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Abstract: Our research focuses on investigating the existence of positive solutions for a system of
nonlinear Hadamard fractional differential equations. These equations are defined on an infinite
interval and involve non-negative nonlinear terms. Additionally, they are subject to nonlocal coupled
boundary conditions, incorporating Riemann-Stieltjes integrals and Hadamard fractional derivatives.
To establish the main theorems, we employ the Guo—Krasnosel’skii fixed point theorem and the
Leggett—Williams fixed point theorem.
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1. Introduction

We shall examine a system comprising nonlinear Hadamard fractional differential
equations

{ D2 ®(v) + () £(D(v), ¥ (1)) =0, v € (1,00), o

HDP (1) +0(0)M(@(v), ¥(v)) = 0, v € (1,00),

supplemented with the nonlocal coupled boundary conditions
P =d'(1)=---=
i) = [
¥(1)=¥Y1)=-=
il (o) = [

@

I
by
E
_
<
B
_|_

wherea € (n—1,n,n e Nn>26¢€ m—1m},me N,m > 2, HDL denotes
the Hadamard fractional derivative of order p (for p = a,a — 1, 8, B — 1), the functions
,0:(1,00) = Ry and £ M : Ry x Ry — Ry verify some assumptions, (R = [0,00)),
and the functions J;,J; : [1,00) — R, i = 1,2 from the Riemann-Stieltjes integrals of (2)
have bounded variations.

By employing the Guo—Krasnosel’skii fixed point theorem and the Leggett-Williams
fixed point theorem, we will establish the existence of positive solutions of the problem
(1),(2) subject to certain conditions on the problem’s data. A positive solution of (1),(2)
is represented by a pair of functions (®(v), ¥(v)), v € [1,00) satisfying (1) and (2), with
®(7) >0,¥(f) >0forall{ € [1,00), and ®(Z) > 0forall { € (1,00) or ¥({) > 0 for all
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¢ € (1,00). This problem generalizes the problem from [1]. In the paper [1], the authors
studied the system (1) with a, B € (1,2] (n = m = 2), with the boundary conditions

(1) =0, "D{ '®(c0 Z/\ M ¥ (n
©)
-1 B
¥(1) =0, "D} ¥ ( Z%Wﬁ

where A;, ;>0 fori=1,....m,j=1,...,n,y >1,¢ >1,and HIL is the Hadamard
fractional integral of order k with lower limit 1 for k = &y, ..., &, B1,..., Bn, defined by

1 v/ vy\k1h(w)
Hyk
I h(v) = F(k)/1 <ln ) dw, v>0,

(for a function h : [1,00) — R), (see [2]). The last conditions for co from (3) are particular
cases of our conditions from (2). Indeed, one finds

ZA H2 ¥ (g /1 " ¥(w) dy(w), and 3o M1 a(g) = /1 " o(w) dy (@),

j=1

with 7, (w) = ¥ AiHj(w), (31 = 0), and Jq (w) = Z/ 10j ]( w), (J2 = 0), where

# 0 1 1% .

Hiw)={ T@it+1) () (lnw) ) if0<w<y,
[ SRy
o 1 1) ) ez

and

1 B _ é Fi .
Ri(w) = nm+n<m@> (mw>>fﬁOSwsa
1 o
r(g, ) e i w2¢

fori=1,...,m,and j =1,...,n. Therefore, in our paper, we consider general orders for
the fractional derivatives in the equations of system (1). Furthermore, in the boundary

conditions (2), the fractional derivatives HDi‘fQJ and HDf ;1‘I’ for co are dependent on both
functions @ and ¥, in comparison with the condition (3) from [1], where the derivative
of @ is dependent only on ¥, and the derivative of ¥ is dependent only on ®. In addi-
tion, the conditions (2) with Riemann-Stieltjes integrals generalize, as we saw before, the
conditions (3). These aspects represent the novelties for our problem (1),(2).

In the upcoming discussion, we will introduce additional fractional boundary value
problems that have been investigated in recent years. These problems are connected to the
main problem (1),(2) and involve Hadamard fractional differential equations accompanied
by diverse nonlocal boundary conditions. In [3], the authors studied the existence of
non-negative multiple solutions for the Hadamard fractional differential equation with
integro-differential boundary conditions

HDY 8U(v) + a(v)f(sl(v )) = 0 v e (0, oo)
#(1) =0, AD¥4l(co Z)\ Hibi g

where « € (1,2], 7 € (1,00), B; > 0and A; > O foralli = 1,...,m. In the proofs of the
main results of [3], they applied the Leggett-Williams and Guo—Krasnosel’skii fixed point
theorems. In [4], by using the Banach fixed point theorem, the authors investigated the
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existence of the unique solution for the Hadamard fractional integro-differential equation
subject to Hadamard fractional integral boundary conditions

HDY 44(v) + f(v, 8(v) M 1T 4U(v)) = 0, v € (1,00),
m

Y(1) = (1) =0, HD] Muu(e0) = Y A MIP 1u(p),
i=1

where y € (2,3),7 € (1,0),g>0,8; >0and A; > 0foralli =1,...,m. In[5], the authors
studied the existence of positive solutions for the Hadamard fractional differential equation
supplemented with Hadamard integral and multi-point boundary conditions

HDT @ (v) + o(v)f(v, ®(v)) =0, v € (1,0),
m—2

®(1) = /(1) =0, DI '®(c0) =aHIf, @(Z) +b Y a;® (1)),
j=1

whereg € (2,3],1<{<m < - <tfy_2<oo,abeR,anda; >0foralli=1,...,m—2.
In the main theorems, they used the monotone iterative method to find two “twin” positive
solutions of the problem, and then presented monotone iterative schemes convergent to a
unique positive solution. In [6], the authors investigated the nonlinear Hadamard fractional
differential equation with nonlocal boundary conditions

ADY . ®(v) + ¢(v)£(v, P (v)) =0, vnf (1,00), )
®(1) = @/(1) = 0, HD¥ 1 (00) = Y a; 1P (1) + b Y 00 (&)), @
i=1 j=1

withw € (2,3), i > 0and a; > Oforalli = 1,...,m, i > 0forallj=1,...,n,
1<y < <...< &y < co. They studied the existence, uniqueness and multiplicity
of positive solutions for problem (4), by applying the Schauder fixed point theorem, the
Banach fixed point theorem, the monotone iterative method, and a fixed point theorem
due to Avery and Peterson. In [7], the authors proved a generalization of a fixed point
theorem due to Avery and Henderson, and then they applied it to problem (4) and proved
the existence of at least three positive solutions of (4). To explore further developments
in the realm of Hadamard fractional differential equations, we encourage readers to refer
to the following papers: [8-15]. Additionally, we would like to highlight the significance
of the monographs [2,16-25], which delve into various aspects of fractional differential
equations and systems, encompassing diverse boundary conditions and their wide-ranging
applications across different fields.

