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Abstract: We have developed a Jungck version of the DK iterative scheme called the Jungck–DK
iterative scheme. Our analysis focuses on the convergence and stability of the Jungck–DK scheme for
a pair of non-self-mappings using the more general contractive condition. We demonstrate that this
iterative scheme converges faster than all other leading Jungck-type iterative schemes. To further
illustrate its effectiveness, we provide an example to verify the rate of convergence and prove the
data dependence result for the Jungck–DK iterative scheme. Finally, we calculate the escape criteria
for generating Mandelbrot and Julia sets for polynomial functions and present visually appealing
images of these sets by our modified iteration.
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1. Introduction

Fixed-point theory occupies a prominent position in both pure and applied mathemat-
ics, owing to its numerous applications in areas such as differential and integral equations,
variational inequalities, approximation theory, equilibrium problems, fractal generation,
and many others.

The Banach contraction theorem, introduced by Banach in 1922, is one of the funda-
mental results in fixed-point theory. This theorem guarantees the existence and uniqueness
of fixed points for contraction mappings in metric fixed-point theory. Additionally, it allows
various iterative schemes to converge to a fixed point. The theorem has also become a
widely used method for solving existence problems in many mathematical fields.

While there have been numerous studies regarding fixed points of contractive maps,
such as those discussed in [1–4], relatively little research has focused on the convergence of
iterative approximations to these common fixed points.

When it comes to approximating fixed points, the well-known Banach contraction
theorem employs the Picard iteration method. However, in many cases, obtaining the exact
solution to a fixed-point problem is infeasible. Hence, as a result, a wide range of iterative
algorithms have been developed and studied for approximating solutions to fixed-point
problems [5–14].

The investigation of iterative methods for approximating fixed points using various
types of self-mappings has gained significant attention in recent years. Researchers have
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introduced several iterative schemes and studied their qualitative features, including
convergence, stability, and data dependency. However, non-self-mappings are typically
more intricate than self-mappings and are therefore often overlooked in many cases [5–7].

Jungck introduced the Jungck iteration scheme [15] to approximate the fixed points
for the non-self-mapping U , V : A → W , whereW is a Banach space and A is an arbitrary
set such that V(A) ⊆ U (A) satisfies the following Jungck contraction:

d(Vu,Vv) ≤ α d(Uu,Uv), 0 ≤ α < 1. (1)

In 2005, the Jungck–Mann iteration scheme and its stability for two contractive maps
were first presented and discussed by Singh et al. [12]. Within this framework, Olatinwo
and Imoru [8] and Olatinwo [16,17] introduced the Jungck–Ishikawa and Noor iteration
schemes and exhibited how their convergence could be utilised for pairs of some general-
ized contractive operator for approximating the common fixed point. Chugh and Kumar [9]
presented the Jungck–SP iterative scheme, which is defined as follows:

Uun+1 =(1− ρn)Uvn + ρnVvn

Uvn =(1− $n)Uwn + $nVwn (2)

Uwn =(1− σn)Uun + σnVun,

where ρn, $n, σn are in [0, 1].
Nawab Hussain et al. [10] presented the Jungck–CR scheme and used the more

general contractive condition of Olatino [16] to prove the stability, data dependency, and
convergence of the Jungck–CR iterative scheme. The general contractive condition of
Olatino [16] is defined as follows:

Let r ∈ [0, 1) be a real number and let λ : R+ → R+ be a monotone function such that
λ(0) = 0. If, for all u, v belongs to A, we have

‖Vu− Vv‖ ≤ λ(‖Uu− Vu‖) + r‖Uu−Uv‖. (3)

The Jungck–CR iterative scheme is defined by the sequence {un}

Uun+1 =(1− ρn)Uvn + ρnVvn

Uvn =(1− $n)Vun + $nVwn (4)

Uwn =(1− σn)Uun + σnVun,

where ρn, $n, and σn are sequences of positive numbers in [0, 1].
Motivated by the above literature, we propose the following Jungck type iterative

scheme. For ρn, $n ∈ [0, 1], we have

Uun+1 =(1− ρn)Uwn + ρnVvn

Uvn =(1− $n)Uun + $nVwn (5)

Uwn =Vun

which we call the Jungck–DK iterative scheme.
In this paper, we present the Jungck–DK iterative scheme for analyzing the conver-

gence and stability of a non-self-mapping in a normed linear space. Our work is motivated
by previous research in the field. To demonstrate the superior convergence rate of the
Jungck–DK iterative scheme compared to other Jungck-type iterative schemes, we provide
an example. Additionally, we prove data dependence results. In the final section, we show-
case the practical application of the Jungck–DK iterative scheme by generating Mandelbrot
and Julia sets of polynomial functions for visualizing images on both sets.
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2. Preliminaries

In this section, we set out some lemmas, propositions, and definitions that are used in
this paper.

Definition 1 ([18]). Suppose that {xn} and {yn} are two real convergent sequences with limits x
and y, respectively. Then, {xn} is said to converge faster than {yn} if

lim
n→∞

∣∣∣∣ xn − x
yn − y

∣∣∣∣ = 0.

Definition 2 ([19]). Let f1 and f2 be two self-maps onW . A point u inW is called the coincidence
point of a pair of mappings ( f1, f2) if f1u = f2u and a common fixed point of a pair ( f1, f2) if
u = f1 u = f2u. If v = f1 u = f2u for some u ∈ W , then the point v is coincident point of f1 and
f2. A pair ( f1, f2) is weakly compatible if f1 & f2 commute at v.

