LC equivalence model of HIS [2–4] is shown
in Figure 2:

Z =
jωLe

1−ω2LeCe
(1)

where ‘z’ represents the sheet impedance, ‘Ce’ stands for the capacitance, and ‘Le’ stands
for the inductance. The HIS plane exhibits an inductive tendency at lower frequencies and
a capacitive tendency at high frequencies as the frequency increases. As the impedance
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continues to increase, it eventually reaches an infinite value. The expression provides the
resonance frequency:

ω0 =
1√

LeCe
(2)

∆ω

ω0
=

√
Le/Ce√
µoε0

(3)

where ∆ω is impedance bandwidth, and ω0 is resonance frequency:

Le = µrµot (4)

Ce =
W(ε0 + ε1)

π
cosh−1

(
l
s

)
(5)

where ‘ε0’ is free space permittivity and ‘ε1’ is substrate permittivity.
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Minu et al. [5] investigated the effect of vias on the resonant frequency of HIS and
presented 3D altered vias to lower the resonant frequency without changing the thickness
of the substrate. A HIS-based monopole antenna is presented in [6] for portable cell phone
applications. The HIS plane is designed for metal islands having surface wave elimination
at 2.4 GHz. The comparative performance of monopole antennas, when used with Elec-
tromagnetic Band Gap (EBG), PEC, and Perfect Magnetic Conductor (PMC), are ground
planes presented in [7] and the HIS plane provides the best reflection coefficient. The work
also proposed a Finite-Difference Time-Domain (FDTD) analysis of EBG and a proposed
procedure to measure reflection phase characteristics. The spatial dispersive characteristics
of HIS and homogenized methods to develop radiation characteristics are proposed in [8].
The fractals can minimize the antenna area due to their space-filling properties. Fractal
antennas also have self-similar looping properties. The fractals have multiband properties
that are directly related to the number of iterations that take place. In [9], the reflection
phase characteristics of the Hilbert curve fractal for metamaterial formation are examined,
the first time a monopole antenna is turned into a Hilbert curve shape and miniaturization
is investigated [10]. The Hilbert fractals provided miniaturization with a dimension of
0.1λ providing the same resonance as the 0.5λ monopole used for VHF/UHF applications.
The Hilbert curve-based reconfigurable antenna is presented [11], and reconfigurability is
obtained by connecting RF switches within Hilbert fractals. In [12], the Hilbert curve fractal
antenna for 2.42 GHz RFID applications is presented, providing 15.36–78.52% minimiza-
tion. A Hilbert curve-based antenna is developed for gas-insulated switchgear (GIS) to
detect particle discharge [13]. The multiband properties of Sierpinski fractal antennas are
presented in [14]. The utility of fractal modeling has been demonstrated in [15] across mul-
tiple engineering applications. Fractal geometry is a valuable tool in the realm of antenna
engineering, as it enables the design of compact and multi-frequency antennas and arrays,
as well as high-gain elements. This paper provides a historical account of the prominent
pioneers in fractal mathematics while highlighting the influence of fractal patterns on the
development of antenna engineering. The work describes antenna geometries such as Man-
delbrot, Sierpinski, Minkowski, Koch, Hilbert, Cantor, and Peano curves for antenna and
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wireless communication applications. The Moore curve-inspired antennas presented in [16]
examine the multiband characteristics of antenna structures with improved bandwidths
compared to those based on alternative space-filling geometries. The study has introduced
expressions that establish a correlation between the parameters of an antenna slot and
its primary resonant frequency and the succeeding resonant frequencies. In [17,18], the
design of a hybrid fractal antenna (HFA) utilizing three widely recognized fractal curves
is discussed: Koch, Minkowski, and Moore. The generator curve is produced using the
combination of the Minkowski curve and the inverted Koch curve. The HFA is obtained
by overlaying the hybrid generator curve onto the Moore curve. The study examines the
effect of a defective ground and various substrates with different dielectric constants on
an antenna’s performance [19,20]. This study involves the design of two distinct Moore
antennas that differ solely in their microstrip transmission feedline forming split rings. It
has been integrated with the Koch curve to enhance the multiband performance of the
Moore antenna, resulting in improved bandwidth performance. The Hilbert curve fractal
HIS for multiband band improved gain applications is presented in [21]. The prevailing
discussion shows that fractal geometry-inspired antennas provide multiband character-
istics, and HIS planes can potentially suppress surface wave propagation. The proposed
work incorporates the integration of fractals into HIS planes. The work investigates the
in-phase frequency response where the HIS plane has optimized performance to enhance
the radiating properties of the radiating element. If the designer knows the HIS plane
frequency response, he can design the radiating patch for desired applications for improved
performance. Another design challenge associated with the HIS is that it has protrusions
that link HIS patches to the ground plane. The work also investigates the effects of these
vias on the reflection phase characteristics. A HIS-based antenna is shown in Figure 3.
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Figure 3. The HIS antenna.

