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Abstract: The paper proposes an adaptive selection method for the shape parameter in the multi-
quadratic radial basis function (MQ-RBF) interpolation of two-dimensional (2D) scattered data
and achieves good performance in solving integral equations (O-MQRBF). The effectiveness of
MQ-RBF interpolation for 2D scattered data largely depends on the choice of the shape parameter.
However, currently, the most appropriate parameter is chosen by empirical techniques or trial
and error, and there is no widely accepted method. Fourier transform can linearly represent 2D
scattering data as a combination of sine and cosine functions. Therefore, the paper employs an
improved stochastic walk optimization algorithm to determine the optimal shape parameters for sine
functions and their linear combinations, generating a dataset. Based on this dataset, the paper trains a
particle swarm optimization backpropagation neural network (PSO-BP) to construct an optimal shape
parameter selection model. The adaptive model accurately predicts the ideal shape parameters of the
Fourier expansion of 2D scattering data, significantly reducing computational cost and improving
interpolation accuracy. The adaptive method forms the basis of the O-MQRBF algorithm for solving
one-dimensional integral equations. Compared with traditional methods, this algorithm significantly
improves the precision of the solution. Overall, this study greatly facilitates the development of
MQ-RBF interpolation technology and its widespread use in solving integral equations.

Keywords: MQ-RBF; shape parameters; Fourier transform; PSO-BP; adaptive method; integral equation

MSC: 45L05; 45D05; 65D12; 65R20; 65K10

1. Introduction

The prevalence of scattered data problems is increasing in industries such as engineer-
ing design and financial analysis due to the consistent evolution of science and technology.
One well-known mesh-free method that is typically utilized to handle this data is radial
basis function interpolation. Frank [1] conducted numerous scattered data experiments
comparing the accuracy of 29 interpolation methods and concluded that the MQ-RBF inter-
polation method is the most accurate. It has been pointed out in numerous studies that the
accuracy of interpolation is heavily influenced by the shape parameter of the MQ-RBF [2,3].

The MQ-RBF interpolation method was initially proposed by Hardy [4] with the
selection of a shape parameter, c = 0.815d. Here, d = 1

N ∑N
i=1 di where di represents the

distance between the ith data point and its closest neighbor. This method provides an
adequate fitting effect on terrain problems, leading to numerous researchers exploring the
selection of shape parameters in MQ-RBF interpolation. The leave-one-out cross-validation
(LOOCV) method, introduced by Rippa [5], has proven to be most influential and effective
among these methods. Rippa proposed a cost function to represent the root mean square
error (RMSE) between the interpolation function and the original function. The mnbrak
and brent in [6] were then used to determine more suitable shape parameters that minimize
the cost function. The effectiveness of the method was verified from multiple perspectives,
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including the condition number of the interpolation matrix and the number and distribution
of data points. The method is known to select shape parameters with high accuracy, making
it widely used. Since then, many similar MQ-RBF interpolation shape parameter selection
methods have appeared. Trahan and Wyatt [7] employed MQ-RBF interpolation in the
quantum trajectory method, utilizing leave-one-out cross-validation (LOOCV) to decide
the shape parameter. Wei [8] proposed minimizing the cross-validation root mean squared
error (Cross − RMSE) between the interpolation function and the original function to
obtain the shape parameter. Their algorithm establishes the initial value cint = mean(dj)
(where dj is the minimum distance between sample points) and step size (l = m/n, where
m is the dimensionality of xj and n is the number of sample points) beforehand. From there,
by searching for the downward trend of error, the direction of error reduction is treated
as the direction for parameter iteration until the error ceases to decrease, and the current
c value is then regarded as the optimal c. Amirfakhrian [9] introduced an unstructured
technique for finding numerical solutions to heat source time-related problems. They
combined radial basis functions with the fundamental solution of the heat equation and
used them to solve inverse problems at spatial interval boundaries. MQ-RBF compelled
them to utilize a generalized cross-validation criterion to locate the shape parameter. There
are also some methods [10–16] that have been developed that significantly advance the
selection method research for shape parameters for MQ-RBF interpolation. However, many
individuals still encounter challenges. Specifically, selecting the initial shape parameter
does not guarantee the best parameters when addressing scattered data problems. This
often necessitates time-consuming trial and error or empirical methods to determine the
most effective parameters. Unfortunately, these methods can be inefficient and negatively
impact the accuracy of interpolation, which can limit the applicability of determined shape
parameters. As such, developing a self-adaptive selection method for the shape parameter
of MQ-RBF interpolation holds both significant theoretical and practical importance.

This study is intended to develop an optimal shape-parameter-selection model for
MQ-RBF interpolation, initially applied to sine functions and their linear combinations.
Subsequently, the model is adapted for the Fourier expansion of two-dimensional scattered
data, and its efficacy is validated through numerical experiments. It promotes the wide
application of the MQ-RBF interpolation method.

