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Abstract: The simultaneous estimation of coefficients and the initial conditions for model fractional
parabolic systems of porous media is reduced to the minimization of a least-squares cost functional.
This inverse problem uses information about the pressures at a finite number of space time points.
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1. Introduction

Many industrial, environmental, and biological processes, related to solute transport
in porous media and groundwater, see, e.g., [1–3], are modeled using a dispersion-reaction
system of equations. The solving of such parabolic systems of equations of heterogeneous
porous media usually requires the application of numerical methods.

Recently, there has been a sharp increase in research activities on modeling the flow of
fluids in porous media with complex pore networks.

Complex processes in the fractional porous media require some type of model reduc-
tion, see, e.g., [4–8].

Many time-fractional diffusion equations and diffusion wave equations appear when
the integer time derivatives are replaced by the fractional derivatives, and this technology
is also used in porous media modeling. However, apart from such formal action, similar
equations describe large classes of physical and chemical processes, such as anomalous
diffusion, turbulent flow, chaotic dynamics, etc. A remarkable consequence of turbulence
is the emergence of anomalous diffusion, see, e.g., [9].

We wrote the system of equations for flow in the triple continuum approach (4)
in [8]. The first continuum describes a flow in the matrix of the porous media, the second
continuum belongs to the network of a small highly connected fractured network, and the
third continuum is related to the flow in a low-dimensional fractured network. We have
the following system of equations for p = (p1, p2, p f ):

C1
∂α1 p1

∂tα1
−∇.(k1∇p1) = η12(p2 − p1) + η1 f (p f − p1), Ω× (0, T), (1)

C2
∂α2 p2

∂tα2
−∇.(k2∇p2) = η21(p1 − p2) + η2 f (p f − p2), Ω× (0, T), (2)

C f
∂α f p f

∂tα f
−∇.(k f∇p f ) = η f 1(p1 − p f ) + η f 2(p2 − p f ), Γ× (0, T), (3)

where Ω ⊂ Rd, Γ ∈ Rd−1 and for the continuum index i = 1, 2, f , p denotes the pressure, ki
is the permeability, ki ≥ ki0 > 0, i = 1, 2, k f ≥ 0 , and ηis is the mass transfer term, which
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are proportional to the continuum permeabilities. The left time Caputo derivative [10–13]
is used:

dαu(t)
dtα

=
1

Γ(1− α)

∫ t

0
(t− λ)−α du(λ)

dλ
dλ, 0 < α < 1, α = α1, α2, α f .

for the function pi(x, t), i = 1, 2, f .
All further results can easily be extended to the model for multi-continuum media:

Ci
∂αi pi
∂tαi

−∇.(ki∇pi) =
I

∑
s 6=i

ηis(ps − pi) + ηi f (p f − pi), Ω× (0, T), (4)

where i = 1, . . . , I and I is the number of contaminants.
The numerical method, based on the implicit finite difference approximation for the

time approximation and the generalized multiscale finite element method for the spatial
discretization is developed in [8] for solving the systems (1)–(4), k f = 0.

The one-dimensional case of the same model is studied in [14,15]. A priori estimates
for the solutions of the first and third boundary value problems of the system (1)–(3), using
energy inequalities, are obtained in [14]. In [15] is the constructed and analyzed positivity
preserving numerical method for solving the second and third boundary value problems of
the system (1)–(3). For the temporal discretization, the L1 formula on the non-uniform mesh
is utilized while, for the discretization in space, a second-order monotone discretization on
half-integer grid nodes is used.

The inverse problems, where it is required to determine some of the coefficients in the
differential equations, initial values, boundary values, and some of the fractional orders
α1, . . . , αI , α f by the observation data of solution p = (p1, . . . , pI , p f ), are important.

The inverse problem is indispensable for the precise and accurate modeling for ana-
lyzing many phenomena, such as heat-mass transfer, atmospheric pollution, and porous
media, see, e.g., [5,9,10,16,17]. After relevant investigations of inverse problems, we can
identify coefficients, boundary conditions, etc., to determine the equations themselves and
can step into solving initial boundary value problems and initial value problems. Therefore,
the inverse problem is the premise for studying the corresponding forward problem.

In the last decades, many research works indicated that the fractional differential
equations are more relevant than those of classical models to describe non-Darcian flow
or anomalous diffusion in some especial environment, in particular porous media, see,
e.g., [18–20].

Actually, the aim of the current work is not only to establish a theory for direct
problems related to time-fractional differential equations, but, first of all, to apply the
theory to inverse problems. The inverse problems are highly various and, in this paper,
we consider one inverse problem to illustrate how our framework for fractional derivative
models operates. However, for inverse problems for the time-fractional diffusion equations,
and especially for the systems of such equations, for example, to recover the initial data,
source function, or diffusion coefficient, and so on, with some additional information, there
are not so many works, see, e.g., [9,21–25] and references therein. Even fewer are the results
for simultaneously identifying more parameters in fractional order systems.

The rest of this paper is structured as follows. In the next section, we introduce some
preliminaries concerning the fractional order calculus. We discuss the well-posedness of
the direct (forward) problem in the one-dimensional case in Section 3. We also present
some a priori estimates for the solution. Inverse problems are formulated in Section 4,
while the quasi-solution of one of these problems is discussed in Section 5. The gradient of
the cost functional is derived in the next section. The conjugate gradient method (CGM) is
described in Section 7. The finite difference method (FDM) for the numerical solution of
the inverse problem is presented in Section 8. The results from the numerical experiments
are proposed and discussed in Section 9. The paper is finalized with some conclusions.
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2. Preliminaries

In this section, we introduce useful notation and some formulas from fractional
calculus without the precision of the smoothness of the functions, see, e.g., [12,13,26] for
more details.