Lemma 1 ([11]). If υ ∈ R such that 0 ≤ υ < 1 and {ε} is a sequence of positive numbers such
that lim

n→∞
εn = 0, then for any sequence of positive numbers {an} satisfying

an+1 ≤ υan + εn, n = 0, 1, 2, . . . ,

one has lim
n→∞

an = 0.

Definition 3 ([12]). Let U ,V : A → W be two non-self operators for an arbitrary set A such
that V(A) ⊆ U (A) and g∗ is a point of coincidence of U and V . Let Uun ⊂ W , be the sequence
generated by an iterative scheme

Uun+1 = f (V , un), n = 0, 1, 2, . . . ,

where u0 ∈ W is the initial approximation and f is some function. Suppose that {Uun} converges
to g∗. If {Uvn} ⊂ W is an arbitrary sequence and if εn = d(Uvn, f (V , un)), n = 0, 1, 2, . . .,
then the defined iterative scheme is said to be stable or (U ,V)− stable ⇐⇒ lim

n→∞
εn = 0 =⇒

lim
n→∞

Uvn = g∗.

Ostrowski [13] found the first stability result for T-stable mappings in 1967, when he
talked about the stability of the Picard iteration using the contraction mapping. Harder [14]
established how stability results can be used to solve first-order differential equations.
Osilike and Udomene [20] came up with a shorter method to show that results are stable.
Berinde [21], Imoru and Olatinwo [16], and many others (see [8–10]) have also used
this method.

Definition 4 ([22]). Consider two self-operators S, S1 : W → W and let S1 be an appropriate
operator of S if, for all u ∈ W and for a fixed ε > 0, we have

‖Su− S1u‖ ≤ ε.

Lemma 2 ([22]). Let {an} be a sequence in R+ ∪ {0}, and let n, n0 ∈ N be a number such that
for every n ≥ n0, the following inequality holds:

an+1 ≤ (1− pn)an + pnqn, ∀n ∈ N,

where pn ∈ (0, 1),
∞
∑

n=1
pn = ∞ and qn ≥ 0, for all n ∈ N. Then, 0 ≤ lim sup

n→∞
an ≤ lim sup

n→∞
qn.
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3. Convergence, Data Dependence, and Stability in an Arbitrary Banach Space

This section deals with the convergence, stability, and data dependence of the Jungck–
DK iterative scheme.

Theorem 1. Let A be an arbitrary set of an arbitrary Banach space (W , | · |) and let there be two
non-self-operators U ,V : A → W , which satisfy the condition (3). Consider V(A) ⊆ V(A), where
V(A) is a complete subspace ofW and U (p) = V(p) = u∗ (say). For u0 ∈ A, a sequence {U (un)}
is the sequence of the Jungck–DK iterative scheme defined by (5), where 0 ≤ ρn, $n, σn ≤ 1, with

{ρn} satisfying
∞
∑

n=0
{ρn} < ∞. Then, the scheme (5) converges strongly to u∗. Moreover, if

A = W with U and V satisfy the weak compatibility property, then u∗ is also a unique common
fixed point of both operators.

Proof. In the beginning, we demonstrated that the Jungck–DK iterative scheme (5) con-
verges to u∗, where u∗ is a fixed point of U and V .

From (5)

‖Uun+1 − u∗‖ =‖(1− ρn)Uwn + ρnVvn − u∗‖
≤(1− ρn)‖Uwn − u∗‖+ ρn‖Vvn − u∗‖ (6)

‖Vvn − u∗‖ =‖Vvn − V p‖
≤λ(‖U p− V p‖) + r‖U p−Uvn‖
≤r‖U p−Uvn‖
=r‖Uvn − u∗‖. (7)

‖Uvn − u∗‖ =‖(1− $n)Uun + $nVwn − u∗‖
≤(1− $n)‖Uun − u∗‖+ $n‖Vwn − u∗‖ (8)

‖Vwn − u∗‖ =‖V p− Vwn‖
≤λ(‖U p− V p‖) + r‖U p−Uwn‖
≤r‖U p−Uwn‖
=r‖Uwn − u∗‖ (9)

‖Uwn − u∗‖ =‖Vun − V p‖

≤λ(‖U p− V p‖) + r‖U p−Uun‖

≤r‖U p−Uun‖

=r‖Uun − u∗‖.

(10)

From (10) and (9), we have

‖Vwn − u∗‖ ≤ r2‖Uun − u∗‖. (11)

Replacing (11) in (8), we obtain

‖Uvn −Uu∗‖ ≤(1− $n)‖Uun − u∗‖+ $nr2‖Uun − u∗‖

≤(1− $n(1− r2))‖Uun − u∗‖.
(12)

Equation (7) implies

‖Vun − u∗‖ ≤ r(1− $n(1− r2))‖Uun − u∗‖. (13)
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From Equation (6), we obtain

‖Uun+1 − u∗‖ ≤(1− ρn)r‖Uun − u∗‖+ ρnr(1− $n(1− r2))‖Uun − u∗‖
≤r(1− ρn(1− (1− $n(1− r2))))‖Uun − u∗‖

≤r
n

∏
k=0

(1− ρk(1− $k(1− r2)))‖Uu0 − u∗‖ (14)

≤e−(1−(1−$k(1−r2)))Σ∞
k=0ρk‖Uu0 − u∗‖.

Since 0 ≤ r < 1, ρk ∈ [0, 1] and
∞
∑

k=0
ρk = ∞, therefore,

e
−(1−(1−$k(1−r2)))

∞
∑

k=0
ρk
→ 0 as n→ ∞.