Many scientific and engineering problems can be modeled mathematically through
integral equations. Compared to differential equations, integral equations are capable
of representing both initial and boundary values in the same equation. Moreover, the
relative error incurred in numerical integral calculations is much lower compared to
the numerical values. Currently, various numerical approaches are being developed to
solve integral equations. One such approach [17] is the Galerkin method, or collocation
method, which utilizes the Haar wavelet function to solve the first kind of linear Fredholm
equation. Meanwhile, the Haar wavelet [18] is used to solve one-dimensional nonlinear
equations. Likewise, the Daubechie wavelet and Galerkin method [19] are used to solve the
second kind of linear Volterra equation. On the other hand, Maleknejad put forward many
methods for different types of one-dimensional integral equations, and the Sinc function
collocation method [20,21] is applied for solving one-dimensional linear and nonlinear
Fredholm equations of the first kind. The improved block pulse function method [22] is
utilized to solve the Volterra integral equation of the first kind and the nonlinear Fredholm
equation. The combination of the block pulse function and Taylor series [23] is used
to solve the Fredholm-Volterra equation. Polynomial approximation [24] can solve the
second kind of Fredholm integral equation of smooth kernel function. These methods
mostly use the series form, the Chebyshev polynomial, or the wavelet function, but they
have the problem of unstable interpolation or poor accuracy. On the other hand, MQ-
RBF shows high interpolation accuracy and good stability in solving one-dimensional
integral equations [25]. However, appropriate shape parameters are needed for MQ-RBF to
ensure accurate solutions. Choosing the shape parameters based solely on experience and
trial and error can be inconvenient. Therefore, this paper proposes an adaptive selection
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method to identify suitable shape parameters for MQ-RBF and applies it successfully to
one-dimensional integral equations. The performance of this method is evaluated through
numerical simulation of various one-dimensional integral equations.

2. Algorithm for Selecting Shape Parameters in MQ-RBF Interpolation
2.1. MQ-RBF Interpolation

According to E.M. Stein and G. Weiss [16], a radial basis function (ϕ(x)) is a real-valued
function whose value is solely determined by the distance from the origin. If |x1| = |x2|,
then ϕ(x1) would be equal to ϕ(x2). Table 1 illustrates the commonly employed radial
basis functions.

Table 1. RBF.

Name ϕ(r)

Gaussian ϕ(r) = e−c2r2

Markov ϕ(r) = e−c|r|

Multiquadric ϕ(r) =
√

c2 + r2

Inverse multiquadric ϕ(r) = 1√
c2+r2

The function is defined as follows [26]:

˜f (x) =
N

∑
j=1

λj ϕj(r) (1)

Here, λj is the jth weight of the sample point, and N refers to the number of sample
points. ϕj(r) represents the basis function, as given by

ϕj(x) =
√(∥∥x− xj

∥∥)2
+ c2 (2)

c is a shape parameter. When employing MQ-RBF interpolation, it determines the
efficacy of the interpolation. xj is the jth sample point. As the basis function f̃ (x) passes
through the sample points, we obtain the equation:

f̃ (xj) = F
(
xj
)
, j = 1, 2, · · ·N (3)

The basis function matrix ΨN×N can be defined as shown below:

ΨN×N =

 ϕ11 · · · ϕ1N
...

. . .
...

ϕN1 · · · ϕNN

 (4)

where ϕij is the basis function about the sample points and the jth sample point:

ϕij(x) =
√(∥∥xi − xj

∥∥)2
+ c2, i = 1, 2, · · ·N (5)

Furthermore, let W denote the weight vector λj and F denote the vector of f (xj); we
end up obtaining

F = [Ψ][W] (6)

2.2. Algorithm Selection

The present study employs optimization algorithms to determine the shape parameters
of MQ-RBF interpolation for sine functions. This approach offers several advantages,
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including cost reductions as well as improved accuracy of interpolation. The optimization
problem that represents the selection of shape parameters in MQ-RBF is as follows:

Emax(c) = max
x∈(a,b)

|s(x, c)− f (x)| (7)

{
Find copt

min Emax(c)
(8)

The parameters of the interpolation include the interpolation basis function s(x, c),
the interpolation primitive function f (x), the maximum error Emax(c), and the required
optimal shape parameter copt for the interpolation.

To determine the ideal optimization algorithm for determining MQ-RBF’s interpolation
shape parameters in sine functions, we utilized different optimization
approaches [27–31], such as Gradient Descent (GD), Newton-Raphson method (NR), Ge-
netic Algorithm (GA), Tabu Search (TS), and Random Walk (RW), for MQ-RBF interpolation
of numerous sine functions. The leave-one-out cross-validation method [5] was utilized
in our study to select the initial shape parameter of Function (9), which yielded a value of
0.4133. After a series of experiments, we identified the optimal settings for the initial shape
parameter optimization using different algorithms. These settings consist of a learning rate
of 0.1 for GD, a population size of 10 for GA, a taboo length of 10 for TS, and 10 walks for
RW. We compared the performance of these algorithms in terms of interpolation accuracy,
computation time, and the number of iterations required to reach the optimal shape param-
eters, with all algorithms being set to a maximum iteration of 20. The results provided us
with important insights regarding the optimization algorithms’ capability to identify the
optimal shape parameters. Table 2 highlights the results of Function (9).

y = sin(πx) (9)

Table 2. Comparison of algorithm effects.

Algorithm copt MaxError Run Time (s) Number of Iterations

GD 0.64027 5.98× 10−7 0.2855 20

NR 1.07542 6.52× 10−7 0.2569 20

GA 0.54031 2.26× 10−7 0.6937 16

TS 0.48296 4.05× 10−7 0.4016 15

RW 0.54027 2.28× 10−7 0.2601 16

According to our experimental results, GA and TS were found to produce relatively
small shape parameter errors and to require fewer iterations to identify the optimal shape
parameters compared to other algorithms when initially configured with the same number
of iterations and shape parameters. However, these algorithms require more computation
time. In contrast, GD and NR exhibit faster training but produce larger shape parameter
errors when the maximum iteration is reached. On the other hand, while ensuring high
interpolation accuracy, RW requires a relatively short computation time. Therefore, we
recommend using the RW to determine the shape parameter of the MQ-RBF interpolation
function for the sine function.