The paper is structured as follows: Section 2 presents a collection of preliminary results
that are crucial for the subsequent sections. This includes the solution to the corresponding
linear problem, an examination of the properties of Green functions, and other relevant
aspects. Section 3 focuses on the main existence theorems for the problem (1),(2). Section 4
provides a detailed analysis of an example that serves to illustrate the obtained results.
Finally, in Section 5, we draw conclusions based on the findings presented in our paper.

2. Auxiliary Results

Some preliminary results that will be used in our further considerations are presented
in this section.

Definition 1 ([2]). The Hadamard integral of fractional order p > 0 with lower limit a, (a > 0) of
a function E : [a,00) — R is defined by

(U1, =) (¢) = r(lp) / ’ (ln (5>p_135;]> dv, ¢ > 0.
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Definition 2 ([2]). The Hadamard fractional derivative of order p > 0 with lower limit a, (a > 0)
of a function & : [a,00) — R is defined by

d\" yn-p_ 1 A\" o n—p-1g
L) = (o) =0 =y (vg) [[(mS) 5 e

withn = [p] + 1.

For p = m € N, then D" E(¢) = (6"E)(¢), ¢ > a, where § = gb% is the o-
derivative.

Lemma 1 ([2]). Ifa, p > 0,and a > 0, then

(550 - iy (n)
(o (o) )0 - (o)

and in particular, "D}, (In L)P=I(¢) = 0, forj =1,...,[p] + 1.

Lemma 2 ([2]). Let p > 0and 5,4 € C[1,00) N L1(0,00). The solutions of the Hadamard
fractional differential equation HDf LE(v) =0are

E(v) = i ci(Inv)P~,
and the next formula is satisfied
"1}, MDY () = U(v) + Y di(inw)P
withe;,d; e R,i=1,...,nandn = [p] + 1.
Let us now examine the system comprising fractional differential equations

{ HDY @ (v) +h(v) =0, v € (1,), -

HDP ¥(v) +k(v) =0, v e (1,00),
where h, k € C([1,00), R, ), with the boundary conditions (2). Let us define the constants:

0 =T~ [T tan@), b= [ (n@Fane),

c= [Tnean (@), d=T(P) - [ (nDFdn), 2
A = ad — bc.
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Lemma 3. Assume that a, b, ¢, d € R and the functions h,k € C([1,00),R) satisfy the con-

ditions [;~ h(g) %5 < coand [{7 k() d—g < oo. If A # 0, then the solution of problem (5),(2) is
given by

)
+(lr”2 - [d l°°h(w)d$’—r(da)/loo (/1“’ <lncg>a_lh(§)6?>d.ll(w)
() o
+b/1°°k(w) %“’ - r(ba) 1°° (/1“’ (1n‘g> h(e) ‘?)dal(w)
>d~2(w)], v € [1,00)

@)

1 .
_%ﬁ)/f (/1w <1n(g>ﬁlk(§) t?)dﬁg(w)], v e [1,00).

Proof. By using Lemma 2, the solutions of system (5) are given by

O (v) = —F(lw) [ (1n ) h(ew) 2

w w
+a(Inv)* 1 +ay(Inv)* 2 + -+ +a,(Inv)*™", v € [1,00), ®)
1 v v\ A1 dw
Y(v) = —m/l (ln a) k(w) o

+b1(In0)f1 + by (Inv)f~2 + - + by (Inv)f™, v € [1,00),

witha;, by € Rforj=1,..., nk=1,..., m. Because (1) = @'(1) = --- = d("=2(1) =0
and ¥(1) = ¥/(1) = --- = ¥("2)(1) = 0, we deduce that aj =0forj=2,...,nand
bp=0fork=2,..., m. So, by (8), one finds
D(v) = /U (ln E)Dhlh(cu) dw +a1(Inv)*1, vel,0)
- F(DC) w w 1 7 7 7
o) =~ [ (02 )" k@) X 4 (o), v e [1,00) ®
[(p) i) o € o)
We have "D} 1®(v) = — [h(w)% + 4T (x) and HDﬁ ! fl
blF([S) Then, the last COl’ldlthI’lS from (2) namely HD”‘ 1CI> fl djl )
fl w) dJ(w) and HDll3 ! f1 w)dJy (w +f1 sz (w), for the solution

9), g1ve us
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w 1

0 oo | w a—1
—/1 h(w)%u—i—all“(ac) =, _1"(1&)/1 (1116) h(C)dg%—al(lnw)“_ _dﬁl(w)

=1 e L@ Bl e e d.. .
A I 1“(/5)/1 (1 ,:) k(§)§+b1(1 ) _sz( ),

o0 oo | w a—1 ]
[Tk % e = | —F(la) [ (%) h<¢>d§+a1<1nw>“—1_dsl<w>

o SN L
“h| ) ( c) KE)Z + i)™ | dia(w),

al[m)—/l <1nw>“ %m —b1/< )P 3 (w)

e ) e Y
T(p) /oo </1w (1“ g)ﬁ 11<(§) ?)dﬁz(w),

—aq /oo Inw)* 1 dy; (w +b1[ (ﬁ)—/loo(lnw)ﬁ_ldJ (w)}
a—1

= [Tk ™ /(/(1) h@)()

_1@/1&</1w(1n§>ﬁ 11<(f§) d(.f)ddz( )-

By assuming the non-zero determinant A of the aforementioned system (with respect
to the unknowns a; and b;), we establish the uniqueness of the solution for the system

or

as follows:

“flld/ Zw r(da/ (/( 5) w c§>dJl()
([ (o) w0 g

+b/ a0 e

(o) w08 o)

([

blz

w) % ,X/l (/“’( 9 h@)f)dsl(w)

dg

)7
4
+c/1 h(w) . —W/loo (/lw <lnzj)a_lh(§)cgs>d31(w)

i ([ (05) w0 o]

By replacing the above formulas for a; and b; in (9), we obtain the solution of problem
(5),(2) given by (7). The converse follows by direct computation. O

/
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Lemma 4. Given the conditions stated in Lemma 3, the solution to problem (5),(2) is determined
as follows:

o) = | : &1 (0, @)h(w) ;Z + : & (v, w)k(w) ;g, cebe),
¥ (v) :/1 ¢;3(v, w)h(w) o —|—/1 ¢4(v, w)k(w) oY € [1,00),
with the Green functions &;, i =1,..., 4 given by
a—1 ) o0
¢ (v, w) :g,x(v,w_)lJr (lnvA) (d/1 8u(6,w) dI1(S) +b/1 8u(¢, w) d31(§)>,
a(v,0) = T (4 [ gp(60) 0a(@) 6 [ p(60) 020 ),
1 (11)
(Inv)P o o N
es(vw) = 5 (¢ [Ta@wan@ va s o) dn @),
1 ﬁ_l o o]
€4(0,) = gp(vw) + L (¢ [ gp(6,0) (@) 0 [ gp(6 ) () ),
and i
(0, @) = 1 ) (Inv)* ! - (lng) 1<w<v
T'(a) (Inv)*1, 1< v < w, 12)
95(0,w) = 1 (lnv)ﬁfl—(ln% P cw<o
P I'(B) (lnv)/g’l, 1<v<w.
Proof. By (7), one obtains
0 d [eS) d
®(v) = r(la)/l (1nu)“1h(w)5—WA)A [ (in0)* Thw) &2

i [ 2) he) 2
(00l [ h(ew) %2 | (/1 *(in ‘g)“_lh@)”?)dﬁl (@)
a7 05)
s [ () e € e
o (7 () 0 i)
_ l"(lvc) /; [(m 0)*1 — (In Z)“l}h(w) L r(la) /Uoo(h‘ 0 Thiw)

w

a—1
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s L (0 2 )|

nv)*1 0
— s+ 4 A) {—Fl ) [r(a)r(/s) —r(ﬁ)/1 (Inw)* ' d3; (w)