We consider another classical fractional derivative called the left Riemann–Liouville
derivative:

Dα
0 u(t) =

1
Γ(1− α)

d
dt

∫ t

0
(t− λ)−αu(λ)dλ, 0 < t < T,

while
(Iαu)(t) = D−α

t u(t) =
1

Γ(α)

∫ t

0
(t− λ)α−1u(λ)dλ

is the left Riemann–Liouville integral of order α. Next, the right Riemann–Liouville integral
and derivative are defined:

(Iαu)(t) = D−α
T u(t) =

1
Γ(α)

∫ T

t
(λ− t)α−1u(λ)dλ,

Dα
Tu(t) =

−1
Γ(1− α)

d
dt

∫ T

t
(λ− t)−αu(λ)dλ,

We also use the integration-by-parts formula:∫ T

0

∂αu
∂tα

v(t)dt−
∫ T

0
u(t)Dα

Tv(t)dt = u(T)D−α
T v(T)− u(0)D−α

T v(0). (5)

The relationship between the Caputo and Rieamann–Liouville derivatives is given as
follows:

dα
0u(t)
dtα

= Dα
0 u(t)− u(0)

Γ(1− α)
t−α, t ∈ (0, T], (6)

dα
Tu(t)
dtα

= Dα
Tu(t)− u(T)

Γ(1− α)
(T − t)−α, t ∈ [0, T),

where
dα

Tu(t)
dtα

= − 1
Γ(1− α)

∫ T

t
(λ− t)−α du(λ)

dλ
dλ,

is the right Caputo derivative.
Further, we will use one- and two-parameter Mittag-Leffler functions [12,13]:

Eβ1,β2(z) =
∞

∑
s=0

zs

Γ(β1s + β2)
, Eβ(z) = Eβ,1(z) =

∞

∑
s=0

zs

Γ(βs + 1)
. (7)

3. The Direct Problem

In this section, we introduce a model parabolic system (direct problem) with first or third
boundary conditions and present two theorems that are useful for the following investigations.

Without the loss of generality, and for simplicity, in this paper, we develop our
approach for the particular case of system (1)–(4), the triple continuum model in [27], in 1D
geometry, as well as the models in [18–20]. Namely, in the rectangle QT = {(x, t) : 0 ≤ x ≤
1, 0 ≤ t ≤ T}, we consider the first boundary value problem:

C1
∂α1 p1

∂tα1
=

∂

∂x

(
k1(x, t)

∂p1

∂x

)
− η12(x, t)(p1 − p2)− η1 f (x, t)(p1 − p f ) + g1(x, t), (8)

C2
∂α2 p2

∂tα2
=

∂

∂x

(
k2(x, t)

∂p2

∂x

)
− η21(x, t)(p2 − p1)− η2 f (x, t)(p2 − p f ) + g2(x, t), (9)

C f
∂α f p f

∂tα f
=

∂

∂x

(
k f (x, t)

∂p f

∂x

)
− η f 1(x, t)(p f − p1)− η f 2(x, t)(p f − p2) + g f (x, t), (10)

pi(0, t) = 0, pi(1, t) = 0, 0 < t ≤ T, i = 1, 2, f , (11)

pi(x, 0) = ϕi(x), x ∈ Ω = (0, 1), i = 1, 2, f . (12)
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The existence and uniqueness of a weak solution to the initial boundary value prob-
lem (8)–(12) could be investigated following the scheme developed in [4]. Then, the stronger
regularity of the weak solution of the direct problem (8)–(11) for more smooth input data
can be established as well. Throughout the following, we assume that there exists a solution:

p(x, t) ≡ (p1(x, t), p2(x, t), p f (x, t)) ∈ C2,1(QT , )

of the problem (3), (4), and (8)–(11), where Cm,n(QT) is the class of the functions that,
together with their partial derivatives of order m with respect to x and order n with respect
to t, are continuous in QT = Ω× [0, T]. Therefore, throughout this paper we are interested
in the classical solutions of (8)–(12), i.e., functions p = (p1, p2, p3) whose derivatives ∂αi pi

∂tαi ,

i = 1, 2, f , and ∂2 pi
∂x2 , exist at all points in Q and satisfy (8)–(12) pointwise.

The following results, obtained in [14], will be used in the quasi-solution and the
analysis of the sensitivity problem in Sections 5 and 6.

Theorem 1. If ki(x, t) ∈ C1,0(QT), i = 1, 2, f , ηis ∈ C(QT), i, s = 1, 2, f , gi(x, t) ∈
C(QT), ki(x, t) ≥ ki0 > 0, i = 1, 2, k f ≥ 0 , and µis ≥ ηis(x, t) ≥ 0, s = 1, 2, f ev-
erywhere in QT . Then, the initial-value problem (8)–(12) has a unique classical solution that
satisfies the a priori estimate:

E(t) ≤ E(0)Eβ(ρ, tβ) + Γ(β)Eβ,β(ρ1tβ)D−β
0t ρ2(t), β = min(α1, α2, α f ), (13)

E(t) =
2

∑
i=1

∫
Ω

C2
i p2

i (x)dx +
∫

Ω
C f p2

f (x, t)dx,

ρ2(t) =
2

∑
i=1

∫
Ω

g2
i (x, t)dx +

∫
Ω

g2
f (x, t)dx,

where ρ1 is a constant and Eβ, Eβ,β are Mittag-Leffler functions (7).

For the proof, see the conference paper (Theorem 1 in [14]) and Appendix A.
In the problem (8)–(12), we replace the boundary conditions (11) in the following way:

ki(0, t)
∂pi(0, t)

∂x
= β1i(t)pi(0, t)− µ1i(t), i = 1, 2, 0 < t ≤ T,

−ki(1, t)
∂pi(1, t)

∂x
= β2i(t)pi(1, t)− µ2i(t), i = 1, 2, 0 < t ≤ T.

(14)

In the rectangle QT , we consider the third boundary value problem (8), (10), (12),
and (14).

Theorem 2. If, in addition to the assumptions of Theorem 1,

β1i(t), β2i(t), µ1i(t), µ2i(t) ∈ C[0, T], ‖β1i(t)‖ ≤ b1, ‖β2i(t)‖ ≤ b2, bi, i = 1, 2,

are constants, for all t ∈ [0, T] values, then the solution p(x, t) ≡ (p1(x, t), p2(x, t), p f (x, t)) of
the problems (8), (10), (12), and (14) satisfies the a priori estimate:

2

∑
i=1
‖C1/2

i pi‖2
0 + ‖C1/2

f p f ‖2
0 + D−β

0t

(
2

∑
i=1

∥∥∥∥C1/2
i

∂pi
∂x

∥∥∥∥2

0
+

∥∥∥∥C1/2
f

∂p f

∂x

∥∥∥∥2

0

)

≤ M(D−β
0t

(
2

∑
i=1
‖g2

i ‖2
0 + ‖g2

f ‖0 +
2

∑
i,s=1

D−β
0t µ2

is(t) +
2

∑
i=1
‖ϕi‖2

0 + ‖ϕ f ‖2
0

)

For the proof, see the conference paper (Theorem 2 in [14]) and Appendix A.
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The proofs of Theorems 1 and 2 are based on the ideas in paper [28].

4. The Inverse Problems

In the fractional models, there are parameters, e.g., diffusion and convection, reaction
coefficients, or boundary conditions, as well as initial conditions, and source terms that are
difficult for observation purposes and have to be inferred indirectly from measurements.
This gives rise to many different fractional differential equation inverse problems.