The selection of the optimal shape parameter (copt) using the Random Walk (RW)
algorithm involves the following steps:

Step 1: Define i(i = 1, 2 . . . , M) as the number of walks, k(k = 1, 2 . . . , N) as the num-
ber of current iterations, the accuracy θ for step control, and the accuracy ε for error control.
Set k equal to 1 and establish the initial parameter c0.

Step 2: The initial step length for the first walk is λ0. Every iteration generates a
random N-dimensional vector
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uik = (u1, u2, · · · , un), uik ∈ (−q, q), which is then standardized to derive u
′
ik =

uik√
n
∑

j=1
uj

2
,

satisfying c1 = c0 + λ0u1k
′, · · · , ci = ci−1 + λuik

′ · · · .
Step 3: Compute the value of Emax(ci):
(1) If Emax(ci) < Emax(ci−1), the ith step is completed. Take ci as the new initial

parameter, reset k to 1, and begin the next walk. The walk process is repeated until
Emax(c) < ε or i = M, at which point the algorithm ends.

(2) If Emax(ci) > Emax(ci−1), it indicates that no better parameter than the present
one has been found. If k < N, return to step 2 to regenerate the random vectors uik+1, · · · ,
uiN−1 and continue the search. When k = N and no better parameter is found, the optimal
parameter copt is regarded as in the sphere with a center ci−1 and a radius λ. If λ < θ,
end the algorithm; otherwise, set λ = λ0/2, go back to step 1, and initiate a new round
of walking.

2.3. Improved Random Walk Algorithm

The Random Walk algorithm, however, exhibits some issues in finding parameters. If
a superior parameter is discovered in the initial parameter’s neighborhood, the algorithm
will advance to the next walk, regardless of whether the iteration meets the specified N
times or not. As a result, the outcome may regress into local optimization.

We have made enhancements to the Random Walk algorithm and labeled it the
Improved Random Walk Algorithm (IRW). The enhancements are as follows: every walk
is iterated for N times, and the parameter registered with the corresponding minimum
error in this walk is taken as the starting parameter for the next walk. By incorporating this
improvement, the algorithm covers a wider parameter range and offers more directions.
Figure 1 displays a flowchart of IRW for determining the best shape parameters.

Table 3 presents the interpolation data for the optimal shape parameter selected by
the IRW algorithm based on Equation (9) for the purpose of comparison with the results in
Table 2. Our validation process has repeatedly shown that the IRW algorithm can identify
the optimal shape parameter with minimal iterations, thereby enhancing the interpolation
accuracy without significantly increasing the time cost. Furthermore, Figures 2 and 3
demonstrate the impact and absolute error of the MQ-RBF interpolation based on the ideal
shape parameters established by the IRW algorithm in Equation (9). These figures indicate
that the chosen shape parameters have excellent interpolation effects. The low cost and
high precision of the IRW algorithm make it the most suitable choice for our problem as we
need to accumulate a large number of data.

Table 3. IRW’s result about Equation (9).

Algorithm copt MaxError Run Time (s) Number of Iterations

IRW 0.52147 1.43× 10−7 0.2675 14
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Figure 1. Algorithm flow.

Figure 2. Interpolation effect of Equation (9).
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Figure 3. Absolute error function of Equation (9).

3. Selection Model of the copt

3.1. The Relationship between ω and copt

Sine and cosine functions are collectively referred to as sine functions in practical
applications. Their general function expression is as follows:

y = A sin(ωx + ϕ) + B (10)

The expression for trigonometric functions includes four parameters, amplitude,
offset, initial phase, and angular frequency, denoted as A, B, ϕ, and ω respectively. These
parameters determine the basic shape of the trigonometric curve. As stated by [7], the
basic shape of the MQ-RBF is determined by its parameter c. Our numerous experimental
results indicate that A, B, and ϕ have negligible influence on the copt, while ω exerts a
profound impact on the copt [32]. Consequently, the IRW algorithm is employed to explore
the relationship between ω and the copt.

f (x) = sin(ωx) (11)

Let ω = kπ(k = 2, · · · , 10) in Equation (11); i.e., expand the angular frequency of
Equation (9) by a factor of k. Selected experimental results are presented in Table 4.

Table 4. ω = kπ(k = 2, · · · , 10) experimental results.

ω copt MaxError

2π 0.26073 1.43× 10−7

3π 0.17382 1.42× 10−7

4π 0.13036 1.43× 10−7

5π 0.10429 1.45× 10−7

6π 0.08691 1.40× 10−7

7π 0.07449 1.42× 10−7

8π 0.06518 1.41× 10−7

9π 0.05631 1.42× 10−7

10π 0.05142 1.41× 10−7
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According to the experimental results, changes in ω had a minor impact on the
interpolation accuracy. When the angular frequency is multiplied by a factor of k, the
corresponding copt decreases by approximately k. Further verification was performed by
dividing the ω by a factor of k (k = 2, · · · , 10), and some of the experimental results are
presented in Table 5.

Table 5. ω = π
k (k = 2, · · · , 10) experimental results.