The paper is organized into three sections, where the first section presents an intro-
duction and short motivation and the literature. The second section discusses the design
methodology for conventional mushroom HIS, slotted mushroom, Hilbert fractals, and
Moore fractals. The third section describes the reflection phase characteristics of the designs.

2. Design Method

In this work, conventional mushroom HIS, slotted mushroom, and fractal HIS such as
Hilbert curve fractals and Moore curve fractals have been designed. The HIS surfaces are
designed and analyzed in a High-Frequency Structure Simulator.

2.1. Conventional Mushroom HIS

The conventional mushroom HIS cell is designed over an Fr4 substrate with a dielectric
constant of 4.4 and a loss tangent of 0.02 [22]. The substrate thickness is 1.6 mm. The
mushrooms being designed, namely mush10 and mush20, have dimensions ( La × wa)
of 10 mm× 10 mm and 20 mm× 20 mm. The designed mushroom HIS cells are shown
in Figure 4. The top view of the mushroom is shown in Figure 4a, Figure 4b shows the
cross-section view, and the isometric view Figure 4c shows the radiation box.
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The simulation setup for a conventional mushroom structure is shown in Figure 5.
The simulation setup uses periodic boundaries and plane wave illumination over the
HIS surface. The utilization of the Finite-Difference Time-Domain (FDTD) method is
demonstrated in Figure 5, wherein a plane wave model is employed to evaluate the
reflection phase manifested by the High-Impedance Surface (HIS) interface. The FDTD
method utilizes the total field/scattered field computation to incorporate plane wave
excitation. A plane wave is introduced to illuminate the structure of the HIS consistently.
The FDTD domain is split into the dispersed field area and the total field region by a virtual
surface located at a distance of 0.40λ from the HIS bottom surface. A solitary unit of the
High-Impedance Surface (HIS) configuration is employed to replicate an infinite periodic
structure, with periodic boundary conditions (PBC) enforced on all four sides. The bottom
surface of the HIS is located at a depth of 0.55λ beneath the perfectly matched layers (PML).
It is not possible to ascertain the reflection phase by directly examining the reflected field at
the top surface of the High-Impedance Surface (HIS) because the HIS structure is integrated
within the overall field region. A plane of observation is positioned at a distance of 0.50λ
above the bottom surface of the HIS, within the area of the dispersed fields, to capture
the scattered fields from this plane for computing the reflection phase. Integrating the
scattered fields over the observation plane is necessary to determine the reflected field
emanating from the far-field region in the direction perpendicular to the surface. However,
a correction of π is added to include reflection from the PEC plane. The HIS reflection
phase characterization obtained from the process, as mentioned earlier, aligns with the
characterization utilized in previous works, specifically in references [3,23,24]. To establish
a methodology for utilizing the reflection phase curve to ascertain the frequency range of
input match, it is possible to employ the simulation outcomes of a model featuring plane
wave illumination.

2.2. The Slotted Mushroom HIS

The slotted mushroom is designed on an FR4 substrate with a dielectric constant of 4.4
and a loss tangent of 0.02. The substrate thickness is 1.6 mm. The slotted mushroom outer
square has dimensions ( La × wa) of 10 mm× 10 mm. A square slot of 5 mm is made in the
center patch. The designed slotted mushroom is shown in Figure 6. The slotted mushroom
is simulated in periodic boundaries with plane wave illumination.
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Figure 6. The Slotted Mushroom unit cell (a) Top View (b) Isometric View.

2.3. The Hilbert Curve Fractal HIS

The Hilbert curves up to iteration 3 are shown in Figure 7. The Hilbert curve fractal-
inspired HIS is designed on an FR4 substrate with a thickness of 1.6 mm. The square
patch has a width of HILF10 ( La × wa) of 10 mm× 10 mm while for HILF20 it is ( La × wa)
20 mm× 20 mm. The Hilbert curve width is 1 mm, and the gap between the unit cell is
maintained at 2 mm. The designed Hilbert curve fractals up to the third iteration are shown
in Figure 8. The designed Hilbert fractal-inspired HIS cells are simulated and analyzed in
periodic boundaries with plane wave illumination.