(a
“T(a) Am(lnw)ﬁ_ldﬁz(w)+ (/100(1na))"‘_1 471 (w) ( 1°°(1nw)ﬁ—1d:;2(w)>
h

_ (/1w(lnw)al d31(w)) (/100(1nw)51 32(&)))] 100 () d;w
H[re) - [ tnw ] [ae

)
(no)y*=t  r=TT(B) 1
Oy (RS gy )
“rw (f me e | ngp @)
( ) (/

|
—
|- =
N—
AN
=
3
—
—
=}
™
SN—
=
AN
QU
=)
N
—
™
~__
8\8
7N
—
=]
|
~__
-
AN
2
(%)
N
—
™
N~—
—_
=~
—~
£
QL
g8
| v




Fractal Fract. 2023, 7, 458 9 of 24

- g [Tngy dﬁz(@); E [ tng e
2

([ et ane)
B ( [ gy djz@) ( I (m j)ﬁ_l dm@))] }k(w) o }
_ g4 20 { / m{rfa) [ [ - [7(n€)" dm(&)}
- [ [Toneyrane - [ (mf})‘“ dﬁl(é)] }h(w) o
+/{ Vl (In&)F1d3,(8) - Lw<ln5)ﬁ1dﬁz(€)]
+F(bﬁ)[/1 (Ing)P1dga(2) - /:<1nﬁ>ﬁ_ld32@>] }k“‘”iﬁu}
— [ sl °°( [ sutew) (@ i) o

w[7([7s (e >) @°
+d/ /g/gﬁw )d32(¢ )k(w
+b/ (/ gﬁ{,‘wddz >(w)

dw

—/ ¢1(v,w) ——l—/ & (v, w)k(w) —, t€[1,00),
1 w 1 w

where g, and gg are given by (12), and €; and &; are given by (11). In the last relations
above, we used the equality

lnv

\as\eg\ai

|

1

[Taneyrane) - [ (lnj)“ 43(2)
— [“mer @+ [~ ot - (0 ) e
/ [ et (m8)"
=) [ " ge(& @) d (@),

and similar equalities for J,(&), J1(¢) and J2(&).
In a similar manner, by (7), one finds

¥(v) = r(lﬁ)/1 (1n )P "k(w) 2 - )A /loo(lnv)ﬁ_lk(w)%u

Dtpas ™

+(1nvA) a/fk(@ﬁ"-@/f(/f(lﬁé) h(g)‘?)dal(w)
a oo w w p-1 .

~w I (m%) k<§>d§>doz<ci>l

+c/1°°h(w)‘ifj—r(;)/l°°</lw<ln‘g) h(g)‘?)dyl(w)

c oo w w p-1
155 /. (/1 (lng) k@)”ﬁf)d@(w)l
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c (el w\P! ¢\
b (1 <1n§) K(g) % a3 (w)]
nv p-1
o+ {0 [r<a>r<ﬁ>—r<ﬁ> / (Inw)* " d ()
* 1

| ([t )
([t s30)]

+ {r(a) — /1°o(lnw)“71 djl(w)} /100 k(w) do

r@ -~ [~ neytam)]| [T [ (ln ‘g)“_lh@)‘?)dsl(w)
ac
¢
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= By + (lnvA)ﬁil {/100{ [/;Oﬂng)al d31(8) — /woo <1n 5})”‘1 dﬁl(é‘)]

+I,(1a)§ l:anc)“l @) [ (lnix,)al a3 (2)

1
~ w°° (m ffl djz(g)] }k(a)) dj}
. ““”)“{/f{r”pé)[/f(w L (@) - Lw(lni)“_ldsl<c>]

A
T, [ [ ot an@ - [ (i 5)“1 43:(2) }h(w) feo

w

+f ”{r()[ [Tmeytan© - [ (lnf])ﬂ_ldsz(@)]
i [ /1 (g 1ana(e) - [ (lnf,)ﬁ1 djz(‘f)] }k(w) ‘i‘j’}
)

= [ gstwwi@) %4 O ([ gy ) (@) ()

JrC/1 /1 8a (¢, w)djl(é)) (w);
wa [T gple ) 020 )itw) 2

w

+C/1°° (/10085(6,(4)) djz(g))k(w) CZ;U]
- /100 ¢3(v, w)h(w) d;w + /100 ¢4(v, w)k(w) %U e Moo,

where €3 and €, are given by (11). So we deduced the solution (®(v), ¥(v)), v € [1,00)
given by (10). O

The next lemma can be easily obtained by utilizing the definitions of the functions g,
Sp and €¢;, wherei =1,...,4.

Lemma 5. Assume that the functions J1, 35, J1, Jo are nondecreasing functions, a, d € R,

b,c e R, and A > 0, and let § > 1. Then, the functions g, gpand €, i=1,..., 4 have the
following properties:
(a) The functions g, and gg are continuous on [1,00) x [1,00);
1 1
()0 < v,w) < ——(Inv)* 1, 0< v,0) < ——(Inv)P1, Vo,w el
ng( ) 1—~<‘X)( ) gﬁ( ) F(‘B)( ) [ )

avw) _ 1 gw) 1
0= T oy T = Tw” "= T4 (no)p 1 = T(p)’
(d) The functions €;, i =1,...,4 are continuous on [1,00) X [ );
(e) €(v,w) > 0forall (v,w) € [1,00) x [1,00)andi=1,...,4;

Vou,w € [1,0);
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91 fl(ii':;,i_l = r(la) " Arl(oc) <d Aw(lng)ail () + b/f(mg)ﬂ%m(g))
= % =:A1 >0, Yo,w € [1,00);
®) 1 52(5:1;)}21 < Arl(ﬁ) (d /1°o(lng)l5*1 dJ,(0) + b/loo(ln 7)F1 d32(§)>

— % = A >0, Vo,w € [1,00);

E3(v,w) 1 00 1o 00 s
1+ (Inv)f-1 = AT(a) (C/l (Ing) 1dJ1(§)+ﬂ/1 (Ing) 1d\s1(5))
= % =:A3>0, Yv,w € [1,00);
64(0/(47) 1 1 c R 0 B . 00 N o1 4
T+ (no)p 1 = F(ﬁ)+AF(ﬁ)( /1 (Ing)P" 3 (¢) + /1 (Ing) 1ddz(€)>
= % =Ny >0, Vo,w € [1,00);
¢1 (v, w) S (Ing)*—1

(])Ug[leloo) 1+ (Inv)2=1 = A(1+ (Ing)x-1

)
X<d/1 Qa(,8)dI1(C —i—b/ Qa(g,8)d31(C >,Vw€

&(v,w) (Ing)*—1
(k)vén[eloo)l—i-(lnv)“ 1 A(1+ (Ing)x 1)

X<d/1 8p(0,8)dI(C +b/ 8p(0,5)d3a(0) ), Vw e 1

1) min &Gv,w)  (Ing)F!
velf,0) 1+ (Inv)P~1  A(1+4 (Ing)F-1)

X</1 (0,9) d31(€)+a/looga(éls)d31(§)>/vw € [1,00);

¢4(v,w) (Ing)P—1
(m) vén[enolo) 1+ (Inv)h-1 = A1+ (Ing)B-1)

<(c [ sp @M@ +a [~ gp(@5) d@) ), Yoo € [19)

(h)

(i)

Remark 1. Under the assumptions of Lemma 5, one finds that a,d > 0and b,c > 0, so
A1, Ay > 0and Ay, A3 > 0.