ω copt MaxError

π/2 1.04294 1.43× 10−7

π/3 1.56441 1.42× 10−7

π/4 2.08588 1.46× 10−7

π/5 2.60735 1.42× 10−7

π/6 3.12882 1.41× 10−7

π/7 3.65029 1.43× 10−7

π/8 4.17176 1.40× 10−7

π/9 4.69343 1.43× 10−7

π/10 5.22458 1.40× 10−7

Numerous numerical experiments have demonstrated an approximate inverse propor-
tionality between variables ω and copt for trigonometric functions. The IRW algorithm is
employed to select parameters for every individual trigonometric function. Subsequently,
the MQ-RBF interpolation shape parameter selection formula of a trigonometric function
is fitted using the least-square method [33] based on a large number of data points that
correspond to a one-to-one relationship with respect to the results. Figure 4 presents the
fitting image of some data, and the resulting formula is Equation (12).

copt = 1.712916/ω + 0.1668 (12)

Figure 4. Relationship between ω and copt.
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3.2. The copt Selection Model for the Linear Combination of Sine Functions
3.2.1. Establishment of the Data Set and Selection of Regression Model

A linear combination of trigonometric functions can be expressed mathematically as
follows [34]:

y =
N

∑
k=1

Ak sin(ωkx + θk) (13)

The number of terms in the linear combination of trigonometric functions is denoted
by N, and the amplitude, angular frequency, and initial phase of the kth term’s trigono-
metric function are represented by Ak, ωk, and θk, respectively. The copt in the MQ-RBF
interpolation for linear combinations of trigonometric functions is determined by the IRW
algorithm. Experimental research has shown that the angular frequency is the primary
determinant of the corresponding copt. Specifically, the highest angular frequency term
significantly affects copt for MQ-RBF interpolation in linear combinations of trigonometric
functions. Based on these results, a dataset is proposed that includes the angular frequency
of the linear combination of trigonometric functions along with their corresponding copt.

Using the Pandas library in Python 3.10, the angular frequencies and corresponding
optimal shape parameters for 1 million linear combinations of sine functions were divided
into segments. To generate a training and testing dataset, we conducted three train–test
splits with ratios of 7:3, 6:4, and 9:1, respectively. A 6:4 ratio is more suitable for smaller
datasets since it can help prevent overfitting. A 7:3 ratio ensures model accuracy while
avoiding overfitting and underfitting, making it best suited for moderate-sized datasets. A
9:1 ratio allocates more data for model training, improving model accuracy by allowing for
a better understanding of the dataset’s characteristics and patterns. Given the large size of
our dataset, we validated and compared the different ratios, ultimately selecting the 9:1
ratio as the most appropriate for our needs.

We trained five models [35–39], namely, Back Propagation Neural Network (BP),
Multiple Linear Regression (MLR), Gated Recurrent Unit (GRU) networks, Support Vector
Machine (SVM), and Long Short-Term Memory (LSTM), using 900,000 data points as the
training set. We compared and evaluated the models using 100,000 data points as the test
set. We used three evaluation indices, namely training time, mean square error (MSE), and
prediction accuracy. Refer to Table 6 for results.

Table 6. Comparison of model effects.

Model Time (Min) MSE Accuracy

BP 2014 0.248787 91.7344%
LSTM 2083 1.847632 84.9843%
GRU 1971 2.847412 81.5832%
SVR 2646 7.626251 74.2447%
MLR 1722 18.72263 67.9843%

Our experimental results show that, despite its shorter training time, MLR exhibits the
poorest predictive accuracy, suggesting that there is no clear linear relationship between the
data. The performance of SVR in handling large-scale samples results in average training
and predictive accuracy. Compared to SVR and LSTM, the BP predicts the shape parameters
of linear combinations of trigonometric functions with the highest accuracy, with the same
amount of training time. After a comprehensive comparison, we selected the BP to perform
shape parameter prediction.

3.2.2. Construction of the copt Selection Model Based on PSO-BP

The BP is composed of three layers: the input layer, the hidden layer, and the output
layer. The signal transmission in the BP progresses forward sequentially through the input
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layer, hidden layer, and output layer, while its error is propagated backward, starting from
the output layer, then the hidden layer, and finally the input layer. The learning ability of
the neural network is directly impacted by the number of nodes in the hidden layer, and
the formula used to calculate it is as follows:

h =
√

l + j + e (14)

where h represents the number of nodes in the hidden layer, l represents the number of
nodes in the input layer, and e is a constant in the range of [1,10] and takes an integer
value. The architecture of our BP neural network includes two hidden layers, with 80
and 30 neurons in the first and second hidden layers, respectively. We selected Rectified
Linear Unit (ReLU) as our activation function while setting the learning rate to 0.05 and the
momentum to 0.9.

Particle Swarm Optimization (PSO) [40] is an optimization algorithm that imitates
the predation behavior of birds. Unlike the random gradient descent method used in BP
training, PSO is a global optimization algorithm that can find the optimal solution to a
problem in the entire region. The algorithm generates a set of random solutions and then
updates the particle velocity and position in each iteration to find the optimal solution. The
rules for updating the particle velocity and position are as follows:

Vk+1
i = wVk+1

i + c1r1(pbest − Xk
i ) + c2r2(gbest − Xk

i ) (15)

Xk+1
i = Xk

i + Vk+1
i (16)

The variables Vk
i and Xk

i denote the velocity and position of particle i during the kth
iteration. The variable ω corresponds to the inertia factor. The variable c1 corresponds to
the individual learning factor. The variable c2 corresponds to the social learning factor. The
variables r1 and r2 correspond to random numbers in the range [0,1]. The variables pbest
and gbest indicate the best positions found so far by the current single particle and by all
particles, respectively.