2.4. The Moore Curve Fractal HIS

The Moore curves up to iteration 3 are shown in Figure 9. The Moore curve fractal-
inspired HIS is designed on an FR4 substrate with a thickness of 1.6 mm. The square
patch has a width for MooreF10 ( La × wa) of 10 mm× 10 mm while for MooreF20 it is
( La × wa) 20 mm× 20 mm. The Moore curve width is 1 mm. The gap between the unit
cell is maintained at 2 mm. The designed Moore curve fractals up to the third iteration
are shown in Figure 10. The designed Moore fractal-inspired HIS cells are simulated and
analyzed in periodic boundaries with plane wave illumination.
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3. Results and Discussion

The various High-Impedance Surface unit cells are designed and analyzed in a High-
Frequency Structural Simulator. The results are analyzed in terms of the reflection phase
and ±π

2 matched impedance bandwidth of unit cells.

3.1. Conventional Mushroom HIS Cell
3.1.1. Lumped Circuit Analysis

The conventional mushroom HIS is analyzed using LC lumped element circuit analysis.
Using Equations (2)–(4), the mushroom with dimensions of La = Wa = 10 mm separated by
0.5 mm has an inductance of 2.01 nH/cell and capacitance of 478 fF/cell and a resonance
frequency of 5.1 GHz. It has a bandgap bandwidth of 9% at the center frequency. The
lumped equivalent circuit and reflection coefficient response are shown in Figure 12.
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3.1.2. The FDTD Analysis

The Conventional mushroom’s mush10 and mush20 are analyzed using FDTD plane
wave illumination. The reflection phase characteristics of mush10 and mush20 are shown
in Figure 13, and the reflection phase response with and without via is presented.
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Figure 13. The reflection phase characteristics (a) Mush10 (b) Mush20.

The reflection phase characteristics of mush10 have zero-degree frequencies at
5.22 GHz with via and 4.86 GHz for the via-less structure. For mush20, zero-degree fre-
quencies are at 3.06 GHz and 3.04 GHz for via and via-less HIS. The in-phase bandwidth of
mush10 with via is in a range of 4.86–5.77 GHz, and via-less is in the range of 4.45–5.22 GHz.
The in-phase bandwidth of mush20 with via is in a range of 2.93–3.22 GHz, with via-less in
a range of 2.91–3.20 GHz. However, for mush10 in phase bandwidth with via and via-less
the effect of via is marginal. The in-phase bandwidth for mush20 with via and via-less
coincides and thus via has no effect for mush20. Concerning zero-degree frequency, the
mush10 HIS can be used as the ground plane for enhancing performance for WiMAX,
WLAN application patch antennas, and mush20 applications in C-band. The LC model
analysis and FDTD solver resonant frequencies have good agreement. The parametric
analysis is made for different lengths of mushrooms from 5 mm to 20 mm and the reflection
phase response of mushroom unit cell with via is shown in Figure 14a and without via is
shown in Figure 14b. The ±90◦ bandwidth of HIS cells is shown in Table 1.
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Table 1. The In-phase bandwidth of Mushroom HIS Cell.

Dimension
(in mm)

With Via V = 0.5 mm
(Frequency in GHz)

Via Less
(Frequency in GHz)

0◦ +90◦ −90◦ 0◦ +90◦ −90◦

LP = Wp = 5 1.83 1.81 1.85 — — —

LP = Wp = 10
0.64 0.61 0.66 — — —

5.22 4.86 5.77 4.76 4.45 5.22

LP = Wp = 15 3.85 3.65 4.12 3.85 3.65 4.12

LP = Wp = 20 3.06 2.93 3.22 3.04 2.91 3.20

3.2. The Reflection Phase Characteristics of Slotted Mushroom

The reflection phase characteristics of the slotted mushroom are shown in Figure 15.
The parametric analysis is also conducted for multiple slot width dimensions shown in
Figure 15b. For the slotted mushroom-forming, a squaring with a width of 5 mm has a zero-
degree frequency of 4.82 GHz shown in Figure 15a. The parametric analysis response for
the slotted mushroom is presented in Table 2. It can be observed that as slot size decreases
or ring width increases, the in-phase bandwidth increases. The maximum bandwidth is
obtained at 0.83 GHz with a ring width of 8 mm.
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Table 2. Phase Bandwidth of Slotted Mushroom.

