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Abstract: In this paper, we present an efficient solution method for solving fractional system partial
differential equations (FSPDEs) using the Laplace residual power series (LRPS) method. The LRPS
method is a powerful technique for solving FSPDEs, as it allows for the efficient computation of the
solution in the form of a power series expansion. The method is based on the Laplace transform and
the residual power series, and is applied to a system of coupled FSPDEs. The method is validated
using several test problems, and the results show that the LRPS method is a reliable and efficient
method for solving FSPDEs.

Keywords: fractional-order system of partial differential equations; Caputo operator; residual power
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1. Introduction

A fractional differential equation is a type of mathematical equation that involve
derivatives of fractional order, unlike traditional differential equations that involve integer-
order derivatives. A derivative of fractional order extends the concept of an integer-order
derivative, bridging the gap between integer-order calculus and complex behaviors in
various fields. These equations have gained significant attention because of their ability
to model numerous physical and biological phenomena more accurately than classical
integer-order differential equations. They are frequently used in various domains, such as
physics, engineering, biology, and economics, to describe anomalous diffusion, viscoelastic
material behavior, control systems, signal processing, and much more [1–4].

The fractional system of partial differential equations (PDEs) is an advanced topic
in mathematical physics and applied mathematics, which involves the use of fractional
derivatives in place of the standard integer-order derivatives seen in traditional PDEs. This
new class of equations has been shown to be remarkably effective in modeling various
complex phenomena across multiple fields, including fluid dynamics, viscoelasticity, diffu-
sion processes, and control systems, to name a few. Fractional PDEs leverage the “memory”
properties of fractional derivatives, effectively capturing the long-term dependencies and
hereditary characteristics inherent in many physical systems. These systems often exhibit
non-local behavior, meaning that their current state is not only determined by the imme-
diate past but also by a historical sequence of past events. Therefore, fractional PDEs can
provide more accurate models in these situations than their integer-order counterparts [5].

However, the fractional system of PDEs also presents significant mathematical chal-
lenges. The non-local nature of fractional derivatives leads to more complicated boundary
and initial conditions. Moreover, the analytical and numerical solutions of these equations
are much more complex than those of standard PDEs. Many well-known techniques for
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integer-order PDEs, such as separation of variables or method of characteristics, are not
directly applicable to fractional PDEs, leading to the development of novel methodologies
and techniques. Despite these challenges, the field of fractional PDEs is an active area of
research with considerable potential for future breakthroughs in both theoretical under-
standing and practical applications. The incorporation of fractional calculus into PDEs is
seen as a significant advancement in the mathematical modeling of physical systems and
has the potential to usher in a new era of mathematical analysis and simulation [6–8].

A space-fractional system of nonlinear equations is a mathematical model that de-
scribes the behavior of physical systems in which fractional derivatives are involved. Such
systems have found applications in various fields, such as fluid dynamics, mechanics,
and electrochemistry, to name a few. The system involves fractional partial differential
equations (PDEs), where the order of the derivative is non-integer, and the nonlinear terms
represent the interactions between the system components [9–13]. The presence of frac-
tional derivatives introduces a new length scale into the system, which leads to new and
often unexpected phenomena. Studying the properties and solutions of space-fractional
systems of nonlinear equations is an active area of research, with potential implications
for understanding complex physical processes and developing more accurate and efficient
computational methods. Space-fractional systems of nonlinear equations have gained
significant attention in recent years due to their potential applications in various fields,
including fluid dynamics, mechanics, and electrochemistry [14–16]. These systems are
described by partial differential equations with fractional derivatives, which introduce
a new length scale and lead to new and often unexpected phenomena. The fractional-
order derivatives also provide a more accurate description of physical systems that exhibit
long-range dependencies and memory effects [17,18].