The BP can perform the nonlinear mapping from input to output, but it is prone to
reaching a local minimum after a specific number of iterations. PSO can fully utilize the
nonlinear application of BP and overcome the issue of the slow convergence of weights in
the BP training neural network, which can easily cause it to fall into local optima. Table 7
presents the evaluation results of the Particle Swarm Optimization Backpropagation model
(PSO-BP). Without imposing significant time costs, the model demonstrates significant
improvements in MSE and prediction accuracy.

Table 7. Effect evaluation of PSO-BP.

Model Evaluation Index Result

PSO-BP

Time (min) 2083
MSE 0.1925473

Accuracy 97.2154%

In our study, we propose using Particle Swarm Optimization (PSO) as the optimizer to
enhance the effectiveness of our model. The PSO algorithm is configured with the following
parameters: swarm size, maximum number of iterations, inertia weight, cognitive learning
factor, and social learning factor. We set the swarm size to 64, the maximum number of
iterations to 100, the inertia weight to 0.8, the cognitive learning factor to 1.5, and the social
learning factor to 2.0; these parameters were selected based on prior research and our
own experimentation to ensure optimal model performance. Utilizing the configured PSO
optimizer aims to maximize the accuracy and efficiency of the model and achieve improved
results. As shown in Figure 5, a comparison between predicted and actual values of the
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partial data reveals that the model’s predicted values closely align with the actual values,
thus demonstrating strong predictive performance. Figure 6 illustrates the loss function of
the PSO-BP that reveals the gradual approach of both the training and testing loss functions
to zero with an increase in training iterations. This indicates enhanced predictive accuracy
of the model as the number of iterations is increased.

Figure 5. Prediction effect.

Figure 6. Error function.

3.3. Verification Experiment

This section focuses on determining the optimal shape parameters for the MQ-RBF
interpolation applied to various sine functions (given as test functions in Table 8). We
accomplish this by utilizing the Formula (12) presented in Section 3.1 and the model in
Section 3.2.2. We also provide a direct comparison of the obtained results with those
obtained through IRW to ensure the accuracy of our method. Detailed comparison results
are shown in Table 9.

According to the experimental findings, the predicted copt and the corresponding
MaxError are relatively consistent with the algorithm’s direct outcomes. Figure 7 displays
the MQ-RBF interpolation effect for functions in Table 8 employing optimal parameters
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selected by the model. The diagram indicates that the interpolation effect of the predicted
optimal shape parameters is satisfactory, no matter what kind of linear combination of sine
functions is chosen.

Table 8. Some linear combinations of sine functions.

Function

y1 = 1.15103 sin(0.1697x)
y2 = 1.6938 sin(1.8385x) + 0.7912 sin(51.6720x)

y3 = −0.0443 sin(9.1841x) + 0.7809 cos(487.3345x) + 13.1847 sin(433.5388x)
y4 = −17.649 sin(0.00077x) + 1.7366 sin(0.0168x) + 2.1873 cos(0.0223x) + 0.0613 sin(0.0293x)

y5 = −4.20007 sin(0.18784x) + 16.8309 sin(10.7043x) + 2.6438 sin(13.7112x)−
0.6115 sin(3.7212x)− 8.3216 sin(15.5185x)

y6 = 9.4471 sin(0.00182x) + 0.8724 sin(0.00427x)
+3.8422 cos(0.03226x)− 0.46931 sin(0.01423x)− 0.14899 sin(0.46373x)− 0.4148 cos(0.07807x)

y7 = −12.9597 sin(0.00001021x) + 8.0630 sin(0.000861x)− 0.5541 cos(0.000845x) +
9.5742 sin(0.000364x)− 9.8754 sin(0.000711x)− 0.9493 cos(0.0000892x) + 18.1644 sin(0.000227x)

y8 = 5.9347 sin(0.00795x)− 14.1697 cos(0.53272x)
+14.3175 cos(0.55298x)− 0.13851 sin(0.68622x)− 0.8271 sin(0.2158x)− 0.59147 sin(0.65339x) +

0.28976 sin(0.43564x)− 16.0692 sin(0.21341x)
y9 = 5.2782 sin(0.17288x) + 3.93769 sin(11.1523x) + 4.8339 cos(5.11929x)−

16.7083 sin(1.35714x)− 2.72809 cos(3.42713x) + 0.45973 cos(2.54397x) + 0.90788 cos(8.00044x)−
9.9520 sin(7.4522x)− 16.9129 cos(10.28865x)

y10 = 15.6210 sin(192.2347x)− 14.4446 cos(19326.04x)
+18.9535 cos(6669.809x) + 1.79108 sin(14311.15x)− 11.2734 sin(1129.175x)−

19.9371 cos(10811.6x) + 7.0600 cos(7317.74x)− 7.09060 sin(16783.77x) + 0.46875 cos(6660.55x) +
0.74923 sin(9829.07x)

Table 9. Comparison of Results.