Ring Width
(in mm)

0◦

Frequency
(in GHz)

+90◦

Frequency
(in GHz)

−90◦

Frequency
(in GHz)

Bandwidth
(in GHz)

4 4.56 4.33 4.78 0.45

5 4.82 4.54 5.10 0.56

6 5.06 4.72 5.39 0.67

7 5.23 4.84 5.62 0.78

8 5.35 4.93 5.76 0.83

3.3. The Hilbert Curve Fractal HIS Cell

The reflection phase characteristics of HILF10 and HILF20 up to three iterations are
shown in Figure 16. The reflection phase response of HILF10_1, HILF10_2, and HILF10_3
is shown in Figure 16a–c.

The zero-degree frequency of HILF10 iteration 1 with via is 6.07 GHz, and without
via is 5.69 GHz. The zero-degree frequency of HILF10 iteration 2 with via is 2.81 GHz,
7.74 GHz, and without via is 2.81 GHz, 7.74 GHz. The zero-degree frequency of HILF10
iteration 3 with via is 4.48 GHz, 8.78 GHz, and without via has triple band frequencies
centered at 1.63 GHz, 4.41 GHz, and 8.88 GHz. The in-phase ±90◦ bandwidth is shown in
Table 3.
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Figure 16. (a) HILF10_1 (b) HILF10_2 (c) HILF10_3 (d) HILF20_1 (e) HILF20_2 (f) HILF 20_3.

Table 3. In-Phase bandwidth of HILF10.

Dimension
(in mm)

LP=Wp=10

With Via Radius V = 0.5 mm
(Frequency in GHz)

Via Less
(Frequency in GHz)

0◦ +90◦ −90◦ 0◦ +90◦ −90◦

HILF10_1 6.07 6.00 6.14 5.69 5.6 5.74

HILF10_2
2.81 2.79 2.84 2.81 2.79 2.84

7.74 7.52 7.88 7.35 7.12 7.51

HILF10_3

— — — 1.63 1.61 1.65

4.48 4.46 4.50 4.41 4.38 4.43

8.78 8.37 9.05 8.88 8.48 9.15

The reflection phase response of HILF20_1, HILF20_2, and HILF20_3 is shown in
Figure 16d–f. The zero-degree frequency of HILF20 iteration 1 with via is 2.79 GHz, and
without via is 2.63 GHz. The HILF20 iteration 2 has a multi-frequency response with
zero-degree frequencies with via at 1.21 GHz, 3.66 GHz, and 8.07 GHz, and without via at
3.66 GHz, 8.06 GHz. The HILF20 iteration 3 multi-frequency response with zero-degree
frequencies with via is at 4.43 GHz, 8.49 GHz, and 9.93 GHz, and without via has triple band
frequencies centered at 4.35 GHz, 8.49 GHz, and 9.90 GHz. The in-phase ±90◦ bandwidth
is shown in Table 4.

Table 4. In-Phase bandwidth of HILF20.

Dimension
(in mm)

LP=Wp=20

With Via Radius V = 0.5 mm
(Frequency in GHz)

Via Less
(Frequency in GHz)

0◦ +90◦ −90◦ 0◦ +90◦ −90◦

HILF20_1 2.79 2.77 2.81 2.63 2.60 2.65

HILF20_2

1.21 1.18 1.23 — — —

3.66 3.64 3.69 3.66 3.63 3.69

8.07 7.87 8.19 8.06 7.83 8.19

HILF20_3

4.43 4.40 4.46 4.35 4.32 4.37

8.49 8.33 8.58 8.49 8.34 8.55

9.93 9.80 10.03 9.90 9.73 10.01
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In the reflection phase characteristics of HILF10 and HILF20, it can be observed that
there is a shallow effect of the presence of via, and in most cases the responses with and
without via coincide. Thus, the effect of via on reflection phase response can be negligible.