As a result, it follows from (14) that

lim
n→∞

‖Uun+1 − u∗‖ = 0.

Consequently, {Uun} → u∗.
Next, our claim is to show that u∗ is a unique common fixed point of U and V . We

consider that u∗∗ is also a coincidence point. Then, there is v∗ ∈ W such that Uv∗ = Vv∗ =
u∗∗. However, according to (3), we have

0 ≤ ‖u∗ − u∗∗‖ =‖Vv− Vv∗‖
≤λ(‖Uv− Vv‖) + r‖Uv−Uv∗‖
=r‖u∗ − u∗∗‖,

which means that u∗ = u∗∗ as 0 ≤ r < 1.
Since U and V are weakly compatible with u∗ = Vv = Uv (so Vu∗ = VVv = VUv =

UVv and hence Vu∗ = Uu∗), Vu∗ is a point of coincidence of U and V , which is unique.
Then, u∗ = Vu∗. Thus, Uu∗ = Vu∗ = u∗, and both U and V shared a unique fixed point
u∗.

The next result deals with the stability of the Jungck–DK-type iterative scheme (5).

Theorem 2. Let U ,V , and {un} satisfy all the hypotheses and requirements of Theorem 1. Then,
the Jungck–DK scheme (5) is (U ,V)-stable.

Proof. Suppose there is an arbitrary sequence {jn} ⊂ W , εn = ‖U jn+1 − (1− ρn)Ubn −
ρnVan‖ for n = 0, 1, 2, . . . , where U an = (1 − $n)U jn + $nVbn and Ubn = V jn. Let
lim

n→∞
εn = 0.

Then, from the Jungck–DK iterative scheme (5), we have

‖U jn+1 − u∗‖ ≤‖U jn+1 − (1− ρn)Ubn − ρnVan‖+ ‖(1− ρn)Ubn − ρnVan − u∗‖
≤εn + (1− ρn)‖Ubn − u∗‖+ ρn‖Van − u∗‖ (15)

≤εn + (1− ρn)‖Ubn − u∗‖+ ρnr‖U an − u∗‖.

‖Ubn − u∗‖ =‖V jn − V p‖
≤λ(‖U p− V p‖) + r‖U p−U jn‖ (16)

≤r‖U jn − u∗‖.
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‖U an − u∗‖ =‖(1− $n)U jn + $nVbn − u∗‖
≤(1− $n)‖U jn − u∗‖+ $n‖Vbn − V p‖
≤(1− $n)‖U jn − u∗‖+ r$n‖U jn − u∗‖ (17)

≤(1− $n(1− r2))‖U jn − u∗‖.

Putting (17) & (16) in (15), we obtain

‖U jn+1 − u∗‖ ≤εn + (1− ρn)r‖U jn − u∗‖+ ρnr(1− $n(1− r2))|U jn − u∗‖
≤εn + r(1− ρn(1− (1− $n(1− r2))))‖U jn − u∗‖.

Using that ρ ≤ ρn and r ∈ [0, 1), we have

[r(1− ρn(1− (1− $n(1− r2))))] < 1.

Hence, using Lemma 1 implies

lim
n→∞

U jn+1 = u∗.

Conversely, let us consider that lim
n→∞

U jn+1 = u∗. Then, using the condition (3) and

the triangular inequality, we have

εn =‖U jn+1 − (1− ρn)Ubn − ρnVan‖
≤‖U jn+1 − u∗‖+ (1− ρn)‖Ubn − u∗‖+ ρn‖Van − u∗‖.

From (17) & (16), we obtain

εn ≤ ‖U jn+1 − u∗‖+ r(1− ρn(1− (1− $n(1− r2))))‖U jn − u∗‖.

Hence, lim
n→∞

εn = 0 =⇒ the Jungck–DK scheme is (U ,V)- stable.

In the next theorem, we will compare the convergence behaviour of the Jungck–DK-
type iterative scheme (5) with the Jungck–CR-type iterative scheme, which converges faster
than all Jungck-type (Picard, Mann, Ishikawa, Noor, S, and SP) iterative schemes.

Theorem 3. Let U ,V , and {un} satisfy all the hypotheses of Theorem 1. For u0 ∈ A, the Jungck–
DK scheme (5) converges faster than the Jungck–CR scheme (4) to a fixed point u∗.

Proof. Let u∗ = U (p) = V(p) (say). By using the contractive condition (3), and from the
iterative scheme of Jungck–CR [10], we have

‖Uun+1 − u∗‖ ≤ r(1− ρn(1− r))‖Uun − u∗‖ = bn.

Additionally, from Theorem 1 of the Jungck–DK iterative scheme, we have

‖Uun+1 − u∗‖ ≤ r(1− ρn(1− (1− $n(1− r2))))‖Uun − u∗‖ = an.

Now,

an

bn
=

n

∏
i=0

[
r(1− ρi(1− (1− $i(1− r2))))

r(1− ρi(1− r))

]
‖Uu0 − u∗‖

an

bn
=

n

∏
i=0

[
1− ρi(1− (1− $i(1− r2))))

1− ρi(1− r)

]
‖Uu0 − u∗‖. (18)
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Since r ∈ [0, 1), lim
n→∞

ρn = 0 = lim
n→∞

$n. Hence, from (18), we have

lim
n→∞

∥∥∥∥ an

bn

∥∥∥∥→ 0.