In this paper, we focus on a specific class of space-fractional systems of nonlinear
equations and investigate their properties and solutions. Our work is motivated by the
need to understand the behavior of complex systems, especially those that are difficult to
model using traditional methods. In particular, our study focuses on systems that exhibit
chaotic behavior, which is characterized by a sensitive dependence on the initial conditions
and aperiodic dynamics [19–21]. Chaotic systems have been observed in various physical
systems, such as weather patterns, turbulent flows, and biological systems. The scientific
novelty of our paper lies in the investigation of the dynamics of space-fractional systems of
nonlinear equations with chaotic behavior. We employ a range of analytical and numerical
techniques to study the system’s properties, including bifurcation analysis, Lyapunov
exponents, and attractor reconstruction [22,23]. Our findings provide insights into the
behavior of these systems, including the occurrence of periodic and chaotic solutions,
the impact of the system parameters on the dynamics, and the role of fractional-order
derivatives in the emergence of chaotic behavior. Overall, our study contributes to the
growing body of research on space-fractional systems of nonlinear equations and sheds
light on the behavior of complex systems. Our results have potential applications in various
fields, such as climate modeling, fluid dynamics, and finance, where accurate modeling of
complex systems is essential [24–28].

The Laplace residual power series method (LRPSM) is a promising approach for solv-
ing fractional partial differential equations (PDEs). This method has several advantages
over traditional numerical methods for solving fractional PDEs. Firstly, the LRPSM is
a semi-analytical method, meaning that it combines both analytical and numerical tech-
niques to solve the equation. This allows for more accurate solutions compared to purely
numerical methods and reduces the computational burden compared to purely analytical
methods. Secondly, the LRPSM can handle both linear and nonlinear fractional PDEs,
making it a versatile method for solving a wide range of problems. Thirdly, the LRPSM can
handle boundary conditions effectively, even in cases where traditional numerical methods
fail. Finally, the LRPSM is easy to implement and can be easily parallelized, making it a
computationally efficient method for solving fractional PDEs. The LRPSM is a powerful
mathematical technique that can be used to solve a wide range of problems in various
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fields such as engineering, physics, and mathematics. The exact number of problems that
can be solved by LRPSM is difficult to determine, as it is a flexible and adaptable method
that can be applied to a wide variety of situations. One of the key features of the Laplace
residual power series method is the ability to deal with singular points in the differential
equation. These singular points can be poles or essential singularities, and they are treated
by introducing a small parameter, known as the residual, into the power series expansion.
This allows the series to converge to the solution of the differential equation even in the
vicinity of the singular point [29–31]. The Laplace residual power series method is widely
used in the field of mathematical physics, particularly in the study of partial differential
equations, integral equations, and eigenvalue problems. It has been applied to a wide
range of problems, including the study of wave propagation, fluid dynamics, and quantum
mechanics. Overall, the Laplace residual power series method is a powerful analytical tool
that allows for the solution of differential equations with singular points, making it a valu-
able tool in the field of mathematical physics and other areas of mathematics and science.
Some examples of problems that have been solved using LRPSM include free vibration
analysis of non-uniform beams (Gao, 2015) [32], analysis of nonlinear dynamic systems
(Zhang et al., 2017) [33], solutions of partial differential equations (Liu et al., 2018) [34],
modeling of nonlinear systems in control engineering (Liu et al., 2019) [35], and analysis of
nonlinear vibrations in mechanical systems (Chen et al., 2020) [36].

This paper is composed in the following sequence: in the next section, basic definitions
of fractional calculus are presented. In Section 3, the basic theory of the Laplace residual
power series method is presented. Section 4 deals with a numerical example. Lastly,
conclusions are derived.

2. Preliminaries

In this section, we will cover key concepts and findings associated with the Caputo
fractional derivative and the fractional Laplace transformation.

Definition 1. The Caputo fractional derivative of order α of a function ξ(η, τ) is given as [37,38]

CDα
τξ(η, τ) = Jm−α

τ ξm(η, τ), m− 1 < α ≤ m, τ > 0. (1)

When m is a natural number and Jα
τ represents the Riemann–Liouville fractional integral of ξ(η, τ)

of order α, it can be defined as follows [37,38]

Jα
τ ξ(η, τ) =

1
Γ(α)

∫ τ

0
(τ − r)α−1ξ(η, r)dr (2)

Given that the integral is well-defined, it can be evaluated to determine its value.

Definition 2. The Laplace transformation of a function ξ(η, τ) can be described as [37,38]

ξ(η, s) = Lτ [ξ(η, τ)] =
∫ ∞

0
e−sτξ(η, τ)dτ, s > α, (3)

where the inverse Laplace transformation is defined as

ξ(η, τ) = L−1
τ [ξ(η, s)] =

∫ l+i∞

l−i∞
esτξ(η, s)ds, l = Re(s) > l0, (4)

In the context of the Laplace integral, l0 is located in the area of the right half-plane where the
integral converges.