3. Main Results

We introduce the space

| (v)]
X1 =<PeC(,R), —_— < ,
! { (LR), sup gyt <

where I = [1,c0), with the norm ||®||; = sup,; H'(D(U)'

T the space

¥ (v)]
X =Y € C(I,R), — 7 < 0,
’ { (LR, S 15 (inw)pT

with the norm |[¥|, = sup,; %, and the space X = X; x X, with the norm
(@, )| = @[l + [I¥]l2- The spaces (X4, || - [l1), (X2, || - [l2) and (X, [[(-, -)||) are Banach

spaces (see [3], Lemma 2.7).

Lemma 6 ([3], Lemma 2.8). Let Q) C X; be a bounded set, which satisfies the following conditions:

(i) The functions ®(v)

1+ (Inv)s1’ ® € Q) are equicontinuous on any compact interval of I;
nv
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(ii) For any € > 0, there exists a constant T = T(€) > 0 such that

D(v1) D(v2)

1+ (Inv)* 1 1+ (Invy)*? <e€ Vv, >T, VOeO.

Then, Q) is relatively compact in Xj.
Let us now define the positive cone P C X by
P={(®,¥%) X, ®v)>0 ¥Y(v)>0, Vve[lo)},

and the operator A : P — X by A(®,¥) = (A1(P,¥), A2(P,¥)), (®,¥) € P, where the
operators Aj : P — Xj and A; : P — X; are defined by

A1) (0) = [ € (00)(@)2(@(w), ¥(w) X
+ [7 e @pl@m@), ¥w@) X, ver,
4@ 0)(0) = [ €(0,0)e(@)2(@(w), ¥(w@) X
+ [T e wp@m@w), ¥w) X, ver,

for (®,¥) € P.
Subsequently, we outline the fundamental assumptions that will serve as the founda-
tion for our main results.

(H)a € (n—1,n], € (m—1,m|,n,m € N, n,m > 2,731,735,31,32 : [1,00) — R are
nondecreasing functions, a,d € Ry, b,c € R, and A > 0 (given by (6)).

(H2) The functions £ and 91 belong to the set of continuous functions C(R + xR+, R+),
and they are non-zero on every subinterval of (0,0) x (0, c0). Furthermore, both £
and 2 are bounded on the entire domain R + xR.

(H3) The functions ¢, ? : [1,00) — R, are non-zero on any subinterval of [1,0), and

0< [ @)y < 0,0 < [ 2 < co.

w

Lemma 7. If (H1)-(H3) hold, then the operator A : P — P is completely continuous.

Proof. Under the assumptions of this lemma, one obtains A(®,¥) € P forall (®,¥) € P,
thatis, A : P — P. We will prove this lemma in four steps.

(I) We show firstly that the operator 4 is uniformly bounded on P. Let S be a bounded
set of P. Then, there exists ¥ > 0 such that ||(®, V)| < r,and so | P|; < rand |F], < r
forall (d,¥) € S. By (H2), there exist M; > 0 and M, > 0 such that £(®,¥) < M; and
M(P,¥) < My forall ®, ¥ € R Then, by (H3), for any (®,¥) € S, one obtains

_ |A1(q)/‘f> U)'
| A1 (@, ¥) |1 = SUP S T
1 dw

= sup s (7 @ w@s@o), ) &

+/l°° €2 (0, )0(w)M(D(w), F(w)) ‘Z)")
< MM /oo c(w) dﬁ + My Ay /OOD(CU) d;w =: M3 < o0,

w 1
o AP, Y) (v)]
| A2 (D, ¥) |2 = SUP S )T
1 dw

= SUp T (/1°° &3(0,0)c(w) (@), ¥ (@)
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dw

+ [ e wp@)m(@(w), Ew)) w)
e dw e dw
< M1A3</1 C((U) o + M2A4/1 0((4)) o =: My < oo.
So,
AR, F) || = [|AL(P, F) [l + [[A2(P, F)[[2 < M3 + My < 00, V(D ¥) €,

that is, operator A is uniformly bounded.

(I) We will now demonstrate the equicontinuity of A on every compact interval of I.
Let us consider the interval [1, T|, where T > 1. Then, for any vy, v, € [1, T], with v1 < v,
and (®,¥) € S, we have

= [A(RY)(v2)  A(P,F) (1)
T T (Inv)* T 1+ (Invp )T

_ |7 G0 dw
- /1 Wﬁ,z)a—ﬂ(w)ﬁ(@(w)x(w))?

©  E(v,w)
LT e @)P@(w), ¥(w) T

[ G(v,w) (w , dw
1 14 (Invp)e-t w

- e (w) (), ¥w)

/1""( € (vpw)  &(v,w) )c(w)ﬁ(@(w),‘l’(w))d’

= 1+ (Invp)* 1 1+ (Invy)*! @
N /1°° 1 fz(izzvf)’)l _ 152&1:)}2l)a(w)i))t(@(w),‘I’(w) iﬂ
<[ 1f1(§;’12v2‘*)’3 1 - @), ¥iwn 5
s~ i oot Yo
—/1 {15“(1:120;)2 I 15“((1;)111’73‘2‘1
1
ix (a7 w)dm )+ / 8u(E @) 4 (2 >>
(s~ T e o200
+/ A(d/l gs(C, w)sz +b/ 8p(S, w)ddz@)
: (1 ﬁr(lllr]fl):):_l 1 j-lr(lllrjlll))j):_l> @) H)
< [ |t~ a0 &

Mﬁfx ) (d [ gyt d;(a) ¢ b /1'°°0(01n o) d31(5)>

( (Inop)! anvl)“)a ) /1 c(w)dg

1+(lnvz)"‘ 1 1+(lnvl w

I'IUZ nuq o 00 w
( + (lnvz)“ T 14 (1nvl)a1)/1 (w) o

My (AT ( ) A) ( (Invy)*1 (Invy)*1 o dw
: Al" vc (1 + (1r12vz)"‘—1 1+ (lnlvl)"‘—l) /1 ()