In conclusion, the Jungck–DK iterative scheme converges faster than the Jungck–CR
scheme.

The previous Theorem 3 can be demonstrated by the following example.

Example 1. Consider U ,V : [1, 4] → [1, 16] such that Vu = 2u + 3 and Uu = u2. It is not
difficult to remark that U and V are two quasi-contractive operators accomplishing the (3) condition,
with 9 as their coincidence point. Take u0 = 2 as the initial approximation; then, with λ(t) = 2at
and ρn = $n = σn = 1√

2n+1
, n ≥ 0, we construct Table 1. Studying the table, we can observe the

convergence of the various Jungck0type schemes to the same point u∗ = 9 = V3 = U3.

Table 1. Convergence of various Jungck-type schemes to the coincidence point u∗ = 9 = V3 = U3,
u0 = 2, ρn = $n = 1√

2n+1
.

n

Jungck–Mann
Iterative Scheme

Jungck–Ishikawa
Iterative Scheme

Jungck–Noor
Iterative Scheme

Jungck–CR
Iterative Scheme

Jungck–DK
Iterative Scheme

Vun Uun un+1 Vun Uun un+1 Vun Uun un+1 Vun Uun un+1 Vun Uun un+1

0 7.00000 4.00000 2.39417 7.00000 4.00000 2.48741 7.00000 4.00000 2.50896 7.00000 4.00000 2.83474 7.00000 4.00000 2.95956
1 7.78834 5.73205 2.57908 7.97482 6.18720 2.66946 8.01791 6.29486 2.68722 8.66949 8.03578 2.96628 8.91912 8.75900 2.99051
2 8.15816 6.65165 2.68720 8.33892 7.12601 2.76556 8.37444 7.22116 2.77952 8.93255 8.79879 2.99238 8.98102 8.94315 2.99740
3 8.37441 7.22106 2.75781 8.53113 7.64835 2.82449 8.55903 7.72571 2.83556 8.98476 8.95435 2.99817 8.99480 8.98441 2.99924
4 8.51562 7.60551 2.80712 8.64898 7.97774 2.86384 8.67111 8.04039 2.87276 8.99634 8.98903 2.99954 8.99848 8.99544 2.99976
5 8.68633 8.08358 2.87040 8.78328 8.36157 2.91207 8.74553 8.25277 2.89894 8.99908 8.99725 2.99988 8.99952 8.99856 2.99993
6 8.74080 8.23921 2.89152 8.82414 8.48015 2.92754 8.79787 8.40384 2.91812 8.99976 8.99929 2.99997 8.99986 8.99958 2.99998
7 8.78303 8.36086 2.90822 8.85509 8.57051 2.93954 8.83624 8.51541 2.93261 8.99994 8.99981 2.99999 8.99996 8.99988 3.00000
8 8.81643 8.45772 2.92164 8.87908 8.64090 2.94902 8.86522 8.60021 2.94383 8.99998 8.99995 3.00000 8.99998 8.99998 3.00000
9 8.84328 8.53599 2.93259 8.89804 8.69673 2.95663 8.88766 8.66612 2.95268 9.00000 8.99999 3.00000 9.00000 9.00000 3.00000
10 8.68633 8.08358 2.87040 8.78328 8.36157 2.96207 8.90536 8.71831 2.95977 9.00000 9.00000 3.00000 9.00000 9.00000 3.00000

Remark 1. We find that the Jungck–DK iterative scheme converges to the coincidence point in
just 8 iterations, while the Jungck–Mann iterative scheme takes 229 iterations to obtain the same
results. Similarly, the Jungck–Ishikawa iterative scheme takes 205 iterations, the Jungck–Noor
iterative scheme takes 200 iterations, and the Jungck–CR iterative scheme takes 10 iterations. Figure
1 provides a visual representation of our convergence comparisons.

Now, let us give a data dependence result for the Jungck–DK scheme.

Definition 5. Let A be an arbitrary set of an arbitrary Banach space (W , | · |) and let (U ,V),
(U1,V1) : A → W be two non-self-operator pairs such that V(A) ⊆ U (A) and V1(A) ⊆ U1(A).
The pair (U ,V) is called an approximative operator pair of (U1,V1) if, for every u ∈ W and some
fixed ε1 > 0 and ε2 > 0, we have

‖Vu− V1u‖ ≤ ε1, ‖Uu−U1u‖ ≤ ε2.

Theorem 4. Let (W , ‖ · ‖) be a Banach space, such that (U ,V), (U1,V1) : A → W satisfies
condition (3), where V(A) ⊆ U (A) and V1(A) ⊆ U1(A). U1(A) is a complete subset of W .
Assume that there exists a p ∈ C(U ,V) and p ∈ C(U1,V1) such that U p = V p = u∗ and
U1 p1 = V1 p1 = u∗∗. Let {Uun} be an iterative sequence (5) with {ρn}, {$n} ⊂ [0, 1] satisfying

∞
∑

n=0
ρn$n = ∞, and let {U1an+1} be a sequence defined by
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
U1an+1 = (1− ρn)U1cn + ρnV1bn

U1bn = (1− $n)U1an + $nV1cn

U1cn = V1an.

(19)

Assume that {Uun+1} and {U1an+1} converge to u∗ and u∗∗. Then, we have
‖u∗ − u∗∗‖ = 4ε

1−r2 , where ε = max{ε1, ε2}.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12

V
a

lu
e
 o

f 
u

_
{n

+
1
}

Number of Iterations

Jungck-Mann

Jungck-Ishikawa

Jungck-Noor

Jungck-CR

Jungck-DK

Figure 1. Convergence behaviour of Jungck-type iterative schemes.