Lemma 1. Let ξ(η, τ) be a continuous piecewise function with an exponential order of ζ. By ap-
plying the Laplace transform, ξ(η, s) can be expressed as the Laplace transform of ξ(η, τ), denoted
as Lτ [ξ(η, τ)] [37,38]
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1. Lτ [Jα
τ η(η, τ)] = ξ(η,s)

sα , α > 0.
2. Lτ [Dα

τξ(η, τ)] = sαξ(η, s)−∑m−1
k=0 sα−k−1ξk(η, 0), m− 1 < α ≤ m.

3. Lτ [Dnα
τ ξ(η, τ)] = snαξ(η, s)−∑n−1

k=0 s(n−k)α−1Dkα
τ ξ(η, 0), 0 < α ≤ 1.

Theorem 1. Consider a function ξ(η, τ) that is piecewise continuous on the interval I and over
the time range [0, ∞). This function also has an exponential order of ζ. Now, if we take the
Laplace transform of ξ(η, τ), we obtain ξ(η, s) = Lτ [ξ(η, τ)]. This transformed function can be
represented by a fractional expansion [37,38]

ξ(η, s) =
∞

∑
n=0

fn(η)

s1+nα
, 0 < α ≤ 1, ξ ∈ I, s > ζ. (5)

Then, fn(η) = Dnα
τ ξ(η, 0).

Remark 1. The inverse Laplace transformation of Equation (5) is given as [37,38]

ξ(η, τ) =
∞

∑
i=0

Dα
τξ(η, 0)

Γ(1 + iα)
τi(ζ), 0 < ζ ≤ 1, t ≥ 0. (6)

The convergence of the FPS, as outlined in Theorem (1), is further explained in the following theorem.

Theorem 2. Let ξ(η, τ) be a continuous piecewise function on the interval I and the time interval
[0, ∞) with order ξ. As stated in Theorem (1), the Laplace transform of ξ(η, τ) can be expressed
in the form of a fractional Taylor’s formula. If the absolute value of s multiplied by the Laplace
transform of the derivative of ξ(η, τ) to the power of iα + 1 is less than or equal to M(η) on the
interval I× (ς, γ] where 0 < α ≤ 1, then the remainder term, Ri(η, s), of the fractional Taylor’s
formula in Theorem (1) satisfies the following inequality [37,38]

|Ri(η, s)| ≤ M(η)

S1+(i+1)α
, η ∈ I, ξ < s ≤ γ. (7)

3. LRPS Methodology

In this section, we will present a general methodology for solving fractional-order
partial differential equations using the LRPS method [37,38].

Dα
τξ(η, τ) + N[ξ(η, τ)] + R[ξ(η, τ)] = 0, where 1 < α ≤ 2. (8)

Let us consider a function, denoted by R, that is dependent on two variables, η and τ,
and represented by ξ(η, τ). Additionally, we have a nonlinear term, represented by N,
that also depends on ξ(η, τ). In this scenario, the initial conditions play a crucial role in
determining the overall behavior of these terms.

ξ(η, 0) = f0(η),
∂ξ(η, 0)

∂τ
= g0(η). (9)

By utilizing the Laplace transform on Equation (8) and incorporating Equation (9), we can
arrive at a new equation

ξ(η, s)− f0(η, s)
s

− g0(η, s)
s2 +

1
sα
Lτ

[
N[L−1

τ [ξ(η, s)]] + A[ξ(η, τ)]
]
= 0. (10)

It can be assumed that the solution to Equation (10) can be represented through an expansion.

ξ(η, s) =
∞

∑
n=0

fn(η, s)
snα+1 . (11)
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The series in which only certain terms are included, known as the truncated series, is
represented by the kth term.

ξ(η, s) =
f0(η, s)

s
+

g0(η, s)
s2 +

k

∑
n=1

fn(η, s)
snα+1 ,

n = 1, 2, 3, 4 · · · .