More precisely, we study the inverse problem (IP) of the identification of the permeability-
fluid viscosity constant coefficients k ≡ {k1, . . . , kI , k f }, the mass transfer coefficients
η ≡ {ηis(x, t), ηi f (x, t), i, s = 1, . . . , I, f } , and the initial conditions ϕ(x) ≡ {ϕ1(x) =
p1(x, 0), . . . , ϕI(x) = pI(x, 0), ϕ f (x) = p f (x, 0)}, if additional information can be measured:

pppi(xl , tm; a) = Gi
lm, l = 1, . . . , L, m = 1, . . . , M (15)

and i ∈ Î ≤ {1, . . . , I, f }, a = {η, k, ϕ} ∈ A, where A is the admissible set.
It can be rewritten in the operator form A(a) = g , where A : A → G is an injective

operator and a ∈ A, g ∈ G is an Euclidean space of data g = {Gi
11, . . . , Gi

LM}. The inverse
problem A(a) = g is ill-posed, i.e., its solution may not exist and/or its solution is non-
unique and/or unstable to errors in measurements (15), see, e.g., [9,12,16,26,29].

Since the unknowns may not be uniquely identified due to the limited amount of
inversion output, the inverse problem is often reformulated as an optimization problem
with the minimizers considered as the approximate solution in some general sense. Here,
the inverse problem is reduced to the minimization problem:

a = arg min J(a), J(a) =
1
2
〈A(a)− g, A(a)− g〉,

where the functional J(a) characterizes the quadratic deviation of the model data from the
experimental data, and we take it as follows:

J(a) = ∑
i∈ Î

L

∑
l=1

M

∑
m=1

(pi(xl , tm; a)− Gi
lm)

2. (16)

Of course, there are many other problems, which may be formulated for the deter-
mination of the coefficients, the right-hand side of the differential equations, or the initial
conditions, for example:

IP1 the reconstruction of the coefficients k1(x, t), . . . , kI(x, t) and k f (x, t) from the pres-
sure measurements at several time moments 0 < t1 < · · · < tm ≤ T;

IP2 the reconstruction of the initial pressure ϕi(x) from the final time observation
pi(x, T);

IP3 the simultaneous reconstruction of the mass transfer coefficients ηis(x, t) and the
initial pressure ϕi(x) at the above measurements;

IP4 the simultaneous reconstruction of the permeability k1(x, t), . . . , kI(x, t) and k f (x, t)
with the transfer coefficients ηis(x, t).

5. Quasi-Solution of the Inverse Problem IP

This section is devoted to the formulation and existence of a quasi-solution to the IP.
Further, we concentrate on the IP and, for more clarity, we will consider the triple

continuum model (8)–(12), where d = 1, I = 2, k1, k2 are positive constants, and k f is a
non-negative constant, as well as η12 = η21 = e(t), η1 f = η f 1 = b(t), η2 f = η f 2 = c(t), i.e.,
we have three mass transfer coefficients. Additionally, we will take C1 = C2 = C f = 1.

Let us precise the admissible set:

A = {a : 0 < k1, k2 < K, 0 ≤ k f < K f , 0 ≤ e(t), b(t), c(t) ∈ L2(0, T), ϕ ∈ (L2(Ω))3}.
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We rewrite the functional J(a) as follows:

J(a) = ∑
i∈ Î

L

∑
l=1

M

∑
m=1

∫ T

0

∫
Ω
(pi(x, t; a)− Gi

lm)
2δ(x− xl)δ(t− tm)dxdt, (17)

where δ(·) is the Dirac-delta function, reformulating the inverse problem as a minimization
problem for the functional J(a), namely:

J(a) = min
a∈A

J(a).

If â ∈ A , such that J(â) = 0, then the solution of the minimization problem (15) is
called the exact solution of the inverse coefficient problem IP. Otherwise, the solution of
the minimization problem is called the quasi-solution, see, e.g., [24,27–29].

Theorem 3. A minimizer a∗ = arg mina∈A J(a), exists.

The proof follows the arguments as in (Chapter 6 in [24]), so we omit them.

6. The Gradient of the Cost Functional J(a)

In this section, we analyze the sensitivity problem and then derive the Frechet deriva-
tive of the functional (16).

Now, we can introduce the matrices with the vector η = (e, b, c) and the following
matrices:

B = (biν) =

 −e− b e b
e −e− c c
b c −b− c

,

Q = (qiν) =

 −p1 + p2 −p1 + p f 0
−p2 + p1 0 −p2 + p f

0 −p f + p1 −p f + p2

.

Next, if δa is an increment, we denote the deviation of solution p(p1, p2, p f ) by
δp(x, t; δa) = p(x, t; a + δa) − p(x, t; a). Then, if it satisfies the following initial bound-
ary value problem with accuracy up to terms of order o(|δa|2), the sensitivity problem is as
follows:

L1δp1 =
∂α1 δp1

∂tα1
− k1

∂2δp1

∂x2 −
V
∑
ν=1

b1νδpν −
S

∑
s=1

q1sδηs − δk1
∂2 p1

∂x2 = 0,

L2δp2 =
∂α2 δp2

∂tα2
− k2

∂2δp2

∂x2 −
V
∑
ν=1

b2νδpν −
S

∑
s=1

q2sδηs − δk2
∂2 p2

∂x2 = 0,

L3δp3 =
∂α f δp f

∂tα f
− k f

∂2δp f

∂x2 −
V
∑
ν=1

b3νδpν −
S

∑
s=1

q3sδηs − δk f
∂2 p f

∂x2 = 0,

V = I + 1 = 2 + 1 = 3, S = 3, p3 = p f .

δpi|x=0 = δpi|x=1 = 0, i = 1, 2, f ,

δpi(x, 0) = δϕi(x), x ∈ Ω = (0, 1), i = 1, 2, f , t ∈ (0, T).

(18)

Lemma 1. The mapping a 7→ p(a) is Lipschitz continuous from A to H1,0(QT), i.e., for any
a + δa ∈ A , the solution p ∈ H1,0(QT) to the problem (8)–(12) satisfies:

‖δp(a)‖ = ‖p(a + δa)− p(a)‖H1,0(QT)
≤ c‖δa‖L∞(Ω). (19)

Proof. The increment δp is a solution of the sensitivity problem (16). Next, we follow
similar arguments as in Theorem 1 to obtain the estimate (18).
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We have considered the first boundary value problem (8)–(12). In a similar way, we
can derive the sensitivity problem when third boundary conditions (14) are posed. Then,
the corresponding boundary conditions take the form:

ki
∂δpi
∂x

+ δki
∂pi
∂x

= β1i(t)δpi for x = 0,

−
(

ki
∂pi
∂x

+ δki pi

)
= β2i(t)δpi for x = 1.