Proof. Using the iterative sequence (5), the iterative scheme (19), the condition (3), and
Definition 5, we obtain

‖Uun+1 −U1an+1‖ ≤ (1− ρn)‖Uwn −U1cn‖+ ρn‖Vvn − V1bn‖, (20)

‖Vvn − V1bn‖ ≤‖Vvn − Vbn‖+ ‖Vbn − V1bn

≤‖Vvn − Vbn‖+ ε1

≤λ‖Uvn − Vvn‖+ r‖Uvn −Ubn‖+ ε1 (21)

≤λ‖Uvn − Vvn‖+ r{‖Uvn −U1bn‖+ ‖U1bn −Ubn‖}+ ε1

≤λ‖Uvn − Vvn‖+ r‖Uvn −U1bn‖+ rε2 + ε1,

‖Uvn − Vyn‖ ≤‖Uvn −U p‖+ ‖V p− Vyn‖
≤‖Uvn − u∗‖+ λ(‖U p− V p‖) + r‖U p−Uyn‖
≤(1 + r)‖Uvn − u∗‖.

It is easy to show that ‖Uvn − u∗‖ ≤ ‖Uun − u∗‖, which implies

‖Uvn − Vyn‖ ≤ (1 + r)‖Uun − u∗‖. (22)
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‖Uvn −U1bn‖ ≤(1− $n)‖Uun + $nVwn − (1− $n)U1an − $nVcn‖
≤(1− $n‖Uun −U1an‖+ $n‖Vwn − V1cn‖
≤(1− $n)‖Uun −U1an‖+ $n{‖Vwn − Vcn‖+ ‖Vcn − V1cn‖}
≤(1− $n)‖Uun −U1an‖+ $n{λ‖Uwn − Vwn‖+ r‖Uwn −U cn‖+ ε1} (23)

≤(1− $n)‖Uun −U1an‖+ $n{λ‖Uwn − Vwn‖+ r(‖Uwn −U1cn‖
+ ‖U1cn −U cn‖) + ε1}
≤(1− $n)‖Uun −U1an‖+ $nλ‖Uwn − Vwn‖+ $nr‖Uwn −U1cn‖+ r$nε2 + $nε1}
≤(1− $n)‖Uun −U1an‖+ $nλ‖Uwn − Vwn‖+ $nr‖Uwn −U1cn‖+ r$n(ε1 + rε2).

Next, we consider the following estimation:

‖‖Uwn −U1cn‖ =‖Vun − V1an‖
≤‖Vun − Van‖+ ‖Van − V1an‖
≤λ(‖Uun − Vun‖) + r‖Uun −U an‖+ ε1

≤λ(‖Uun − Vun‖) + r‖Uun −U1an‖+ rε2 + ε1 (24)

≤λ{‖Uun − u∗‖+ ‖V p− Vun‖}+ r‖Uun −U1an‖+ rε2 + ε1

≤λ{‖Uun − u∗‖+ ‖V p− Vun‖}+ r‖Uun−
U1an‖+ rε2 + ε1

≤λ{‖Uun − u∗‖+ λ‖U p− V p‖+ r‖U p−Uun‖}+ r‖Uun −U1an‖+ rε2 + ε1

≤(λ + r)‖Uun − u∗‖+ r‖Uun −U1an‖+ rε2 + ε1,

‖Uun − Vun‖ ≤‖Uwn −U p‖+ ‖V p− Vwn‖
≤‖Uwn − u∗‖+ λ‖U p− V p‖+ r‖U p−Uwn‖
≤(1 + r)‖Uwn − u∗‖ (25)

≤(1 + r)‖Vun − u∗‖
≤(1 + r){λ‖U p− V p‖+ r‖U p−Uun‖}
≤r(1 + r)‖Uun − u∗‖.

From (25) and (24), replacing (23), we obtain

‖Uvn −U1bn‖ ≤ (1− $n(1− r2)‖Uun −U1‖+ $nr(1 + r)(λ + r)λ‖Uun − u∗‖+ $n(1 + r)(ε1 + rε2). (26)

Putting (26) and (22) in (21), we obtain (27), as follows:

‖Vvn − V1bn‖ ≤λ(1 + r)
[
$nr(λ + r)

]
‖Uun − u∗‖+ r(1− $n(1− r2))‖Uun −U1an‖+

(1 + $n(1 + r))(ε1 + rε2). (27)

Putting (27) in (20), we obtain

‖Uun+1 −U1an+1‖ ≤
[
(1− ρn)(λ + r) + ρnλ(1 + r)($nr(λ + r)

]
‖Uun − u∗‖+

rρn(1− $n(1− r2))‖Uun −U1an‖+ ρn(1 + $n(1 + r))(ε1 + rε2).

Here, xn = ‖Uun −U1an‖, pn = r(1− $n(1− r2))ρn, qn = (ρn(1+$n(1+r)))(ε1+rε2)
1−r .

Taking the limit on both sides, it can be seen that lim
n→∞

‖Uun − u∗‖ = 0. Hence,using

Lemma 2, we obtain

‖u∗ − u∗∗‖ = 4ε

1− r2 ,

which completes the proof.
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4. Escape Criteria for Complex Fractal Generation

The iterative process of a complex function V : C→ C is a frequently used method
for producing fractal patterns on the complex plane

zn+1 = V(zn),

where V depends on some constants and a point z0 ∈ C from an area of the complex
plane considered [23]. The Mandelbrot and Julia sets are two of the most well-known
and extensively studied examples of fractals generated by the iterative processes of a
complex function.