_l’_
a—1 )
11‘1 Uz (11‘11)1) _ / O(a)) dﬁ
1+ (Invp)*1 1+ (Invy)* 1) & w

1
= MEg
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For &y, one deduces

z, - /Ul Sa(v,w)  ga(vy,w) () dw
1 1+ (11’1 Uz)a_l 1+ (ln Ul)a_l
N 2 gu(vg,w)  ga(vy,w) (@) dw
01 1+ (lnv2)"‘—1 1+ (lnvl)"‘—l w
Ll sl | de
t |14 (Invp)*~1 14 (Invy)r? w
1 fu|(lnvy)*t—(In %)“71 (Invy)* 1 — (In %)“71 dw
= T(a) /1 T o)t dx(mo)er W e
N 1 /Uz (Invp)*~1 — (In %)“71 ~ (nvy)* ! () dw
T'(a) Jo, 14 (Invy)a-1 14 (Invq)a-1 w
1 [/ (Invy)*! (Inwvy )1 dw
YO /Uz <1+ (Invp)*1 1+ (1nvl)a—1>‘(“’> w
< 1 < (Invp)* ! (Inwy)*! )/vl c(w) dw
“T(a)\ 14+ (Invp)* 1 14+ (Invy)* 1) N1 w
1 (n2)*! (n )" dw
+T(0¢) /1 1+ (Inv))* 1 1+ (Invqy)e1 () w
n 1 ( (lnvz)"‘_li B (lnvl)"‘_li )/Uz () dw
I'(a) \1+ (Invy)* 11 14 (Invy)a1) Juy, w
v\ a—
n 1 U2 (ln ?) () d7a)

r(106) <Ul (11+ (;E%Z)a_lc (1 w)rxfl ) d
nuvy nuy /U°° w

T(@)\1+ (Invp)*1 14 (Invy)*1) Jy, () w’

+

a—1 a—1
ot and
respectively on [1, T] x [1, T}, and the integrals [, ¢(w) %", Jo o(w) ‘%‘" are convergent, we
conclude that &g — 0 and Z; — 0 as v, — v; uniformly with respect to (®,¥) € S.

In a similar manner, one obtains

Ay (@, ) (v2) A (P, ¥) (1)
1+ (ln 02)1671 1+ (ln Ul)ﬂBil

Because the functions are uniformly continuous on [1, T},

— 0, as Uy — Uq,

uniformly with respect to (®,¥) € S. Then, A(S) is equicontinuous on [1, T].

(IIT) In what follows, we will show that A is equiconvergent at co. We will prove firstly
that 4, is equiconvergent at co, that is, for any € > 0 there exists Ty > 0 such that for all
v1,0p > Topand (®,¥) € S, one finds

A@ %) (02) A (@) ()
1+ (Invp)a~1 1+ (Invq)-1

< Aoe, (Mg >0).

For this, let € > 0. Then, there exists §; > 1 such that [, t;o ¢(w)? < ¢ and

w
0 dw . (11‘11/)“71 _ : (v,01)
Js, 2(w) % < e. Because limyco TinoyeT = 1 and imy—eo g7 TNy

that there exist d, > 0 and d3 > J1 such that for any vy, v, > J, we have

= 0, one deduces

1 a—1 1 a—1
’ (Invy) (Invq) <.

1+ (Invy)® 1 14 (Invy)*-!

and for any v, vy > d3and 1 < w < J1, one finds

14+ (Invy)* 1 1+ (Invy)r1t
< | _8u(v2,01)
|1+ (Invy)r1

‘ 8u(v2,w) 8u(v1,w)

< gtx(UZIC‘))
~ |14 (Invy)*-1

Su(v1, W)
14 (Invq)a-1

ga(v1,01)
14 (Invq)a-1

< €.
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Let us choose Ty > max{dy, 3}. Then, for any (®,¥) € S and vy, v > Tj, one obtains

A1(<P‘1’)(vzi A1 (P, ) (v1)
1

1+ (110101)2)"‘€ v 1 —)l- (In 1)1)0‘e o) ,
1(V2, W 1(V1, w
= /1 1+ (In vz)”‘ L 14 (Invp)at o(w)&(P(w), ¥(w)) o
+/ 1 lezzl;z a1 ] fz(igll;:))“l o(w)M(P(w), ¥ (w)) %U
e (U ,w) € (v1,w) dw
= /1 1 +1(1n2vz)”‘ T +1(1n1111)“_1 (W) B(w), T w) g
€1 (v, ¢ (v, w W
+ 5 |1 jéni,z)i T3 ;(inlvl)j_l (@) S(x(w), y(w)) —
G N M PR
® & (vy,w & (v, w dw
* 5 |1 +2(§n2vz)21 1 +2(§nlvl)21 (@)M(P(w), ¥ (w)) o
| gu(vy,w) gu(v1,w) dw
= M /1 1+ (11’1(21]2)Dc)1 - 1+ (lrl(ll)l)”‘)l C(OJ) Zd
Su(U2, w Su(U1,w w
+Ml 1+ (1n2v2)“*1 14+ (1nlvl)a71 (w) W
+% (lnvz)“*l (Invy)*~

A1+ (Invp)*1 14 (Invp)*T

(4" e @+ [ e an©) @
M| (Invy)*t (Invy)*t
A T (vt T T+ (Inup)e T

(4 gt @+ [ e @) [ o) %

<emy [ ew) % ¢ X eMl(g((‘g ) [ ) 2
eAgzb 2(w) %“’ — Age, (Ag > 0).

So, A; is equiconvergent at co. In a similar manner, we show that .4, is equiconvergent
at 00, and then one deduces that A is equiconvergent at co.
(IV) In the final part of the proof, we will establish the continuity of the operator A.
Let (@, ¥2))nen, (@,9) € X, (@, ¥n) — (P,F) in X = X1 x Xy, for n — oo, that is,
[©n(v) — @(v)]

— 0, as n — oo.
ver 1+ (Inv)*1 ver 1+ (Inv)f-1

Then, one deduces that for any w € I, ®,(w) — ®(w) — 0and ¥, (w) — ¥(w) — 0,
asn — 0.
Because

|[£(Pn(w), ¥n(w)) = £(P(w), ¥(w))| <2My, Vw e l, neN,
(P (w), ¥n(w)) = M(P(w), ¥(w))| <2Mp, Vw eI, neN,

one obtains by the Lebesgue convergence theorem that

/1°° (@) |&(®n (W), ¥u(w)) — £(D(w), ¥(w))] %‘" 50, as 11— oo, )
/1000(w)|9}t(<1>n(w),‘1’n(w)) —m(@(w), ¥ (w))] %“’ 50, as 1 — co.
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By using Lemma 5 and (13), one finds

| A1 (P, ¥n) — A1 (P, ¥)]1 = sup Al(cbn,‘I;nJ)r((l)n = Ed:,‘f)( v)|

dw

-/ mdw)uw@,m» %‘”

® & (v,w) dw
- I g ) g

©  ¢1(v,w) dw
<sup | mcw)w@nw)xn(w)) - s(@(w), ¥(w)]

& (v, w) dw
[T o) (), ) — M), F(@)| L)

1+ (Inv)a—1
< A1 [ e@)2@a(@), () — 2(0(w), ¥(@)] 2

+A; /lma(w)lm(d>n(w),‘1’n(w)) — M(P(w), ¥ (w))] %“’ 50, as 11— oo

Then, we deduce that || A1 (P, ¥y) — A1 (P, ¥)||1 — 0, as n — co. Using a similar
approach, we can demonstrate that || Ay (P, ¥) — A2(P,¥)|2 — 0, as n — oco. Therefore,
one obtains || A(®,, ¥,) — A(D,¥)|| — 0asn — 0. So, the operator A is continuous.