Function
copt MaxError

Model Algorithm Model Algorithm

y1 34.2114 33.0754 2.06× 10−6 2.08× 10−6

y2 0.08674 0.08523 4.64× 10−6 4.65× 10−6

y3 0.00808 0.00741 9.76× 10−5 9.54× 10−5

y4 183.1259 180.1461 8.57× 10−6 8.57× 10−6

y5 0.27288 0.25611 6.92× 10−5 7.02× 10−5

y6 14.3633 13.7831 1.20× 10−4 1.08× 10−4

y7 4695.355 4679.887 9.00× 10−5 8.24× 10−5

y8 8.13223 8.00126 3.56× 10−5 3.55× 10−5

y9 0.488803 0.486761 3.51× 10−4 3.51× 10−4

y10 0.000280 0.000257 2.38× 10−4 2.36× 10−4



Fractal Fract. 2023, 7, 448 13 of 20

Figure 7. Interpolation effect of y1–y10.
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4. Adaptive Selection Method
4.1. Fourier Expansion of 2-D Scattered Data

Assuming f (x) is a periodic function with a period of 2L and satisfies the Dirichlet
convergence condition, its Fourier expansion can be expressed as follows:

f (x) = a0 +
∞

∑
n=1

(aq cos
nπx

L
+ bq sin

nπx
L

) (17)

In this equation, aq and bq represent the Fourier coefficients:

aq =
1
L

∫ L

−L
f (x) cos

qπx
L

dx, q = 0, 1, 2, · · ·∞ (18)

bq =
1
L

∫ L

−L
f (x) sin

qπx
L

dx, q = 1, 2, · · ·∞ (19)

Moreover, assuming a non-periodic function f (x) is defined within the interval [−L, L]
and satisfies the Dirichlet convergence condition [41], it can be expanded into a Fourier
series by employing periodic continuation. Based on the aforementioned theory, it can
be concluded that, under certain conditions, any given 2D scattered data or continuous
function over a specified interval can be represented as a linear combination of sine and
cosine functions through the Fourier transform.

4.2. Adaptive Selection Method of the Shape Parameter in the MQ-RBF Interpolation for 2D
Scattered Data

We propose an adaptive selection method for shape parameters in MQ-RBF inter-
polation of 2D scattered data by combining the theory of Fourier series and the optimal
parameter selection model for the sine function and its linear combination constructed in
Section 3.2.2. The steps are as follows:

Step 1: Utilizing the Fourier series for fitting two-dimensional scattered data points,
we acquire the corresponding Fourier expansion.

Step 2: We use the MQ-RBF interpolation shape parameter selection model we provide
for the sine function and its linear combination, based on the Fourier expansion, to predict
the corresponding optimal shape parameters.

Step 3: We use the MQ-RBF interpolation shape parameters predicted by the model to
interpolate the original two-dimensional scattered data.

Our adaptive method eliminates the need for selecting initial shape parameters, re-
sulting in reduced accuracy loss during iteration and greatly reduced operating costs.
Instead, we only need to perform Fourier expansion on the sampling point data and use
the established model to predict the appropriate shape parameters directly.

In this study, we generate 2D scattered data points from seven theoretical functions
selected from [8,10–12,16] (Table 10). We use the adaptive method mentioned above to
calculate these data points and compare the results with those obtained using Rippa’s
algorithm (Table 11).

Table 11 demonstrates an improvement in interpolation accuracy and a significant
reduction in operation costs compared to Rippa’s algorithm. These results provide strong
evidence for the effectiveness of the adaptive method proposed in this paper.
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Table 10. Test functions.

f Interval Data Point

f1 = ex3
+ cos(2x) x ∈ [−1, 1] 18

f2 = x4 + 3x2 − x− 2 x ∈ [−1, 1] 24
f3 = e−x + sin(2x) x ∈ [0, 1] 46

f4 = x3 + x2 + x x ∈ [0, 1] 51

f5 = 1
1+25x2 x ∈ [5, 10] 67

f6 = 1.25+cos(5.4x)
6(1+(3x−1)2)

x ∈ [0, 1] 72

f7 = x2

8+x5 x ∈ [0, 7] 91

Table 11. Compared with the effect of Rippa’s algorithm.

f copt RMSE Operation Time(s)
Proposed Rippa’s Proposed Rippa’s Proposed Rippa’s

f1 2.0675 2.1890 8.44× 10−6 9.06× 10−6 0.6375 4.6583

f2 2.3459 1.7876 1.98× 10−6 3.44× 10−6 1.0375 5.8722

f3 1.0259 1.0878 5.51× 10−5 5.56× 10−5 1.1693 5.9426

f4 0.9934 0.8465 6.01× 10−5 6.45× 10−5 1.2716 6.5342

f5 0.2027 0.5783 1.40× 10−6 8.51× 10−5 1.2981 6.8953

f6 2.8094 0.7884 1.08× 10−3 2.76× 10−2 1.5720 7.6255

f7 1.6119 2.0781 1.23× 10−4 5.92× 10−4 2.6154 8.4231

The assessment of optimal shape parameters for MQ-RBF interpolation is critical to the
accuracy of the approximation results. Given that the optimal shape parameters can vary
depending on the nature of the functions, it is essential to propose suitable methods for
each function. Thus, we utilize the proposed adaptive method, which can obtain optimal
shape parameters regardless of any domain or range considerations of functions.

The formula (12) is effective in determining the optimal shape parameters from a
geometric perspective. By analyzing the errors between the original and the interpolation
functions, we can acquire information about the ideal shape parameters. The methodology
proposed in Section 3.2.2 provides a more robust approach that considers the situations
where the optimal parameters may not be evident. The proposed methodology expands
on an arbitrary sine function using the Fourier series and determines the optimal param-
eters while minimizing the mean squared error between the original function and the
interpolation function.