On the basis of Theorem 2, one can obtain an estimate analogously to (19).

Now, we are in a position to formulate our main result.

Theorem 4. The gradient of the cost functional J(a) is given by the following:

J′(a) =
(∫

Ω
QTr R(x, t)dx,

∫
Ω

∫ T

0

∂2pTr

∂x2 (x, t) ◦ R(x, t)dtdx, R(x, 0)
)Tr

, (20)

where ◦ is the Hadamard product and the vector function R(x, t) is the solution of the adjoint
problem (V = 3):

Dα1
T r1 = k1

∂2r1

∂x2 −
V
∑
ν=1

bν1rν + S1,

Dα2
T r2 = k2

∂2r2

∂x2 −
V
∑
ν=1

bν2rν + S2,

D
α f
T r f = k f

∂2r f

∂x2 −
V
∑
ν=1

bν3rν + S3, V = I + 1 = 3, r3 = r f ,

ri(x, T) = 0, x ∈ Ω, ri|x=0 = ri|x=1 = 0, i = 1, 2, f ,

Si =
M

∑
m=1

L

∑
l=1

∫ T

0

∫
Ω
(pi(x, t; a)− Gi

lm)
2δ(t− tm)δ(x− xl)dxdt,

(21)

for i = 1, 2, f , p3 = p f , and δ(t− tm) is the Dirac-delta function.

Proof. The proof is performed in two parts:
Part 1.For the increment of the cost functional (17), we have:

δJ = J(a + δa)− J(a) =
L

∑
l=1

M

∑
m=1

(δp(xl , tm; δa))2

+
L

∑
l=1

M

∑
m=1

∫ l

0
(p(x, t; a)− Glm)δp(x, t; a)δ(x− xl)δ(t− tk).

(22)

Part 2. We write the variational formulation of the sensitivity problem (18) using
R(x, t) as a test function.

We organize the scalar product 〈·, ·〉 in QT of the system (18) with the vector
R(x, t) ≡ (r1(x, t), r2(x, t), r f (x, t)) and by its components, meaning we have:

〈Liδpi, Ψi〉 =
∫ T

0

∫ l

0

∂αi δpi
∂tαi

Ψidxdt− k1

∫ T

0

∫ l

0

∂2δpi
∂x2 Ψidxdt

−
V
∑
i=1

∫ T

0

∫ l

0
biνδpνΨidxdt−

S

∑
s=1

∫ T

0

∫ L

0
q1s∂ηsΨidxdt

− δki

∫ T

0

∫ l

0

∂2 pi
∂x2 Ψidxdt, i = 1, 2, f , δk f = 0.
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Now, we perform integration by parts (5), using the boundary and initial conditions
in (18) and (21). For example, with respect to the first equation of (18), we have:〈

∂α1 δp1

∂tα1
, r1

〉
=
∫ l

0

∫ T

0

∂α1 δp1

∂tα1
r1dtdx =

〈
δp1, Dα1

T r1
〉
,

k1

〈
∂2δp1

∂x2 , r1

〉
= k1

∫ T

0

∫ l

0

∂2 pν

∂x2 r1dxdt =
〈

δp1, k1
∂2r1

∂x2

〉
.

Using the linearity of the scalar product, the product of the rest terms of (18) is written
as follows:〈

V
∑
ν=1

biνδpν, r1

〉
+

〈
V
∑
ν=1

q1νδην, r1

〉
+

〈
δk1

∂2 p1

∂x2 , r1

〉

=

〈
δp1,

V
∑
ν=1

bν1rν

〉
+

〈
δη1,

V
∑
ν=1

qν1rν

〉
+ δk1

〈
∂2 p1

∂x2 , r1

〉
.

Collecting these expressions and using the adjoint problem (18), we obtain three equalities:

Siδpi(x, t; a) =
∫ l

0
δri(x)ri(x, 0)dx + δki

∫ T

0

∫ l

0

∂2 pi
∂x2 ridxdt

+
∫ T

0
δηi

∫ l

0

V
∑
ν=1

qνirνdxdt, i = 1, 2, f , p3 = p f , δk f = 0, V = 3.

Using (22), we find:

V
∑
i=1

Siδpi(x, t; a) = δJ −
L

∑
l=1

M

∑
m=1

(δp(xl , tm; a))2.

Applying Lemma 1, we conclude that ∑L
l=1 ∑M

m=1(δp(xl , tm; δa))2 = o(‖δa‖2). Remem-
bering the Frechet derivative formula for the cost functional δJ = 〈J′, δa〉+ o(‖δa‖2), see,
e.g., [24,27–29] we obtain (20).

We have studied the IP at first boundary conditions (11). Similar results are valid
for the IP when the boundary conditions (11) are replaced by the third boundary condi-
tions (14).

7. Conjugate Gradient Method (CGM)

In this section, the CGM [4,24,29,30] will be described for the numerical identification
of permeability-fluid viscosity coefficients k ≡ {k1, . . . , kI , k f }, the mass transfer coefficients
η ≡ {ηis, ηi f , i, s = 1, . . . , I} , and the initial conditions:

ϕ(x) ≡ {ϕ1(x) = p1(x, 0), . . . , ϕI(x) = pI(x, 0), ϕ f (x) = p f (x, 0)}

to the inverse problem IP. The following iterative process is used for the estimation of the
triplet of vector functions a = (η, k, ϕ).

Step 1. Set an initial approximation vector a0 and stopping parameter ε > 0. Suppose
that we have an . Next, we explain how to obtain the next approximation an+1.

Step 2. Check the stop condition : if |J(an)− J(an−1)| < ε and J(an) < J(an−1), then
an is an approximate solution of the inverse problem IP . Otherwise, go to step 3.

Step 3. Solve the direct problem (8)–(12) for a given set of parameters an with the finite
difference method (FDM) (or the finite element method (FEM)) and obtain pi(xl , tm; an),
l = 1, . . . , L, m = 1, . . . , M, i = 1, 2, . . . , I, f .
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Step 4. Solve the adjoint problem (21) with FDM (or FEM) and obtain the solution
R(x, t).

Step 5. Determine the gradient of the cost functional J′(an) with formula (20).

Step 6. Calculate the descent parameter αn = 2J(an)
‖J′(an)‖ for the minimum errors gradient

method.