By combining Lemma 6 with the aforementioned steps, one deduces that the operator
A is indeed completely continuous. [

For 6 > 1, let us now introduce the following constants:

Q1= /fdw) djw Q= /1000( >, Qs = /gmc(w) %u Q= /e.wa(w) d;w
S b %0 e e |
L= g ) 0 () + gy [ n0)* " ddn(@),

E

(@)
L= ré)/l:(lné)ﬁ Ld3,(0) + rf’ﬁ)/l(j(lnoﬂ 1d3(2),
L=t /19(1“)“ e rfa)/lg(lng)a e (14)
L= %@ [ im0 an()+ I% ()P d32(0),
Lo bneyt o L(ne)t
T A+ (In0)* 1) 2 A(1+ (Ino)r 1)’
L _Lame)ft o L(ne)

A1+ (Ing)B-1)’ A1+ (Ing)B-1)’
= Q3(L1 +L3), Yo=0Qu(Lo+Ly), Yz=0Q1(A1+A3), Ys=0Qo(A2+Ay).

Our first main theorem establishes the existence of at least one positive solution to the
problem (1),(2) by employing the Guo—Krasnosel’skii fixed point theorem.

Theorem 1. Assume that assumptions (H1)-(H3) hold, and there exists 6 > 1 such that Q; > 0,
j=3,4and Zi > 0,i=1,...,4. In addition, suppose that there exist positive constants r1,1,
withry < 1y, and 0 € [Y{!,00), 02 € [Y51,00), 05 € (0,Y5 "] and o4 € (0,Y, '] such that
(H4) £((1+ (Inv)* D¢, (14 (Inv)PHp) > A, Vv € [0,), (¢,9) € [0,n] x [0,n],
M((1+ (Inv)* )¢, (1+ (Inv)P 1)) > ”Z” Vu e 0,0), (¢,9)€[0,n]x[0r];
(H5) £((1+ (Inv)*1)g, (1 + (Inv)f1)yp) < ‘73r2 VU €l (¢, 9) €[0,r2] x[0,m),
M((1+ (Inv)*Hg, (14 (Inv)P~1)yp) < ‘74’2 Vvel, (¢,¢)€[0,r]x]0,r).
Then, the problem (1) ,(2) has at least one positive solutzon (®,Y) such thatry < ||(®,¥)|| < r
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Proof. The operator A is proven to be completely continuous according to Lemma 7. We
introduce the set 1 = {(®,¥) € X, |[(D,¥)| < r1}. Then, for (®,¥) € P Ny, one

obtains ||®||; + ||'¥]|2 = r1, so ||®|1 < 1y and ||'¥]]2 < rq, thatis, 0 < H@(% <r and

(Inv)
0< Y 1 forallvel ’
S ot Snforallv el

Therefore, by (H4), Lemma 5 and (14), one finds

1 o dw
1@ )l = sup 1 ([ @n(o ) 2(@(w), ¥iw) 5

+/1°° & (0, ) (w)M(D(w), ¥(w)) %‘"
dw

. 1 °°
z L T o)1 (/1 €1(v, w)e(w)E(P(w), ¥(w)) ——
+/1 & (0, ) (w)M(D(w), ¥(w)) d‘")
dw

. 1 *© “
> nt e euvmwc@»s«bwnnfmn>cud
1 i w

+ ve[eﬁo) W /1 &2 (v, w)d(w)M(P(w), ¥ (w)) o

© ¢1(v, w) dw
> S\ ihad
- /1 UE1[1;1£0) 14 (Inv)x-1 (W) £((w), ¥(w))
© . & (v, w) w dw
1 ve[g0) 1+ (Inv)r-1 ’ w

(11'19)0(_1 © o N
> sy f (O $E000
+b/l 8a(8, w)dd (¢ )) () &(D(w), ¥(w)) 2

no)« 1 w
(ﬁi(ﬁg)a 1 ( /1 8p(8,w)d32(g)

)
+b [ gp(c,0) 3, @)( M((w), ¥ <w>>gg
11'19 a—1 /oo

w
_A1—|— 1119"‘1

(4 s
[ sa(@ ) @) »@f
o

+

+

(1n9 et
(1+(ln9 1) Jo

+b/g/3§dez

(Ing)*—1
@+Un@ag/‘<w><<> <>>w

x(r(da) [ neytan @) + r(ba) / <1nc>“—1d31(¢>)
dw

(lng)a—l 0
A () 7) J D(”)m@;“’)"j(“’)) w
X<1"(,B)/1 (Ing)F1 dﬁz(ﬁf)+m/l (1n§)ﬁ1d32(§)>
(In6)* 'Ly  oyry [® dw (In0)* 'L,  oory [® dw
At mer T 2 b e T A Emer T 2 U w
_ oinliQs N oor1LaQs <01L1Q3 n 02L2Q4>r1’

+

_|_

2 2 2 2
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In a similar manner, one deduces

(11‘19)ﬁ vy [ dw (11‘19)/571?,4 oot [ dw

(o3 ¢ e ) -

142(®, %)l = A(1+ (In 9)!% 772 Jy @ A+ (Ino)F 1) 2 Jo ()5
_ ourilsQs i 2r1lyQy _ (011303 i 02L4Q4 .
2 2 2 2 !

Therefore, one finds

[A(®,¥)| = [ AL(D,¥) 1 + | A2(D, ¥) |2
> [(Ll +L3)01Q3 n (Lo + L4)£72Q4}r1 _ (01Y1 szYz)r1 >,

2 2 2+2

which gives us
[A@,F)[| = [[(@,F)], V(P,F)ePNoy. (15)

Now, let us introduce the set () = {(®,¥) € X, [|(P,¥)|| < r2}. Forany (®,¥) €
P N o)y, we have || @y + ||¥]l2 = 72, and then ||®||; < rp and |||z < 7y, that is,
(v
0< H(ln(ﬁ <rpand 0 < % <ryforallv el
Then, by (H5) and Lemma 5, one obtains

ey A1(P ) (0)
[ A1 (@, ¥)[l1 = SLZIIDW

1 d
< sup o /i )@@, ¥ W)
+sup s [T G0 w)(w)M@(w), ¥w)

o)

&l d
+/ o 1+21rlif>)3 10(“’);”?(@(60),‘1’(60));" d
- ” w

<A [ e@)2(@(), ¥ (@) T+ Ar [ o(@)m(@(w), ¥w) T
0’31’;/\1 /100 () d;a) n o4t \) /1 2w) dﬁ