Benoit Mandelbrot [24] introduced the Mandelbrot set in the 1970s, while Pierre
Fatou [25] and Gaston Julia [25] independently created the Julia set in the early 20th century.
The Julia set was initially introduced by [26].

During his time at IBM, Mandelbrot became interested in the iterative process of
complex functions and studied the works of other mathematicians in the field. He specif-
ically explored the behavior of the Julia sets generated by the function z2 + c, and from
these studies, he was able to construct the Mandelbrot set. The resulting fractal was so
remarkable that Mandelbrot was astonished by its beauty and complexity [27,28].

Since then, a multitude of researchers have investigated various properties of the
Mandelbrot and Julia sets and proposed several generalizations. One of the earliest and
most apparent generalizations involved replacing Mandelbrot’s quadratic function with
the zp + c function [29] therein.

Fixed-point theory has been instrumental in the study of the Mandelbrot and Julia sets,
which are two of the most prominent examples of fractals generated by the iterative process
of a complex function. Over time, mathematicians have developed several generalizations
of these sets, including the use of different iteration methods derived from fixed-point
theory. These techniques have been utilized to generalize Julia and Mandelbrot sets [30–34].

In this study, we introduced the Jungck–DK iterative scheme to investigate complex
fractals such as Julia sets and Mandelbrot sets. To extend the feedback process utilized
in generating these sets, we propose a novel escape criterion for the Jungck–DK iterative
scheme applied to p-degree complex polynomial functions. Our proof is also applicable to
complex polynomials zp + az + c, where a, c ∈ C.

The following are the basic definitions for this section.

Definition 6 (Julia Set). Let Qc : C→ C be a polynomial function that depends on c ∈ C. The
filled Julia set KQc of the function Qc is defined as

KQc = {z ∈ C : |Qn
c (z)| 9 ∞ as n→ ∞}, (28)

whereQn
c (z) is the n-th iteration of the functionQc. The Julia set JQc of the functionQc is defined

as the boundary of KQc , i.e., JQc = ∂KQc .

Definition 7 (Mandelbrot Set). For any polynomial function Qc : C→ C, the Mandelbrot set
M is the set of all parameters c for which the Julia set is filled, i.e.,

M = {c ∈ C : KQc is connected}. (29)

The Mandelbrot set can also be described in the ways below:

M = {c ∈ C : |Qn
c (z
∗)| 9 ∞ as n→ ∞}, (30)

where z∗ is any critical point of Qc, i.e., Q′c(z∗) = 0.

The escape time algorithm is used by most scientists to make pictures of Julia and
Mandelbrot sets. In the algorithm, the colour of each point is related to the iterations
needed to figure out if the orbit sequence tends to infinity or not. The escape criterion is
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what we use to decide if the orbit escapes or not. For example, for the classic Mandelbrot
and Julia sets, which are defined by Qc(z) = z2 + c, the escape criteria is the following: if
there is some k ≥ 0 such that

|Qk
c(z)| > max{|c|, 2}. (31)

The part of (31) on the right is called the escape threshold (or bailout value). The
threshold value used in determining whether an orbit sequence has escaped is a critical
factor in the creation of Mandelbrot and Julia sets. This value may vary for eachQc function
and plays a significant role in determining the overall appearance of the fractal.

Escape time algorithms are commonly used in the generation of Mandelbrot and Julia
sets. Algorithm 1 represents the escape time algorithm for creating the Mandelbrot set,
while Algorithm 2 depicts the corresponding method for generating Julia sets. These algo-
rithms rely on the determination of the number of iterations needed for the orbit sequence
of each point to escape, which is then used to assign a color value to the corresponding
point on the fractal.

In fixed-point theory, there are many theorems and ways to find the fixed points.
Iteratively drawing closer to fixed points is the main idea behind this theory. We use
iterative processes of the Jungck–DK (5) type, as in the following:

Uun+1 =(1− ρn)Uwn + ρnVvn

Uvn =(1− $n)Uun + $nVwn (32)

Uwn =Vun

Algorithm 1: Generation of a Mandelbrot set.
Require: A polynomial function Qc : C→ C, with area A ⊂ C, K no of iterations,
where ρ and $ are fixed parameters, and colormap[0..C− 1] is a colormap with C
colors.

Ensure: Mandelbrot set for the area A
For z0 ∈ A do
R= Calculate escape threshold
n = 0
z0 critical point of Qc
While n ≤ K do
Uzn+1 = (1− ρn)Uwn + ρnVvn
Uvn = (1− $n)Uzn + $nVwn
Uwn = Vzn
If |zn+1| > R

break
n = n + 1
elseif f (zn) = Min[|<z|, |=z|]
i = b(C− 1) n

K c
colour z0 with colourmap[i]
end for
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Algorithm 2: Generation of Julia set.
Require: A polynomial function Qc : C→ C, with an area A ⊂ C, where K
represents the number of iterations, ρ and $ are fixed parameters, and
colormap[0..C− 1]is a colormap with C colors.