Step 7. Calculate the next approximation:

an+1 = an − αn J′(an)

and go to Step 2.

8. FDM Realization

In this section, we utilize the FDM in order to solve numerically the IP in the case of
I = 2. We define a uniform partition of Ω = ωh ×ωτ :

ωh = {xj = jh, j = 0, 1, . . . , Nx, hNx = 1}

and the time interval [0, T]:

ωτ = {tn = nτ, n = 0, 1, . . . , Nt, τNt = T}.

The value of the pressure pi at the grid nodes is denoted by yn
i,j, namely yn

i,j = pi(xj, tn),
j = 0, 1, . . . , Nx, n = 0, 1, . . . , Nt, i = 1, 2, f . Similar notations are used for other functions
en = η12(tn) = η21(tn), bn = η1 f (tn) = η f 1(tn), cn = η f 2(tn) = η2 f (tn), and gn

i,j =

gi(xj, tn).
For the approximation of the Caputo fractional derivative of the function vn+1, we

apply the L1 formula [31–33] with accuracy O(τ2−αi ):

∂αi vn+1

∂tαi
≈ 1

Γ(1− αi)

n

∑
s=0

vs+1 − vs

τ

ts+1∫
ts

(tn+1 − η)−αi dη =
n

∑
s=0

(vs+1 − vs)ρi
n,s, (23)

where

ρi
n,s =

τ−αi

Γ(2− αi)

(
(n + 1− s)1−αi − (n− s)1−αi

)
and ρi

n,n =
τ−αi

Γ(2− αi)
.

The FDM approximation of the direct problem (8)–(12), with constant diffusion co-
efficients and time dependent functions η, regarding the assumptions in Section 5, is
as follows:

ρ1
n,nyn+1

1,j − k1(y1)
n
xx,j + en+1(yn+1

1,j − yn+1
2,j ) + bn+1(yn+1

1,j − yn+1
f ,j ) = G1

nyn
1,j + gn+1

1,j ,

ρ2
n,nyn+1

2,j − k2(y2)
n+1
xx,j + en+1(yn+1

2,j − yn+1
1,j ) + cn+1(yn+1

2,j − yn+1
f ,j ) = G2

nyn
2,j + gn+1

2,j ,

ρ
f
n,nyn+1

f ,j − k3(y f )
n+1
xx,j + bn+1(yn+1

f ,j − yn+1
1,j ) + cn+1(yn+1

f ,j − yn+1
2,j ) = G f

nyn
f ,j + gn+1

f ,j , (24)

j = 1, . . . , Nx − 1,

yn+1
i,0 = yn+1

i,Nx
= 0, n = 0, 1, . . . , Nt − 1, y0

i,j = ϕi,j, j = 0, 1, . . . , Nx, i = 1, 2, f .

where

Gi
nyn

i,j :=
n

∑
s=1

(
ρi

n,s − ρi
n,s−1

)
ys

i,j + ρi
n,0y0

i,j, n = 0, 1, . . . , Nt − 1,

(yi)
n
xx,j =

(yi)
n
j+1 − 2(yi)

n
j + (yi)

n
j−1

h
.
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Next, we approximate the adjoint problem (21). First, we apply the time inversion
t = T − t̃ and ri(x, t) = r̃i(x, T − t̃) = r̃i(x, t̃). Similarly, ẽ(t̃) = e(T − t̃), b̃(t̃) = b(T − t̃),
c̃(t̃) = c(T− t̃), and the terminal condition become the initial condition. For the fractional
derivative, applying also the change of the variable λ̃ = T − λ in the integral, we have:

Dαi
T ri(x, t) =

−1
Γ(1− αi)

d
dt

T∫
t

ri(x, λ)

(λ− t)αi
dλ =

1
Γ(1− αi)

d
dt̃

T∫
T−t̃

ri(x, λ)

(λ− (T − t̃))αi
dλ

=
−1

Γ(1− αi)

d
dt̃

0∫
t̃

r̃i(x, λ̃)

(T − λ̃− (T − t̃))αi
dλ̃ =

1
Γ(1− αi)

d
dt̃

t̃∫
0

r̃i(x, λ̃)

(t̃− λ̃)αi
dλ̃

= Dαi
0 r̃i(x, t̃).

Further, from (6), taking into account that ri(x, T) = r̃i(x, 0) = 0, we obtain:

Dαi
T ri(x, t) =

1
Γ(1− αi)

t̃∫
0

∂r̃i(x, λ̃)

∂λ̃

1
(t̃− λ̃)αi

dλ̃ =
∂αi ri(x, t̃)

∂t̃αi
.

Therefore, applying the L1 formula (23) for the approximation of the fractional derivative
in the time-inverted adjoint problem, we obtain:

ρ1
n,n r̃n+1

1,j − k1(r̃1)
n+1
xx,j

V
∑
ν=1

b̃n+1
ν1 r̃n+1

ν,j = G1
n r̃n

1,j + Sn+1
1,j , V = 3, j = 1, . . . , Nx − 1,

ρ2
n,n r̃n+1

2,j − k2(r̃2)
n+1
xx,j +

V
∑
ν=1

b̃n+1
ν2 r̃n+1

ν,j = G2
n r̃n

2,j + Sn+1
2,j , V = 3, j = 1, . . . , Nx − 1,

ρ
f
n,n r̃n+1

f ,j − k3(r̃ f )
n+1
xx,j +

V
∑
ν=1

b̃n+1
ν3 r̃n+1

ν,j = G f
n r̃ f ,j + Sn+1

3,j , V = 3, j = 1, . . . , Nx − 1,

rn+1
i,0 = rn+1

i,Nx
= 0, n = 0, 1, . . . , Nt − 1, r0

i,j = 0, j = 0, 1, . . . , Nx, i = 1, 2, f .

S̃n+1
i,j =

M

∑
m=1

L

∑
l=1

∫ T

0

∫
Ω
(pi,j(xl , t̃m; a)− G̃i

lm)
2δ(t̃n+1 − t̃m)(xj − xl)dxdt̃.

Note that, for the values of b̃n+1
iν , we use the known values of bn+1

iν at the current iteration,
namely the vector b̃ = [b̃1

iν, b̃2
iν, . . . , b̃Nt

iν ] = [bNt
i,1 , bNt−1

i,1 , . . . , b1
i,1] or b̃n

iν = bNt−n+1
iν . Similarly,

the contribution S̃n+1
i,j is applied to the same measurement points (xl , tm), l = 1, 2, . . . , L,

m = 1, 2, . . . , M as in (15), where only the order is inverted in time. Finally, the numerical
solution of (21) is obtained from rn

i = r̃Nt−n
i , n = 0, 2, . . . , Nt.