3.4. Moore Curve Fractal HIS

The reflection phase characteristics of MooreF10 and MooreF20 up to three iterations
are shown in Figure 16. The reflection phase response of MooreF10_1, MooreF10_2, and
MooreF10_3 is shown in Figure 17a–c.
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The zero-degree frequency of MooreF10 iteration 1 with via is 6.09 GHz, and without
via is 5.51 GHz. The zero-degree frequency of MooreF10 iteration 2 with via is 2.81 GHz,
7.74 GHz, and without via has a single band at 2.81 GHz. The zero-degree frequency
of MooreF10 iteration 3 with via is 6.80 GHz, 8.45 GHz, and without via has dual-band
frequencies centered at GHz, 6.95 GHz, and 8.44 GHz. The in-phase ±90◦ bandwidth is
shown in Table 5.

Table 5. In-phase bandwidth of MooreF10.

Dimension
(in mm)

LP=Wp=10

With Via V = 0.5 mm
(Frequency in GHz)

Via Less
(Frequency in GHz)

0◦ +90◦ −90◦ 0◦ +90◦ −90◦

MooreF10_1 6.09 6.00 6.10 5.51 5.43 5.52

MooreF10_2
2.81 2.80 2.81 2.81 2.80 2.81

7.74 7.74 7.75 — — —

MooreF10_3
6.80 6.68 6.85 6.95 6.70 7.10

8.45 8.17 8.74 8.44 8.17 8.76

The reflection phase response of MooreF20_1, MooreF20_2, and MooreF20_3 is shown
in Figure 17d–f. The zero-degree frequency of MooreF20 iteration 1 with via has no zero
frequency under X-band, and without via is 2.91 GHz. The zero-degree frequency of
MooreF20 iteration 2 with via has triple bands located at 5.85 GHz, 7.98 GHz, and 9.78 GHz;
without via it has the triple band at 5.89 GHz, 7.92 GHz, and 9.68 GHz. The zero-degree
frequency of MooreF20 iteration 3 with via has quadband frequencies located at 3.35 GHz,
4.40 GHz, 5.87 GHz, and 10.01 GHz, and without via has quadband frequencies centered at
3.33 GHz, 4.41 GHz, 5.85 GHz, and 9.97 GHz. The in-phase ±90◦ bandwidth is shown in
Table 6. The HIS planes find antenna applications WIMAX, WLAN, satellite uplink, and
tank radar systems [25].

Table 6. In-phase bandwidth of MooreF20.

Dimension
(in mm)

LP=Wp=20

With Via V = 0.5 mm
(Frequency in GHz)

Via Less
(Frequency in GHz)

0◦ +90◦ −90◦ 0◦ +90◦ −90◦

MooreF20_1 — — — 2.91 2.90 2.92

MooreF20_2

5.85 5.80 5.86 5.89 5.82 5.91

7.98 7.75 8.11 7.92 7.7 8.08

9.78 9.63 9.93 9.68 9.55 9.83

MooreF20_3

3.35 3.34 3.35 3.33 3.33 3.38

4.40 4.35 4.45 4.41 4.35 4.45

5.87 5.85 5.87 5.85 5.83 5.86

10.01 9.98 10.16 9.97 9.93 9.98

4. Conclusions

The work proposes using Fractal High-Impedance Surfaces to improve antennas’
gain and bandwidth performance. The work examines the effect of via on conventional
mushrooms, slotted mushrooms, Hilbert curve, and Moore curve fractal HIS cells using
FDTD solvers with plane wave illumination. The HIS structures provide an in-phase
reflection of back radiation and suppress surface waves at their resonance frequency. The
in-phase reflection frequency of the HIS structure is determined by calculating the reflection
phase. The frequency corresponding to the reflection angle at 0◦ provides zero-phase
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reflection, and corresponding in-phase bandwidth is obtained at ±90◦ frequency. The
mushroom with side lengths of 5 mm, 10 mm, 15 mm, and 20 mm has an in-phase reflection
at 1.8 GHz, 5.22 GHz, 3.85 GHz, and 3.06 GHz, respectively. The slotted mushroom with
ring sizes of 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm has an in-phase reflection at 4.56 GHz,
4.82 GHz, 5.06 GHz, 5.23 GHz, and 5.35 GHz, respectively. The Hilbert fractal HIS has
in-phase reflection frequencies within the 1.63–10.03 GHz range. The Moore fractal HIS has
a phase reflection coefficient in the range of 2.31–10.16 GHz. The investigations show that
there is no significant effect of having via on reflection phase coefficients. The work could
be extended by the design of planar antennas for desired applications using suitable HIS
geometries.
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