Ensure: Mandelbrot set for area A
For z0 ∈ A do
R= Calculate escape threshold
n = 0
z0 critical point of Qc
While n ≤ K do
Uzn+1 = (1− ρn)Uwn + ρnVvn
Uvn = (1− $n)Uzn + $nVwn
Uwn = Vzn
If |zn+1| > R

break
n = n + 1
elseIf f (zn) = Min[|<z|, |=z|]
i = b(C− 1) n

K c
colour z0 with colourmap[i]
end for

It is worth noting that the Jungck–DK iteration is distinct from the previously men-
tioned iterations, such as the Picard, Jungck–Mann, Jungck–Ishikawa, Jungck–Noor, or
Jungck–CR iterations. As such, applying the Jungck–DK iteration leads to the generation
of a completely novel orbit, resulting in the creation of a new fractal set with unique
characteristics.

In the case of the Jungck–DK iteration, there are two mappings involved, which
means that the number of mappings used in the iteration must be taken into consideration
when replacing the Picard orbit with the Jungck–DK orbit. To address this, we follow a
specific procedure.

Let Qc : C → C be a polynomial function. We can break down Qc into two map-
pings, U and V , such that Qc = V − U and U is an injective function. In addition to
this reconstruction, a new escape criterion for the mappings and Equation (32) must also
be derived.

The escape criterion for a specific class of polynomials, namely zp − az + c, can be
presented as follows.

Let Qc = zp − az + c, where p ∈ 2, 3, 4, . . . and a, c ∈ C. To reconstruct Qc, we define
U (z) = az and V(z) = zp + c.

Theorem 5. Assume that |z| ≥ |c| > ( 2
1+|a| − 1)

1
p−1 , |z| ≥ |c| > ( 2(1+|a|)

$ − 1)
1

p−1 , and

|z| ≥ |c| > ( 2(1+|a|
ρ − 1)

1
p−1 , where ρ, $ ∈ (0, 1]. Define {zn}n∈N as above in (32), where z0 = z;

then |zn| → ∞ as n→ ∞.

Proof. Since V(z) = zp + c, U (z) = az and z0 = z, we have

|Uw0| = Vz0 ≥ |zp + c| ≥ |zp| − |c| ≥ |zp| − |z| ≥ |z|(|z|p−1 − 1)

|aw| ≥|z|(|z|p−1 − 1)

|w| ≥|z|( |z|
p−1

|a| − 1)

|w| ≥|z|,

because |z| ≥ |c| > (
2

1 + |a| − 1)
1

p−1 =⇒ |z|p−1

|a| − 1 > 1.



Fractal Fract. 2023, 7, 418 13 of 18

Now,

|Uv0| =|(1− $)Uw0 + $Vz0|
≥|(1− $)az + $(zp + c)|
≥|(1− $)az + $zp| − |c|.

As 1− $ ≥ 0, |z|p( |z|
p−1

|a| − 1)p ≥ |z|p. Hence, |w0|p > |z|p( |z|
p−1

|a| − 1)p ≥ |z|p im-
plies that

|av0| ≥ |az + $||z|p − |z| =⇒ |z| ≥ |c|
|a||v0| ≥ $|z|p − |a||z| − |z|

|v0| ≥ |z|(
$|z|p−1

1 + |a| − 1) =⇒ 1 + |a| ≥ 1

|v| ≥ |z|.

Since |z| ≥ |c| > (2(1 + |a|) − 1)
1

p−1 and |z| ≥ |c| > ( 2(1+|a|)
$ − 1)

1
p−1 , therefore,

|z| ≥ ( 2(1+|a|)
$ − 1)

1
p−1 . Thus, |y0|p ≥ |z|p

( $|z|p−1

1+|a| − 1
)p ≥ |z|p ≥ $|z|p, which implies

|y| ≥ |z|.
In the third step of iteration, we have

|Uz1| =|(1− ρ)Uw0 + ρVv0|
=|(1− ρ)aw0 + ρ(yp + c)|
=|(1− ρ)aw0 + ρyp + ρc|
≥ρ|y0|p − (1− ρ)|a||w0| − ρ|c|
≥ρ|z|p − (1− ρ)|a||z| − ρ|z| =⇒ |y| ≥ |z|, |w| ≥ |z| ≥ |c|

|az1| ≥ρ|z|p − |a||z| − |z|
=|z|

(
ρ|z|p−1 − (1 + |a|)

)
|z1| ≥|z|

(ρ|z|p−1

1 + |a| − 1
)
.

As |y0| ≥ |z| and |z| ≥
( 2(1+|a|)

ρ

) 1
p−1 , thus ρ|z|p−1

1+|a| > 2. By consequence, we have

|z1| ≥ |z|
( ρ$|z|p−1

1+|a| − 1
)
> 1. Therefore, there exists λ > 0 such that

( ρ$|z|p−1

1+|a| − 1
)
> 1 + λ.

Consequently, |z1| > (1 + λ)|z|. In particular, |z1| > |z|.
Thus, by applying the same argument repeatedly, |zn| > (1 + λ)n|z|. In this way, the

orbit of z tends to infinity. Hence, we obtain |zn| → ∞ as n→ ∞.

4.1. Examples

In this section, we demonstrate the Jungck–DK iterative orbit and the escape cri-
terion from Theorem 5 by generating several examples of images from the Mandelbrot
and Julia sets. The pictures were made with MathematicaTM’s implementation of the
escape algorithm.

4.1.1. Examples of Mandelbrot Sets in Jungck–DK Orbit

We start with an example outlining how the Jungck–DK iteration can be used. We
will useQc(z) = zp+1 + 1.5z + c, at p = 1, 2, 3 and 4. In Figures 2–5, we fix A = [−2.5, 2.5]2

and change the parameters ρ and $ of iteration. We can observe that varying ρ and $ values
in the Jungck–DK method has a substantial effect on the shape of the resulting set.
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(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 2. Mandelbrot sets for the parameters ρ = 0.01 and $ = 0.2.