The integrals in (20) are approximated by the second-order trapezoidal quadra-
ture [34]:

∫
Ω

v(x, t)dx ≈h
2

(
v(0, t) + 2

Nz−1

∑
j=1

v(xj, t) + v(1, t)

)
,

∫
Ω

∫ T

0
v(x, t)dtdx ≈hτ

4

Nt−1

∑
n=0

Nx−1

∑
j=0

(
v(xj, tn) + v(xj+1, tn)

+ v(xj, tn+1) + v(xj+1, tn+1)
)

.

9. Numerical Experiments

In this section, we verify the efficiency of the proposed numerical method. The numer-
ical tests are performed as follows.
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First, we choose functions η, ϕ, the values of k (called exact parameters), and the
right-hand side g. Thus, the direct problem (8)–(12) is fully determined and we solve this
problem numerically by (24) to find the solution y, which we refer to as the exact solution.

Then, we solve numerically the inverse problem with the initial guess a0, which is
obtained from the exact parameters, adding perturbation with amplitude ρ0. Considering
the observations, we take the points of measurements at ML number of inner grid nodes,
and the values of the measurements are determined from the exact solution (discrete data)
or by perturbing the exact solution with the perturbation amplitude ρa (perturbed data).

The error of the pressure is estimated, comparing the solution p1, p2, p f , obtained
by solving the inverse problem (for discrete or perturbed data) with the corresponding
numerical solutions of the direct problem (24), computed for the exact a. The parameters—
k1, k2, k f , η12, η1 f , and η2 f , identified by the inverse problem, are compared with their exact
values. We give the absolute (Ea), relative (Er), and root mean square error (RMSE) errors,
defined by the following:

En(η) = η(tn)− ηn, Ea(η) = max
1≤n≤Nt

|En(η)|, Er(η) =

max
1≤n≤Nt

|En(η)|

max
1≤n≤Nt

|η(tn)|
,

E j(ϕ) = ϕ(xj)− ϕj, Ea(ϕ) = max
1≤j≤Nx

|E j(ϕ)|, Er(ϕ) =

max
1≤j≤Nx

|E j(ϕ)|

max
1≤j≤Nx

|ϕ(xj)|
,

En,j(pi) = pi(xj, tn)− yn
i,j, Ea(pi) = max

1≤n≤Nt
max

0≤j≤Nx
|En,j(pi)|,

Er(pi) =

max
1≤n≤Nt

max
0≤j≤Nx

|En,j(pi)|

max
1≤n≤Nt

max
0≤j≤Nx

|pi(xj, tn)|
, RMSE(pi) =

√√√√ 1
LM

M

∑
m=0

L

∑
l=0
|yn

l,m − pi(xl , tm)|2,

Ea(ki) = |k̃i − ki|, Er(ki) =
|k̃i − ki|

k̃i
, i = 1, 2, f ,

where k̃i is the exact value.

Example 1 (Discrete data). We set the following model parameters and functions:

k1 = 3, k2 = 2, k f = 4, η12 = 2t3, η1 f = 2 + t2, η2 f = 3 + 2t,

g1 = t sin(πx), g2 = g3 = 0, ϕ1 = sin(2πx) + 1, ϕ2 = 3 sin(πx); ϕ f = sin(πx).

The experiments are performed for 36 points of measurements (M = L = 6), namely tm =
(0.05, 0.2, 0.5, 0.6, 0.7, 0.825), xl = (0.05, 0.2, 0.5, 0.6, 0.7, 0.825), Nx = Nt = 80, T = 1,
ε = 10−4, ρa = 0, and the initial guess a0 is generated by [35]:

a0 = a + 2ρ0($(tn)− 0.5), (25)

where $(t) is a random function, uniformly distributed in the interval [0, 1] and a is the vector of
exact parameters η, k, and ϕ. Then, we smooth the functions η12, η1 f , η2 f , and ϕi, i = 1, 2, f (i.e.,
the elements of a0), using the polynomial curve fitting of degree 5.

On Figures 1–3, we plot the recovered and exact functions η, ϕ and the solution p at
the last time level for α1 = α2 = α f = 0.5. We observe a good fitting of the identified to the
exact one.

In Table 1, we give the RMSE error for different values of the deviation ρ0 and fractional
order. As can be expected, more precise results are obtained for α1 = α2 = α3 = 0.5 and a
smaller deviation, but the influence of the value of ρ0 is not so significant.
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Figure 1. Exact (solid line) and recovered (dashed line) functions η12, η1 f , η2 f , Example 1.
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Figure 2. Exact (solid line) and recovered (dashed line) functions ϕ1, ϕ2, ϕ f , Example 1.
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Figure 3. Exact (solid line) and recovered (dashed line) solutions p1, p2, p f at t = T, Example 1.

Table 1. RMSE errors of the identified solution p1, p2, p f , Example 1.

(α1, α2, α3) ρ0 RMSE(p1) RMSE(p2) RMSE(p f )

(0.5, 0.5, 0.5) 0.05 6.72434 × 10−4 1.45711 × 10−3 6.92054 × 10−5

(0.5, 0.5, 0.5) 0.01 7.88331 × 10−4 2.81139 × 10−4 8.49064 × 10−4

(0.5, 0.5, 0.5) 0.10 1.18239 × 10−3 5.98905 × 10−3 8.73955 × 10−4

(0.3, 0.6, 0.8) 0.05 1.32682 × 10−3 2.14994 × 10−3 1.70400 × 10−4

(0.3, 0.6, 0.8) 0.01 1.60764 × 10−3 2.89852 × 10−3 4.83800 × 10−4

(0.3, 0.6, 0.8) 0.10 3.69160 × 10−3 1.38909 × 10−3 9.28963 × 10−4

Example 2 (Perturbed data). Now, we consider another set of model parameters and functions:

k1 = 2, k2 = 2.5, k f = 0.5, η12 = 1 + 2t2, η1 f = 6− 3t, η2 f = 6 + 4t3,

g1 =

(
Γ(1 + α1) +

Γ(1 + 2α1)

Γ(1 + α1)
tα1 +

Γ(1 + 3α1)

Γ(1 + 2α1)
t2α1

)
sin(πx), g2 = t sin(πx), g3 = 0,

ϕ1 = 2 sin(πx), ϕ2 = 3 sin(πx), ϕ f = sin(πx).