2
[ 301A1 | 04Q2 A2
- < 2 + 2 7"2,

IN

_ A (D, %) (v)
[A2(@, )2 = i‘;‘fiu(lnu)ﬁ :

<sup i [ (0, @)(w)2(@w), V(W)

+ sup / ™ €4 (0, )0 (@) M(D(w), ¥(w)) 1

vel 1+(1I1U)‘B_1.1 w

© E3(v, w) dw
</ Sup S o) (@), ¥(w)

+/ vel 1f4h’liva)]g 10((4])9)?((1)(60),1?(60))%

< s [ elw)2i@e) 1) 0+ Ay [ a(@mete) ¥e)
<(73Qzll\3 + 174(222A4>r2

IN
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Then, one deduces
A A3)o A Ay)0,
1A(®, %) < ( 1+23) 3Q1+( 2+24) 4Q> r
03Y3 | 04Y4
= (224220, <
< > + 5 )7‘2 S 1o,
that is,
AP, F)|| < (D), V(P,F¥) e Pno,. (16)

Hence, based on relations (15) and (16), as well as the Guo—Krasnosels’kii fixed
point theorem (see [26]), it can be deduced that the operator A possesses a fixed point
(@,¥) € PN (Oy\ ), where r; < [(®,¥)| < r2. So, @(v) > 0and Y(v) > 0 for all
v € I, and by (H2),(H3), one obtains that ®(v) > 0 forall v € (1,00) or ¥(v) > 0 for
all v € (1,00). Consequently, the pair (®,¥) serves as a positive solution to the problem
1),2. O

By employing analogous reasoning as in the proof of Theorem 1, we can derive the
following theorem.

Theorem 2. Assume that assumptions (H1)-(H3) hold, and there exists 6 > 1 such that Q; > 0,

j=3,4and Zi >0,i=1,...,4. Inaddition, suppose that there exist positive constants rq, 1

withry < 1y, and 0 € [Y{!,00), 02 € [Y51,00), 03 € (0,Y5 "] and 04 € (0,Y, '] such that

(H6) £((1+ (Inv)* ¢, (1+ (Inv)P ) < B, Yo €L, (9,9) € [0,1] x [0,m1],
M((1+ (Inv)* N, (1+ (Inv)P~Hy) < ‘7471 VYvel, (¢,¢)€0,r]x][0,r];

(H7) 2((1+ (in0)* ), (14 (nv)f)p) = B2, Vo € [6,00), (§,9) € [0,r2] x [0,72],
M((1+ (o)), (1-+ (o)1) > B, Yo e [6,00), (9,9) € [0,r2] x [0,72]
Then, the problem (1),(2) has at least one positive solutzon (®,Y) such that ry < ||(P,¥P)|| < 7.

In what follows, we will prove the existence of at least three positive solutions for
the problem (1),(2) by applying the Leggett—Williams fixed point theorem (Theorem 3.3
from [27]).

Theorem 3. Assume that assumptions (H1)—(H3) hold, and there exists 6 > 1 such that Q; > 0,

j = 3,4, and Zi > 0,i =1,...,4. In addition, suppose that there exist positive constants
ag < by < cq such that

(H8) £((1+ (Inv)* )¢, (1 + (Inv)PHy) < ZY , Vv el (@) €[0,a0] x [0,a0],
M((1+ (Inv)* g, (1+ (Inv)P~1)y) < zy Vv el (¢,9) €[0,a0] x [0,a0);

(H9) £((1+ (Inv)* )¢, (1+ (Inv)P~1)y) > ZY] Vv e [0,0), ¢, >0, by < ¢+ < cp,
M((1+ (Inv)* e, (14 (Inv)f~1)y) > F, Vv € [6,00), ¢, >0, by < p+ 1 <

0/

C
(H10) £((1+ (Inv)*~1)¢, (1 + (Inv)P 1)) < 2Y , Vv el (¢,9) €[0,c] x[0,col,
M((1+ (Inv)* N, (1+ (Inv)PNg) < 5%, Vv e L (¢,9) € [0,c0] x [0, col-

Then, the problem (1),(2) has at least three positive solutions, (®1,¥1), (P2, ¥2) and
(D3,¥3), such that || (P1,¥1)|| < ao, || (P3,¥3)|| > ag, and

. P, (v) ¥ (v) ) . < @5(v) ¥5(v) )
”61[191;)<1 oyt T (nop 1) T B\ T (no) T T T (noypr) <
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Proof. We show firstly that operator A : fco — fco. For any (®,¥) € fco, we have
[[(@,F)] < co,and so ||P||; < ¢, ||¥]]2 < cg. Using the assumption (H10) and Lemma 5,
one finds

4@ )l < s0p sy [ €0 w)ew) 2(0(w), ¥iw)) G
+sup s [T G0 w)(w) M), ¥w)

< [ sup () (), ¥iw) G

(v, w) dw
+/ SUIEHZIM)“ 10(@)M(B(w), ¥ (w))

<m [ c(w)S(cD(w),‘P(w)) Coma [ o(@)Mm@(w), ¥(w))

(M Ao oo
- (% )2’1 ) ,
42,02 < sup iy [ e w)e(w)e(@(w) ¥iew)) G

vel w
dw

+sup 1—i—(lr11v)ﬁ_1 /1°° &40, @) (@) M(D(w), ¥ (w)) X

© & (v, w
g/l sup qu)s@(ww(w))w

! / el 1 f41;1) v(‘)]l3 70(w)M(P(w), ¥(w)) %U

< Az /1 () &(P(w), ¥(w)) U*A‘* / (w)M(P(w), ¥(w)) —

co © dw dw
_ /\3Q1 +/\4Q2 o
Y, Y, 7

Then, one obtains

(A1 +A3)Q n (A2 +Ag)Qlco _
Ys Y, 2 v

JA@, )] < [

so A:Pg — P
Let dy € (b, co) be chosen, and let us define the concave non-negative continuous
functional w on P as follows:

, P(v) ¥(v) )
DY) = f , (®,%) eP.
wl ) uel[rel,oo) (1 + (Inv)a-1 + 1+ (Inv)f-1 ( )
One can easily see that w(®,¥) < [|(D, ) ]| for all (®,¥) € Pg,.
Next, we will verify the conditions (i)—(iii) of Theorem 3.3 from [27]. We verify
condition (ii) first. For (®,¥) € Pg,, we will show that [ A(®P,¥)|| < ag. For this, let
(®,Y) € Py, As in the above inequalities, one obtains

A1 Q1 AzQz)

+

Y3 Ys *

A (@, %) | < ( vt

[ A2(@, )2 < <A3Ql A4Q2>azo,

and so || A(®,¥)|| < ag. Then, we have assumption (ii).
We verify condition (i) from Theorem 3.3 from [27]. Let us choose the element