(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 3. Mandelbrot sets for the parameters ρ = 0.3 and $ = 0.6.

(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 4. Mandelbrot sets for the parameters ρ = 0.5 and $ = 0.4.

(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 5. Mandelbrot sets for the parameters ρ = 0.9 and $ = 0.09.

4.1.2. Examples of Julia Sets in Jungck–DK Orbit

In the following example, a Julia set forQc(z) = zp+1 + 1.5z + c, at p = 1, 2, 3 and 4, is
generated using the Jungck–DK iteration. The images were obtained for A = [−2.5, 2.5]2

and c = 1.85i and for different parameters ρ and $. Changing the parameters of the Jungck–
DK iteration allows us to obtain different Julia set shapes, as shown in Figures 6–9, for the
same generating polynomial.
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(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 6. Julia sets for the parameters ρ = 0.01 and $ = 0.2.

(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 7. Julia sets for the parameters ρ = 0.3 and $ = 0.6.

(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 8. Julia sets for the parameters ρ = 0.5 and $ = 0.4.

(a) For n = 2 (b) For n = 3 (c) For n = 4 (d) For n = k + 1
Figure 9. Julia sets for the parameters ρ = 0.9 and $ = 0.09.

In the second example, various Julia sets generated using the Jungck–DK iteration are
presented. The following parameters were utilised in order to generate the images of Julia
sets shown in Figures 10 and 11.

(a) Qc(z) = z2 + 2.32z + c, c = 1.85i, A = [−3.5, 3.5]× [−3.2, 3.2], a Jungck–DK iteration
with ρ = 0.2 = $.

(b) Qc(z) = z3 + 3.167z + c, c = 5 + 6.3i, A = [−3.1, 3.1] × [−3.5, 3.5], a Jungck–DK
iteration with ρ = 0.5 = $.

(c) Qc(z) = z4 + 3.75z + c, c = 3.9− 7i, A = [−2.5, 2.5]2, a Jungck–DK iteration with
ρ = 0.6 = $.

(d) Qc(z) = z5 + 5.25z + c, c = −0.5 + 7i, A = [−4.5, 4.5]2, a Jungck–DK iteration with
ρ = 0.3 = $.



Fractal Fract. 2023, 7, 418 16 of 18

(e) Qc(z) = z2 + 4.123z + c, c = 5.2− 3.1i, A = [−8.5, 8.5]× [−5.5, 5.5], a Jungck–DK
iteration with ρ = 0.3, $ = 0.7.

(f) Qc(z) = z3 + 6.80z + c, c = −2.2− 6.1, A = [−6.5, 6.5]2, a Jungck–DK iteration with
ρ = 0.4, $ = 0.9.

(a) For Parameters in (a) (b) For Parameters in (b) (c) For Parameters in (c)
Figure 10. Julia sets for different parameters, e.g., polynomials, area, and values of c, ρ, and $.

(a) For Parameters in (d) (b) For Parameters in (e) (c) For Parameters in (f)
Figure 11. Julia sets for different parameters, e.g., polynomials, area, and values of c, ρ, and $.

Using various combinations of the parameters, such as polynomials, Jungck–DK
iteration parameters, etc., we are able to generate artistically applicable fractal patterns
with a great deal of diversity.

5. Conclusions

In this paper, we propose and analyze the Jungck–DK iterative scheme for approx-
imating fixed points. Our main contributions are summarized as follows. Firstly, we
demonstrate the stability and faster convergence of the Jungck–DK iterative scheme com-
pared to other Jungck-type schemes, such as the Jungck–CR, Jungck–SP, and Jungck–S
schemes. Secondly, we provide a numerical example to illustrate the rate of convergence
and prove the data dependence result for the Jungck–DK iterative scheme. Lastly, we apply
the Jungck–DK iterative scheme to calculate the escape criteria of polynomial functions,
generating distinct images of the Mandelbrot and Julia sets.

Therefore, these fractals have become useful in diverse scientific and engineering
applications. Through our analysis of Julia sets, we have found that the size of the explored
fractals is dependent on the parameters ρ and $, while the shape and symmetry are
influenced by the parameters a and c. Furthermore, as we increase the value of n, the area
occupied by the fractals decreases.

Concerning new directions of research, Nandal et al. [35] developed a generalized
viscosity approximation method in the context of a Hilbert space, which was applied to
a range of problems, such as variational inequalities, convex feasibility problems, and
fixed-point problems. These applications demonstrated the versatility and usefulness
of the proposed iterative method in fixed-point theory. Building on this, it will be very
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interesting to explore the potential of this method in generating fractals, particularly Julia
and Mandelbrot sets. Moreover, using our iterative method, a new type of viscosity
approximation method can be found, which can be used as an effective tool for generating
fractals with complex structures.
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University of Cluj-Napoca.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J.

Math. Anal. Appl. 2008, 341, 416–420.
2. Bouhadjera, H. A unique common fixed point for contractive mappings under a new concept. In Bulletin of the Transilvania

University of Brasov; Series III: Mathematics and Computer Science; Transilvania University Press: Brasov, Romania, 2022;
pp. 33–46.

3. Kumar, S.; Aron, D. Common fixed-point theorems for non-linear non-self contractive mappings in convex metric spaces. Topol.
Algebra Its Appl. 2023, 11, 20220122.
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