Numerical tests are performed for 36 points of measurements M = L = 6, the same as in
Example 1, where Nx = Nt = 80, T = 1, ε = 10−3, ρ0 = 0.15 in (25), ρa = (ρa,1, ρa,2, ρa, f ),
and the following measurements:

Gi
l,m = ym

i,l + 2ρa,i($(tm, xl)− 0.5), i = 1, 2, f .
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In Figure 4, we plot the exact solution and generated measurements for ρa,1 = 0.035,
ρa,2 = 0.03, ρa, f = 0.04, α1 = α2 = α f = 0.5.

Figure 4. Exact solutions p1, p2, p f and generated measurements, Example 2.

In Tables 2–6, we give errors of the numerical solution obtained by the inverse problem
for different values of the fractional order. In Figures 5–10, we depict the corresponding
exact and restored functions. In general, the numerical approach is efficient for recovering
the diffusion coefficients, reaction term, initial functions, and solution p. We observe that
more precise results are obtained for the moderate and equal values of the fractional orders
αi, i = 1, 2, f . We may conclude that, for noisy data, the nonequal orders of the fractional
derivatives affect the accuracy of the solution.

In Figures 11 and 12, we illustrate the changes of the errors in the maximal norm of
the restored parameters and the functional and RMSE error at each iteration for α1 = α2 =
α f = 0.5.

For the considered set of measurements and deviations, the iterative process performs
five iterations and stops since J6 > J5.

Table 2. Errors of the identified functions η12, η1 f , η2 f , Example 2.

(α1, α2, α3) Ea(η12) Ea(η1 f ) Ea(η2 f ) Er(η12) Er(η1 f ) Er(η2 f )

(0.5, 0.5, 0.5) 7.954 × 10−3 6.261 × 10−2 1.460 × 10−2 2.651 × 10−3 1.044 × 10−2 1.460 × 10−3

(0.9, 0.6, 0.4) 1.970 × 10−1 4.011 × 10−1 3.217 × 10−1 6.566 × 10−2 6.685 × 10−2 3.217 × 10−2

Table 3. Errors of the identified coefficients k1, k2, k f , Example 2.

(α1, α2, α3) Ea(k1) Ea(k2) Ea(k f ) Er(k1) Er(k2) Er(k f )

(0.5, 0.5, 0.5) 4.251 × 10−2 3.325 × 10−2 9.864 × 10−3 2.125 × 10−2 1.330 × 10−2 1.973 × 10−2

(0.9, 0.6, 0.4) 1.947 × 10−1 8.218 × 10−2 1.597 × 10−1 9.738 × 10−2 3.287 × 10−2 3.194 × 10−1

Table 4. Errors of the identified functions ϕ1, ϕ2, ϕ f , Example 2.

(α1, α2, α3) Ea(ϕ1) Ea(ϕ2) Ea(ϕ f ) Er(ϕ1) Er(ϕ2) Er(ϕ f )

(0.5, 0.5, 0.5) 1.536 × 10−2 1.593 × 10−2 4.388 × 10−2 7.678 × 10−3 5.311 × 10−3 4.388 × 10−3

(0.9, 0.6, 0.4) 4.158 × 10−2 1.584 × 10−2 6.512 × 10−2 2.079 × 10−2 5.280 × 10−3 6.512 × 10−2

Table 5. Errors of the identified solution p1, p2, p f , Example 2.

(α1, α2, α3) Ea(p1) Ea(p2) Ea(p f ) Er(p1) Er(p2) Er(p f )

(0.5, 0.5, 0.5) 6.855 × 10−2 5.099 × 10−2 2.517 × 10−1 3.428 × 10−2 1.699 × 10−2 2.516 × 10−1

(0.9, 0.6, 0.4) 7.128 × 10−2 8.940 × 10−2 3.470 × 10−1 3.564 × 10−2 2.980 × 10−2 3.470 × 10−1



Fractal Fract. 2023, 7, 443 14 of 19

Table 6. RMSE errors of the identified solution p1, p2, p f , Example 2.

(α1, α2, α3) RMSE(p1) RMSE(p2) RMSE(p f )

(0.5, 0.5, 0.5) 3.519 × 10−3 3.282 × 10−3 1.826 × 10−2

(0.9, 0.6, 0.4) 1.984 × 10−2 8.395 × 10−3 6.160 × 10−3
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Figure 5. Exact (solid line) and recovered (dashed line) functions η12, η1 f , η2 f , α1 = α2 = α f = 0.5,
Example 2.
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Example 2.
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Figure 7. Exact (solid line) and recovered (dashed line) solutions p1, p2, p f at t = T, α1 = α2 = α f = 0.5,
Example 2.
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Figure 9. Exact (solid line) and recovered (dashed line) functions ϕ1, ϕ2, ϕ f , α1 = 0.9, α2 = 0.6, α f = 0.4,
Example 2.
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Figure 10. Exact (solid line) and recovered (dashed line) solutions p1, p2, p f at t = T, α1 = 0.9, α2 = 0.6,
α f = 0.4, Example 2.
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Figure 11. Errors in maximal norm at each iteration of the restored parameters (η, k, φ), for i = 1
(line with circles), i = 2 (line with triangles), pi = f (line with squares), α1 = α2 = α f = 0.5, Example 2.
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Figure 12. Changes of the functional and RMSE error at each iteration for p1 (line with circles), p2 (line
with triangles), p f (line with squares), α1 = α2 = α f = 0.5, Example 2.

10. Summary and Future Work

In this paper, an inverse problem for the estimation of the coefficients and initial
condition of a model time-fractional parabolic system in porous media was studied. The
inverse problem uses information about the pressures at a finite number of points in the
space-time domain.

This paper is devoted to the theoretical analysis and numerical implementation of the
1D inverse problem, which is reduced to the minimization of a least-squares cost functional.
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The Frechet gradient of the functional was derived. Based on the explicit gradient formula,
we described a CGM algorithm.

The numerical realization of the identification algorithm was proposed. The com-
putational tests showed a good efficiency of the developed approach for simultaneously
recovering the unknown diffusion coefficients, reaction terms, initial conditions, and the
solution (pressure), even for noisy data. The different order of the fractional derivatives has
a significant influence on the accuracy of the restored functions and solution. For αi < 0.25
or αi > 0.9, the algorithm fails to recover some of the parameters.

This present approach can be extended for multidimensional problems, but this will
be undertaken in future work. Moreover, we plan to further improve the algorithm, ap-
plying the iterative regularization procedure of the CGM, such that it enhances the accuracy.
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Appendix A

In this section, we present some key points of the proof of Theorems 1 and 2, proposed
in the conference paper [14].