(12)

Lτ Res(η, s) = ξ(η, s)− f0(η, s)
s

− g0(η, s)
s2 +

1
sα
Lτ

[
N[L−1

τ [ξ(η, s)]] + A[ξ(η, τ)]
]
. (13)

The kth-LRF is represented as:

Lτ Resk(η, s) = ξk(η, s)− f0(η, s)
s

− g0(η, s)
s2 +

1
sα
Lτ

[
N[L−1

τ [ξk(η, s)]] + A[ξk(η, τ)]
]
. (14)

As an example, here are some key features of the LRPSM:

• Lτ Res(η, s) = 0 and limj→∞ Lτ Resk(η, s) = LtResξ(η, s) for each s > 0.
• lims→∞ sLτ Resξ(η, s) = 0⇒ lims→∞ sLτ Resξ,k(η, s) = 0.
• lims→∞ skα+1Lτ Resξ,k(η, s) = lims→∞ skα+1LtResξ,k(η, s) = 0, 1 < α ≤ 2,

k = 1, 2, 3, · · · .
To determine the coefficients utilizing fn(η, s), a recursive method is applied to solve

the system.

lim
s→∞

skα+1Lτ Resξ,k(η, s) = 0, k = 1, 2, · · · . (15)

By applying the inverse Laplace transform to Equation (11), we obtain the kth analytical
expression for ξk(η, τ).

4. Application

In this section, we present the use of the proposed techniques on a nonlinear coupled
system of fractional-order partial differential equations.

Problem

Let us assume a system of nonlinear space-fractional equations as [39]

Dα
τζ(η, τ)− ξ(η, τ)

∂2ζ(η, τ)

∂η2 − ζ(η, τ)
∂2ξ(η, τ)

∂η2 + φ(η, τ) = 0, where 1 < ε ≤ 2,

Dα
τξ(η, τ)− ξ(η, τ)

∂2ξ(η, τ)

∂η2 + ζ(η, τ)
∂2ζ(η, τ)

∂η2 + ψ(η, τ) = 0, where 1 < ε ≤ 2,

(16)

where φ(η, τ) and ψ(η, τ) are source terms.

φ(η, τ) = −2 + 2η2 + 2τ2,

ψ(η, τ) = −1− 3
2

η2 − 3
2

τ2,
(17)

along with the initial conditions

ζ(η, 0) = η2,
∂ζ(η, 0)

∂τ
= 0,

ξ(η, 0) =
η2

2
,

∂ξ(η, 0)
∂τ

= 0,
(18)
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By using Laplace transforms on Equation (16) and incorporating Equation (18), we arrive
at a new equation.

ζ(η, s)− η2

s
− 1

sα
L
[
L−1

τ [ξ(η, s)]L−1
τ [

∂2ζ(η, s)
∂η2 ] + L−1

τ [ζ(η, s)]L−1
τ [

∂2ξ(η, s)
∂η2 ]

]
+

1
sα
L[φ(η, τ)] = 0,

ξ(η, s)− η2

2s
− 1

sα
L
[
L−1

τ [ξ(η, s)]L−1
τ [

∂2ξ(η, s)
∂η2 ]−L−1

τ [ζ(η, s)]L−1
τ [

∂2ζ(η, s)
∂η2 ]

]
+

1
sα
L[ψ(η, τ)] = 0,

(19)

and so the kth-truncated-term series for Equation (19) is

ζ(η, s) =
η2

s
+

k

∑
n=1

fn(η, s)
snα+1 ,

ξ(η, s) =
η2

2s
+

k

∑
n=1

fn(η, s)
snα+1 , n = 1, 2, 3, 4 · · · .

(20)

with the LRFs as:

Lτ Resζ(η, s) = ζ(η, s)− η2

s
− 1

sα
L
[
L−1

τ [ξ(η, s)]L−1
τ [

∂2ζ(η, s)
∂η2 ] + L−1

τ [ζ(η, s)]L−1
τ [

∂2ξ(η, s)
∂η2 ]

]
+

1
sα
L[φ(η, τ)],

Lτ Resξ(η, s) = ξ(η, s)− η2

2s
− 1

sα
L
[
L−1

τ [ξ(η, s)]L−1
τ [

∂2ξ(η, s)
∂η2 ]−L−1

τ [ζ(η, s)]L−1
τ [

∂2ζ(η, s)
∂η2 ]