(@p(v), ¥o(v)) = (bozdo (1+(1nu)“—1),W(H(lm)ﬁ—l)), vel
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Because ®y(v) > 0, ¥o(v) > 0forallv € I, ||(Po, ¥o)|| = % < dopand w(Py, ¥y) =
bt~ py, one deduces that (®p, ¥g) € {(®,¥) | (®,'F) € P(w,by,do), w(®,F) > bp}.
Now, let (®,¥) € P(w, by, dp), thatis, (®,¥) € P, w(P,¥) > bp and ||(P,¥)| < do. So,

O(v) ¥(v) P(v) ¥(v)
Tno)r T T i no)f T = do forall v € I, and inf,c, °°)(1+(lnv)"‘*1 T T nopT
> by. Then, by (H9) and Lemma 5, and similar computations to those from the first part of
the proof of Theorem 1, one deduces

i (@) | A N)()
w(A(®,¥)) —UEI[I(}’fm)(l_t(lnv)a -+ 1+(1nv)ﬁ )
> 1y [ (@)e@(w), ¥(@) 2+ I [ o(@)m@(w), viw)

w

one finds

S d e d
Lo [ @) (@), ¥(@) T Ly [ 2(@)M(@(w), ¥w))
boQs boQ4 boQs boQ4
> iy, Thay, Thgy, Thay,
(L1+L3)%+(L + Ly )ZC’TQ4 = by

Therefore, w(A(®P,¥)) > by, and we have assumption (i).

Now, we verify condition (iii) of Theorem 3.3 from [27], namely w(A(®,¥)) > by for
(®,%) € P(w, by, co) and || A(D,¥)|| > do. So, let (®,F) € P(w, by, co) and || A(DP,¥)|| >
do. By arguments similar to those used earlier, one deduces that w(.A(®,¥)) > by, that s,
assumption (iii) is satisfied.

Applying Theorem 3.3 from [27] along with assumptions (H2) and (H3), we can
infer that the problem (1),(2) possesses at least three positive solutions: (1, Y1), (P2, ¥2),
and (®3, ¥3). Moreover, these solutions satisfy the following properties: |(®1, ¥1)| < ao,
|(®3,T3)‘ > agp, w(@z,‘i’z) > by, and w(d>3,‘1’3) <b. O

4. An Example

Leta =3, =2 n=3m=4 ) = 7@71}2)]/3, v € [1,00),0(v) = 7(1):532)5/4,

v € [1,0), L(p, ) = 6+ 197¥ sin2(¢1/)) ¢, >0, 93?(4) ¥) = % +95¢79Y cos* (¢ + ),
0,9 >00(w)={{s weL,3); % -4 we37); & wel[7,10); 1, we[10,00)},
J2(w) = {136( 1)17/5/ w € [L,2); 136’ w € (2,00)}, Ji(w) = {1, w € [1’2)’ %’ w e
[%/2)/ 230(“’ 227+ 3 B w € 2, 15) 230( )27+ %/ w € [ )}, Jo(w) = {3, w €
[1,4); 28, w € [4,9); & + 3061, € [9,11); 436 w € [11,00)}.

Let us consider the system of fractional differential equations represented by

HDY2(v) + (0_11/2)1/3 (64 0¥ sin(@(0)¥ () =0, v € (1,00),
2 /2 (17)
HD%S_/&P(U) + (w_1/3)7 51—53)5/4 (3 +95¢ WY ) cost (@ (v) +‘I’(v))> =0, ve(l,ce),
subject to the boundary conditions
(1) = <I>’(1) ‘P’(l) ¥ (1) =0,
DY) = g1 / e +15/cf(10 8 / )12/5\1P( w) de, - (18)
HD/3¢ (c0) = 13@(3) o / (w—2)2""®(w) dw + T+ 7 o w¥(w) dw.

By using the Mathematica program one obtains a ~ 0. 01753901 b ~ 0.01031779,
¢ ~ 0.02920547, d ~ 0.83235873, A ~ 0.01429742 > 0, [;" ¢ d“’ ~ 3.15855472,

[T o(w) % ~ 6.53061854. So, assumptlons (H1) — (H3) are satlsﬁed. In addition, we
take 6 = 2, and we deduce A1 = Z ~ 58.21742336, A, = % =~ 0.72165469, A3 = % R
2.04270988, Ay = { ~ 122672621, L1 ~ 0.00021797, Ly ~ 0.00309129, L3 ~ 0.00037053,
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Ly ~ 0.00010846, L, ~ 0.00557882, L, ~ 0.07911642, L3 ~ 0.00773204, Ly ~ 0.00226336,
Q71 & 3.15855472, Q, =~ 6.53061854, Q3 ~ 2.43620073, Q4 ~ 4.28276191, Y1 ~ 0.03242794,
Y, ~ 0.34853023, Y3 ~ 190.33492843, Y, ~ 12.72413242.

Let us consider r; = %, rp = 2800, 07 = 31 > Yfl, o =3> Y;l, o3 = 0.005 < Y;l
and o4 = 0.07 < YZI. Then, one obtains the inequalities

£((1+ (Inv)*2)¢, (1 + (Inv)"P)p) > 6 > 4 = T, Vv € [2,0), ¢, €[0,3],
M((1+ (Inv)*2)¢, (1+ (Inv)*)y) > 3 > Ft = 3, Vv € [2,00), ¢, €[0,3],

so assumption (H4) is satisfied. In addition, one finds

L((1+ (Inv)¥2)¢, (1+ (Inv)"/3)y) <7= 32, Vv e [1,00), ¢,y € [0,2800],
M((1+ (Inv)32)p, (14 (Inv)7/3)y) < BZ < 42 =98, Vv € [1,), ¢, € [0,2800],

hence, assumption (H5) is also satisfied. Therefore, by Theorem 1 we conclude that
the problem (17),(18) has at least one positive solution (®(v), ¥(v)), v € [1,00), with
1 @ ¥

3 SUPye(1,00) 1+(1r$l;))3/2 +Supve[l,oo) 1+(1IEZ))7/3 < 2800.

5. Conclusions

In this paper, we investigated the system of nonlinear fractional differential equations
(1) with Hadamard derivatives of various orders &« € (n —1,n] and g € (m — 1, m], respec-
tively, and non-negative nonlinearities, on the infinite interval (1, c0). The system (1) is
supplemented with general nonlocal boundary conditions (2), where the unknown func-
tions @ and ¥ in the point 1 and their derivatives until orders n — 2 and m — 2, respectively,
are all 0, and the Hadamard derivatives of ® and ¥ of order n — 1 and m — 1 at co are
dependent on both Riemann-Liouville integrals of ® and Y. Our problem generalizes the
problem studied in [1], by considering here different orders for the fractional derivatives in
the equations of system (1), and also a general form of the boundary conditions from (2) at
0. Under some assumptions on the data of this problem, we gave firstly the solution of the
associated linear boundary value problem, and the corresponding Green functions with
their properties. Then, in the main section of the paper, we proved the existence of positive
solutions of (1),(2) by applying the Guo—Krasnosel'skii fixed point theorem and the Leggett—
Williams fixed point theorem. An example which illustrates the main theorems is finally
presented. Our results can be generalized in the future for other fractional derivatives in
the system (1), and for some complex networks, such as those from paper [28].
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