Outline of the proof of Theorem 1. We multiply Equation (8) by 2p1(x, t) and integrate
with respect to x from 0 to l. In view of the boundary conditions (11), and the ε - inequality,
we obtain:

C1
∂α1

∂tα1
‖p1‖2

0 + 2
∫

Ω
k1

(
∂p1

∂x

)2
dx +

∫
Ω
(η12 + η1 f )p2

1dx ≤
∫

Ω
(η12 p2

2 + η1 f p2
f )dx + ε‖p1‖2

0 +
1
ε
‖g1‖2

0.

The embedding inequality is as follows:

‖p1‖2
0 ≤

l2

π2

∥∥∥∥∂p
∂x

∥∥∥∥2

0

and since η12 ≥ 0, η1 f ≥ 0, where ε = k10π2/l2, we obtain:

C1
∂α1

∂tα1
‖p1‖2

0 + k10

∥∥∥∥∂p1

∂x

∥∥∥∥2

0
≤
∫

Ω
(η12 p2

2 + η1 f p2
f )dx +

l2

π2k10
‖g1‖2

0.

Acting with the operator D−α1
0t to both sides of this inequality, we find:

C1‖p1‖2
0 + k10D−α1

0t

(∥∥∥∥∂p1

∂x

∥∥∥∥2

0

)
≤ m12D−α1

0t (‖p2‖2
0) + m1 f D−α1

0t (‖p f ‖2
0) +

l2

π2k10
D−α1

0t ‖g1‖2
0 + C1‖ϕ1‖2

0.
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In the same fashion, we obtain analogous estimates for p1 and p f . Then, if we sum up all of
these relations and apply the inequality [14], we have:

D−α
0t h(t) ≤ Γ(β)

Γ(α)
tα−βD−β

0t h(t), where, α ≥ β, h(t) ≥ 0, h(t) is absolutely continuous on [0, T], (A1)

and we derive:

E(t) + k10D−α1
0t

(∥∥∥∥ ∂p1
∂x

∥∥∥∥2

0

)
+ k20D−α2

0t

(∥∥∥∥ ∂p2
∂x

∥∥∥∥2

0

)
≤MD−β

0t E(t) + E(0)

+ N

(
2

∑
i=1

D−β
0t (‖gi‖2

0) + D−β
0t (‖g f ‖2

0)

) (A2)

where M = M(m12, . . . , m f 2, C1, C2, C f , α1, α2, α f , T) and N = N(l, k10, k20, α1, α2, α f , T) are

constants. Next, neglecting the terms D−αi
0t

(
‖∂pi/∂x‖2

0

)
≥ 0, i = 1, 2, in the left-hand side

of the inequality (A2), and applying Grönwall’s inequality [28], we obtain (13).

Outline of the proof of Theorem 2. In the same manner, as in the proof of Theorem 1, we
multiply Equation (8) by 2p1(x, t) and integrate the resulting expression with respect to x
from 0 to l. Taking into account the boundary conditions (14), we derive:

C1
∂α1

∂tα
‖p1‖2

0 + 2k10

∥∥∥∥∂p1

∂x

∥∥∥∥2

0
≤m12‖p2‖2

0 + m1 f ‖p f ‖2
0 +

1
2
‖p1‖2

0 +
1
2
‖g1‖2

0

+ µ2
21(t) + µ2

11(t) + ε(b1 + b2 + 2)
∥∥∥∥∂p1

∂x

∥∥∥∥2

0
+ (b1 + b2 + 2)

(
1
ε
+

1
l

)
‖p1‖2

0.

Further, if we take ε = k10
b1+b2+2 , then there exists a constant M1 > 0, such that we have:

C1
∂α1

∂tα1
‖p1‖2

0 + k10

∥∥∥∥∂p1

∂x

∥∥∥∥2

0
≤M1(C1‖p1‖2

0 + C2‖p2‖2
0 + C f ‖p f ‖2

0

+µ2
21(t) + µ2

11(t) + ‖g1‖2
0

)
Acting on both sides of this inequality with the operator D−α1

0t , and then applying inequality
(A1), we derive:

C1‖p1‖2
0 + k10D−α1

0t

∥∥∥∥ ∂p1
∂x

∥∥∥∥2

0
≤ M1

(
C1D−β

0t ‖p1‖2
0 + C2D−β

0t ‖p2‖2
0 + C f D−β

0t ‖p f ‖2
0

+D−β
0t µ2

21(t) + D−β
0t µ2

11(t) + D−β
0t

(
‖g1‖2

0

))
+ C1‖ϕ1(x)‖2

0.

Similarly, we obtain the analogical inequalities for p2(x, t) and p f (x, t). Then, we have:

2

∑
i=1

Ci‖pi‖2
0 + C f ‖p f ‖2

0 +
2

∑
i=1

ki0D−αi
0t

∥∥∥∥ ∂pi
∂x

∥∥∥∥2

0

≤ M2

D−β
0t

(
2

∑
i=1

Ci‖pi‖2
0 + C f ‖p f ‖2

0

)
+

2

∑
i,j=1

D−β
0t µ2

ij(t)

+
2

∑
i=1

D−β
0t ‖g

2
i (x, t)‖2

0 + D−β
0t ‖g f (x, t)‖2

0 +
2

∑
i=1
‖ϕi(x)‖2

0 + ‖ϕ f (x)‖2
0

)
,

(A3)

where M2 is a constant. By neglecting the third term of the left-hand side of inequality (A3),
and applying Grönwall’s inequality, we have:
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y(t) = D−β
0t

(
2

∑
i=1

Ci‖pi‖2
0 + C f ‖p f ‖2

0

)
, y(0) = 0

∂βy(t)
∂tβ

=
2

∑
i=1

Ci‖pi‖2
0 + C f ‖p f ‖2

0,

and we obtain the following inequality:

D−β
0t

(
2

∑
i=1

Ci‖pi‖2
0 + C f ‖p f ‖0

)
≤ M3

(
2

∑
i,j=1

D−2β
0t µ2

ij(t) +
2

∑
i=1

D−2β
0t ‖g

2
i (x, t)‖2

0 + D−2β
0t ‖g f (x, t)‖2

0

+
tβ

Γ(β + 1)

(
2

∑
i=1
‖ϕi(x)‖2

2 + ‖ϕ f (x)‖2
0

))
,

(A4)

where M3 = Γ(β)Eβ,β(M2Tβ).
Finally, applying the inequality A1 for α := 2β and β := β, it follows from (A3)

and (A4) that the a priori estimate holds.
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