]
+

1
sα
L[ψ(η, τ)],

(21)

with the kth-LRFs as:

Lτ Resζ,k(η, s) = ζk(η, s)− η2

s
− 1

sα
L
[
L−1

τ [ξk(η, s)]L−1
τ [

∂2ζk(η, s)
∂η2 ] + L−1

τ [ζk(η, s)]L−1
τ [

∂2ξk(η, s)
∂η2 ]

]
+

1
sα
L[φ(η, τ)],

Lτ Resξ,k(η, s) = ξk(η, s)− η2

2s
− 1

sα
L
[
L−1

τ [ξ(η, s)]L−1
τ [

∂2ξk(η, s)
∂η2 ]−L−1

τ [ζk(η, s)]L−1
τ [

∂2ζk(η, s)
∂η2 ]

]
+

1
sα
L[ψ(η, τ)].

(22)

To determine fk(η, s) and fk(η, s), where k = 1, 2, 3, · · · , we need to substitute the kth-
truncated series from Equation (20) into the kth-Laplace residual function (Equation (22)).
Then, we multiply the resulting equation by skα+1 and solve the relation lims→∞(skα+1Lτ
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Resζ, k(η, s)) = 0 and lims→∞(skα+1LτResξ, k(η, s)) = 0, n = 1, 2, 3, · · · recursively.
The first few terms of this process are given below.

f0(η) = η2, g0(η) =
η2

2
,

f1(η) = 2η2, g1(η) =
5η2

2
,

f2(η) = 0, g1(η) = 0,

(23)

and so on.

Now, putting the values of fk(η) and gk(η), k = 1, 2, 3, · · · , into Equation (20), we obtain

ζ(η, s) =
η2

s
+

2η2

sα+1 + 0 + · · · .

ξ(η, s) =
η2

2s
+

5η2

2sα+1 + 0 + · · · .

(24)

Using the inverse Laplace transform, we obtain

ζ(η, τ) = η2 + 2η2 τα

Γ(α + 1)
+ · · · ,

ξ(η, τ) =
η2

2
+ 5η2 τα

2Γ(α + 1)
+ · · · .

(25)

Figure 1 displays 2D plots of ζ(η, τ) for a system of fractional partial differential
equations, found using the Laplace residual power series method (LRPSM). Figure 1a
depicts the plots at α = 1.3, 1.5, and 1.6, while Figure 1b shows the plots at α = 1.6, 1.8, and
2. These visualizations demonstrate the impact of varying the fractional-order parameter α
on the solutions. Figure 2 presents 3D plots of ζ(η, τ) for the system of fractional partial
differential equations, also solved using the LRPSM. Figure 2a–d illustrate the plots at
α = 1.97, 1.98, 1.99, and 2.00, respectively. These 3D plots provide a deeper understanding
of the relationship between the variables η, τ, and ζ, as well as the effect of different values
of α on the solutions. In Figure 3, 3D plots of ξ(η, τ) are depicted for the same system
of fractional partial differential equations, utilizing the LRPSM. Figure 3a–c display the
plots at α = 1.50, 1.7, and 2, respectively. Meanwhile, Figure 3d showcases the plots
at α = 1.5, 1.7, and 2.0. These plots reveal the behavior of the variable ξ as a function
of η and τ, and how different values of the fractional-order parameter α influence the
solutions. Table 1 provides an error analysis comparing the LRPSM and the generalization
of least square homotopy perturbation (GLSHP) method for ζ(η, τ) at a fractional order
of α = 1.98. Similarly, Table 2 offers an error analysis comparing the LRPSM and GLSHP
methods for ξ(η, τ) at a fractional order of α = 1.96. These tables highlight the accuracy
and effectiveness of the LRPSM in comparison to the GLSHP method for solving the system
of fractional partial differential equations.

Table 1. Error analysis of the present method (LRPSM) and generalization of least square homotopy
perturbation (GLSHP) [39] at fractional order α = 1.98 for ζ(η, τ).