In summary, our approach combines the geometry of MQ-RBF, the adaptive strategy,
and the Fourier series expansion method to obtain optimal shape parameters for sine
functions. These methods ensure higher accuracy in function approximation and enable
successful applications of the MQ-RBF to a wide range of fields.

5. Application of the Adaptive Method in Solving One-Dimensional Integral Equations

The procedure for solving an integral equation using the MQ-RBF method is similar to
that of solving a differential equation using the same method. Firstly, we approximate the
unknown function by a linear combination of MQ-RBF functions, which we then substitute
into the integral equation. Next, we determine the weight coefficients using the collocation
point method and obtain an approximate solution for the unknown function. Unlike
differential equations, the collocation point equation is represented by integral formulas
containing MQ-RBFs rather than the differential equation differentiated at collocation
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points. The solution process for linear and nonlinear integral equations with one variable
using MQ-RBFs is presented in detail below.

5.1. MQ-RBF Collocation Approximation for One-Dimensional Linear Integral Equation

The one-dimensional linear integral equation in its general form can be expressed as

f (x) = µ
∫ b|x

a
k(x, t) f (t)dt + g(x) (20)

where x ∈ [a, b]. The term b|x denotes the upper limit of the integral and can be either a
constant (Fredholm equation) or a variable (Volterra equation). The RBF approximation is
used to solve the integral equation by first expressing the function f (x) as a combination of
RBFs. Utilizing the linearity property of the integral, one can write the linear equation at a
specific collocation point xj as

N

∑
i=1

λi ϕi(xj)− µ
N

∑
i=1

λi

∫ b

a
k(xj, t)ϕi(t)dt = g(xj), xj ∈ [a, b] (21)

Selecting J collocation points results in a collocation equation represented in matrix

form by [Ψ][W] − µ[K] − [G] = 0. Here, ϕij =
√
(xi − xj)

2 + c2, and Kij represents a
definite integral, which can be evaluated using the Gaussian quadrature formula:

∫ 1

−1
h(ξ)dξ ≈

Q

∑
q=1

Aqh(ξq) (22)

The integration interval is transformed to t = p(ξ) = (b+a)
2 + (b−a)ξ

2 to calculate the
coefficient Kij, which can be approximated as

Kij =
∫ b

a
k(xj, t)φj(t)dt =

b− a
2

∫ 1

−1
k[xj, p(ξ)]ϕi[p(ξ)]dξ ≈ b− a

2

Q

∑
q=1

Aqk[xj, p(ξq)]ϕi[p(ξq)] (23)

The collocation points xj and RBF center points xi are assumed to be identical in this
paper, resulting in a square matrix for Ψ.

5.2. MQ-RBF Collocation Approximation for One-Dimensional Nonlinear Integral Equation

The one-dimensional nonlinear integral equation can be expressed in general as
shown below:

f (x) = µ
∫ bx

a
k(x, t)F[ f (t)]dt + g(x), x ∈ [a, b] (24)

To represent the unknown function f (x) in terms of MQ-RBF, we use MQ-RBF approx-
imations, which results in the following equation:

N

∑
i=1

λi ϕi(x) = µ
∫ b

a
k(x, t)F

[
N

∑
i=1

λi ϕi(t)

]
dt + g(x), x ∈ [a, b] (25)

Next, consider a specific collocation point xj ∈ [a, b]; Equation (24) becomes

N

∑
i=1

λi ϕi(xj)− µ
∫ b

a
k(xj, t)F

[
N

∑
i=1

λi ϕi(t)

]
dt− g(xj) = 0, xj ∈ [a, b] (26)

By choosing J collocation points, we arrive at a nonlinear system of equations in
matrix form:

[Ψ][W]− µ[K]− [G] = 0 (27)
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The function Kj =
∫ b

a k(xj, t)F
[

N
∑

i=1
λi ϕi(t)

]
dt =

∫ b
a h(t)dt is a non-linear function with

respect to the weight coefficient [W]. Therefore, iterative techniques are required to solve
it. In each iteration step, all terms in Equation (27) can be computed based on the current
value of [W] = [λ1, λ2, · · · , λN ]

T . For instance, the coefficient Kj can be expressed by using
the Gaussian quadrature formula:

Kj =
∫ 1

−1
k[xj, p(ξ)]F

[
N

∑
i=1

λi ϕi(p(ξ))

]
dξ ≈ b− a

2

Q

∑
q=1

Aqk[xj, p(ξ)]F

[
N

∑
i=1

λi ϕi(p(ξ))

]
(28)

5.3. Solving One-Dimensional Integral Equations Using the MQ-RBF Method with an Optimal
Shape Parameter

The MQ-RBF method with optimal shape parameters (O-MQRBF) utilizes the follow-
ing steps to solve one-dimensional integral equations.

Step 1: Set the MQ-RBF and configuration point by selecting the center point xi of
MQ-RBF and the configuration point xj on the domain of the function. The optimal shape
parameter α can be determined using the method mentioned in Section 4.2.

Step 2: Construct collocation equations by substituting MQ-RBF interpolation format
into integral equations and applying collocation conditions to form collocation equations
that contain definite integrals. The matrix form of the linear integral equations is given by
[Ψ− µK][W] = [G], while the nonlinear form is given by [Ψ][W]− µ[K]− [G] = 0.