η LRPSM Exact Abs. Error (LRPSM) Abs. Error (GLSHP)

0.1 0.01 0.01 3.95169 × 10−8 4.59771 × 10−6

0.2 0.04 0.04 3.80677 × 10−8 4.59655 × 10−6

0.3 0.09 0.09 3.56523 × 10−8 4.59463 × 10−6

0.4 0.16 0.16 3.22707 × 10−8 4.59194 × 10−6
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Table 1. Cont.

η LRPSM Exact Abs. Error (LRPSM) Abs. Error (GLSHP)

0.5 0.25 0.25 2.7923 × 10−8 4.58848 × 10−6

0.6 0.36 0.36 2.26091 × 10−8 4.58426 × 10−6

0.7 0.49 0.49 1.6329 × 10−8 4.57926 × 10−6

0.8 0.64 0.64 9.0828 × 10−9 4.5735 × 10−6

0.9 0.81 0.81 8.70417 × 10−10 4.56696 × 10−6

1.0 1.0 1.0 8.30813 × 10−9 4.55966 × 10−6

-2 -1 0 1 2

0

2

4

6

η

ζ
(η
)

α= 1.5

α= 1.4

α = 1.3

(a)

-2 -1 0 1 2

0

1

2

3

4

5

6

η

ζ
(η
)

α= 2.0

α= 1.8

α = 1.6

(b)

Figure 1. 2D plots of LRPSM solution of ζ(η, τ) at various values of fractional order. (a) 2D plots of
ζ(η, τ) at α = 1.3, 1.5, and 1.6; (b) 2D plots of ζ(η, τ) at α = 1.6, 1.8, and 2.
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α=1.97

(a)

α=1.98

(b)

α=1.99

(c)

α=2

(d)

Figure 2. 3D plots of ζ(η, τ) using LRPSM at various values of fractional order α. (a) 3D plot of
ζ(η, τ) at α = 1.97; (b) 3D plot of ζ(η, τ) at α = 1.98; (c) 3D plot of ζ(η, τ) at α = 1.99; (d) 3D plot of
ζ(η, τ) at α = 2.00.

α=1.50

(a)

α=1.7

(b)

α=2

(c)

α=1.50

α=1.70

α=2.0

(d)

Figure 3. 3D plots of ζ(η, τ) using LRPSM at various values of fractional order α. (a) 3D plot of
ξ(η, τ) at α = 1.50; (b) 3D plot of ξ(η, τ) at α = 1.7; (c) 3D plot of ξ(η, τ) at α = 2; (d) 3D plot of
ξ(η, τ) at α = 1.5, 1.7, and 2.0.
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Table 2. Error analysis of the present method (LRPSM) and generalization of least square homotopy
perturbation (GLSHP) [39] at fractional order α = 1.96 for ξ(η, τ).

η LRPSM Exact Abs. Error (LRPSM) Abs. Error (GLSHP)

0.1 0.005 0.005 1.92708 × 10−8 2.61859 × 10−6

0.2 0.02 0.02 1.70834 × 10−8 2.61798 × 10−6

0.3 0.045 0.045 1.34376 × 10−8 2.61698 × 10−6

0.4 0.08 0.08 8.33348 × 10−8 2.61557 × 10−6

0.5 0.125 0.125 1.77107 × 10−9 2.61377 × 10−6

0.6 0.18 0.18 6.24967 × 10−9 2.61156 × 10−6

0.7 0.245 0.245 1.57287 × 10−8 2.60895 × 10−6

0.8 0.32 0.32 2.66661 × 10−8 2.60594 × 10−6

0.9 0.405 0.405 3.90617 × 10−8 2.60253 × 10−6

1 0.5 0.5 5.29157 × 10−8 2.59871 × 10−6

5. Conclusions

In conclusion, the Laplace residual power series method (LRPSM) has proven to be an
efficient technique for solving fractional system partial differential equations. The LRPSM
provides accurate numerical solutions with fast convergence rates, making it a valuable
tool in practical applications. Compared to traditional numerical methods, the LRPSM
offers a simpler and more direct approach, which is particularly useful for complex and
nonlinear problems. Furthermore, the LRPSM can be easily implemented using standard
software packages, making it accessible to a wide range of researchers and practitioners.
Overall, the LRPSM is a promising approach for solving fractional system partial differential
equations and has the potential to contribute to advancements in various fields of science
and engineering.
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