Step 3: Calculate the matrix elements. For one-dimensional rectangular areas, the
Gaussian integral method can be applied to calculate definite integrals.

Step 4: Calculate the weight coefficient. For linear integral equations, SVD should be
used to solve the interpolation matrix equation [Ψ− µK][W] = [G]. For nonlinear integral
equations, the Newton iteration method should be used to solve the interpolation matrix
equation [Ψ][W]− µ[K]− [G] = 0.

Step 5: Calculate the RBF approximation of the function f (x), where
f (x) ≈ f̃ (x) = [Ψ(x)][W].

5.4. Numerical Example

The following section presents four examples of linear and nonlinear integral equations
with a single variable that include both Fredholm and Volterra forms, making the examples
more convincing. The setting of MQ-RBF parameters for each example is also provided. It
is worth mentioning that we determined all shape parameters using the adaptive selection
method developed in Section 5.3.

1. One-dimensional Fredholm linear integral equation:
∫ 1

0
e(x+1)t f (t)dt = g(x)

g(x) =
1− ex+1

(x + 1)2 +
ex+1

(x + 1)

, 0 ≤ x ≤ 1 (29)

The exact solution to this equation is f (x) = x. The integration of the interpolation
coefficients is computed using a 20-point Gauss integration. Our adaptive method
was utilized to select a shape parameter of c = 21.35, with a center distance of h = 0.1,
and 11 points share the same center, ht = 0.001.

2. One-dimensional Volterra linear integral equation:

f (x) +
∫ x

0
(x− t) f (t)dt = 1, 0 ≤ x ≤ 1 (30)

The exact solution of the function is f (x) = cos(x). The interpolation coefficients
are integrated using a 60-point Gauss integration. The center points of MQ-RBF are
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set to h = 0.1. Following the application of our adaptive method, a suitable shape
parameter is determined to be c = 1.88, with both the center and collation point taking
position 11. We select a total of 501 measuring points at an interval of ht = 0.002.

3. One-dimensional Fredholm nonlinear integral equation:

f (x) = x
∫ 1

0
t
√

f (t)dt + 2− 1
3
(2
√

2− 1)x− x2, 0 ≤ x ≤ 1 (31)

The exact solution of this equation is f (x) = 2− x2. The integration of the interpola-
tion coefficients is computed using a 10-point Gauss integration. The center points
of MQ-RBF are set to h = 0.1. Utilizing our adaptive method, we settled on a shape
parameter of c = 2.75, with the center point and the collocation point being 10, and
ht = 0.001.

4. One-dimensional Volterra nonlinear integral equation:

f (x) =
3
2
− 1

2
e−2x −

∫ x

0

[
f 2(t) + f (t)

]
dt, 0 ≤ x ≤ 1 (32)

The exact solution for this equation is f (x) = e−x. The integration of the interpolation
coefficients is computed using a 10-point Gauss integration. The shape parame-
ter c = 1.25 was chosen using our adaptive strategy, and ht = 0.005 between the
measuring points.

The high accuracy of the Haar wavelet method in [18] and the Maleknejad method
in [20,21] commonly used in solving one-dimensional integral equations cannot be over-
looked. Nonetheless, to illustrate the undeniable superiority of O-MQRBF, an accuracy
comparison was conducted with those two methods for four different examples, as pre-
sented in Table 12.

Our experimental results demonstrate that the O-MQRBF method enhances the ac-
curacy in solving one-dimensional integral equations, affirming its effectiveness. Simul-
taneously, the results also indicate that our proposed adaptive shape parameter selection
method is both convenient and effective, further adding to its potential for widespread ap-
plication.

Table 12. Comparison between O-MQRBF method and the Haar wavelet method/Maleknejad method.

NO.
Haar Wavelet (j = 6) Maleknejad O-MQRBF

RMSE MaxError RMSE MaxError RMSE MaxError

1 3.63× 10−5 1.28× 10−2 6.00× 10−5 2.38× 10−4 8.32× 10−7 9.44× 10−6

2 8.81× 10−3 2.99× 10−2 8.77× 10−6 3.41× 10−5 3.93× 10−6 1.37× 10−5

3 4.09× 10−6 4.57× 10−5 1.12× 10−6 1.60× 10−5 1.18× 10−7 5.02× 10−7

4 2.55× 10−7 3.99× 10−4 3.35× 10−7 6.26× 10−4 2.38× 10−7 1.89× 10−6

6. Conclusions

A method utilizing MQ-RBF interpolation with adaptive shape parameters is proposed
for solving one-dimensional integral equations. When 2D scattered data can be expanded
into a linear combination of sine and cosine functions via a Fourier series, the angular
frequency of the sine function and its linear combination is observed to significantly impact
the optimal shape parameters. Thus, we developed an optimal shape parameter selection
model for both the sine function and its linear combination. By comparing and verifying the
results, our adaptive model accurately selects shape parameters for the Fourier expansion
of 2D scattered data while also reducing running costs. We applied the adaptive method to
solve one-dimensional integral equations and conducted comparative experiments, which
demonstrate notable enhancements to interpolation accuracy. This paper offers a practical
and effective technique for solving one-dimensional integral equations while providing a
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convenient approach for picking shape parameters in MQ-RBF interpolation of 2D scattered
data. Future research can extend our approach to higher dimensional data.
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