
Citation: Srivastava, H.M. Editorial

for the Special Issue “Operators of

Fractional Calculus and Their

Multidisciplinary Applications”.

Fractal Fract. 2023, 7, 415. https://

doi.org/10.3390/fractalfract7050415

Received: 10 May 2023

Accepted: 17 May 2023

Published: 22 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Editorial

Editorial for the Special Issue “Operators of Fractional Calculus
and Their Multidisciplinary Applications”
Hari Mohan Srivastava 1,2,3,4,5

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada;
harimsri@math.uvic.ca

2 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

3 Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu,
Seoul 02447, Republic of Korea

4 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,
AZ1007 Baku, Azerbaijan

5 Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy

1. Introduction

This Special Issue of the MDPI journal, Fractal and Fractional, on the subject area of
“Operators of Fractional Calculus and Their Multidisciplinary Applications” consists of
19 peer-reviewed papers, including some invited feature articles, originating from all over
the world.

Current widespread interest in various families of fractional-order integral opera-
tors and fractional-order derivative operators, such as those that are named after Rie-
mann–Liouville, Weyl, Hadamard, Grunwald–Letnikov, Riesz, Erdélyi–Kober, Liouville–
Caputo, and so on, has stemmed essentially from their demonstrated applications in
numerous diverse areas of the mathematical, physical, biological, chemical, engineering,
and statistical sciences. Each of these fractional-order operators has been fruitfully applied
to provide interesting and potentially useful tools for solving ordinary and partial differ-
ential equations, as well as integral, differintegral, and integro-differential equations, the
fractional-calculus analogues and extensions of each of these equations, and various other
problems involving special functions of mathematical physics, applicable analysis, and
applied mathematics, as well as their extensions and generalizations in one, two, or more
variables.

This Special Issue includes invited review, expository, and other research articles
dealing with the recent advances in the theory of integrals and derivatives of fractional
order and their multidisciplinary applications, and also on various potentially useful
families of higher transcendental functions (or special functions or mathematical functions)
of mathematical analysis and on their applications in the above-mentioned fields. Indeed, in
both the recent literature and the current literature, several higher transcendental functions
have also been involved in the theory and applications of various families of fractional-
order integral operators and the corresponding fractional-order derivative operators, such
as those that aid in finding solutions for a large variety of problems in the applied sciences,
which are modeled mathematically by ordinary and partial differential equations, as well
as integral, differintegral, and integro-differential equations.

2. An Overview of the Special Issue

Investigations based upon the theory and applications of fractional calculus (that is,
integrals and derivatives of non-integer real or complex order) are remarkably widespread
in many diverse areas of the mathematical, physical, biological, chemical, engineering and
statistical sciences. The suggested topics of interest for the call for papers for this Special
Issue included, but were not limited to, the following keywords:
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• Operators of fractional integrals and fractional derivatives and their applications;
• Chaos and dynamical systems based upon fractional calculus;
• Fractional-order ODEs and PDEs;
• Fractional-order differintegral and integro-differential equations;
• Integrals and derivatives of fractional order associated with special functions of

mathematical physics and applied mathematics;
• Special functions of mathematical physics and applied mathematics;
• Identities and inequalities involving fractional-order integrals and fractional-order

derivatives.

A considerably large number of well-established international scientific research
journals, which are published by several widely-recognized publishing houses, have
published and continue to publish a number of Special Issues of many of their journals on
recent and state-of-the-art advances in various multidisciplinary aspects, especially related
to the above-mentioned keywords.

3. Contributors and Contributions to the Special Issue

The geographical distribution of the contributors to this Special Issue is remarkably
widely-scattered. Their contributions (see [1–19]) originated in many different countries on
every continent of the world. The subject matter of these nineteen publications (see [1–19])
deals extensively with such topics as fractional-order complex Ginzburg-Landau equations,
fractional modeling for the treatment of cancer by using radiotherapy, fractional-order
fuzzy complex-valued neural networks, the fractal–fractional Michaelis-Menten enzymatic
reaction model, fractional-calculus operators involving the (p, q)-extended Bessel and
Bessel-Wright functions, fractional-order diffusion-wave equations, Abel integral equations
and their fractional-order analogues, nonlinear integro-differential equations, fractional-
order investigations of a number of celebrated integral inequalities, such as those that are
popularly called the Pólya–Szegö inequality, the Grüss inequality, the Hermite-Hadamard
inequality, and so on.

We will now briefly describe the developments which are reported in this Special Issue.
The authors of [1] have studied a fractional-order complex Ginzburg-Landau equation
by using the parabolic law and the law of weak non-local non-linearity. The study pre-
sented in [2] is based upon a modification of a well-known predator-prey equation or the
Lotka–Volterra competition model. Herein, by investigating a system of differential equa-
tions, the authors have discussed the population of healthy and cancerous cells within the
tumor tissue of a patient struggling with cancer. In [3], the authors have addressed the prob-
lem of uniform stability for a family of fractional-order fuzzy impulsive complex-valued
neural networks with mixed delays in infinite dimensions. The article in [4] has derived
some properties involving the logarithmic growth of entire functions which are represented
by the Laplace-Stieltjes transform of order 0. The authors of [5] have compared the design of
a fractional-order proportional integral (FOPI) controller and an integer-order proportional
integral (IOPI) controller for the permanent-magnet synchronous motor (PMSM) speed
regulation system. Three new models of the fractal-fractional Michaelis-Menten enzymatic
reaction (FFMMER) are investigated in [6] by basing these models upon different kernels
that involve the power law, exponential decay, and the Mittag-Leffler-type functions.

Some general forms of fractional integral operators are used in [7] for finding several
fractional-order integral inequalities in the Hermite–Hadamard and the Minkowski settings.
In [8], the authors have studied a fractional-order logistic differential equation by making
use of several appropriate limit relations. The authors in [9] derive some asymptotic
properties of non-oscillatory solutions of the even-order delay differential equation, thereby
deducing criteria for oscillation. The article in [10] considers and analyzes a large number
of fractional-calculus operators that are accessible in the current literature. The authors
in [11] establish a number of presumably new results, which are related to the Marichev-
Saigo-Maeda fractional integral and fractional derivative operators, which involve the
two-variable Appell F3-function in the kernel, and apply their derived results to the (p, q)-
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extended Bessel function and the Bessel-Wright function. In [12], a modified form of the
Adomian decomposition method is developed for solving some initial- and boundary-value
problems involving fractional-order diffusion-wave equations.

The so-called (k, Ψ)-proportional fractional-order integral inequalities of the Pólya-
Szegö and Grüss types are investigated in [13]. Several fractional-order integral inequalities
based upon some general families of fractional integrals are investigated by the authors
in [14,15]. The uniqueness problem for solutions of some general Abel-type integral
equations in a related coupled system in Banach spaces has been addressed in [16]. The
uniqueness problem for solutions of several nonlinear Liouville-Caputo integro-differential
equations, which are equipped with variable coefficients and initial conditions as well
as an associated coupled system in Banach spaces, can be found in [17]. Some iterative
methods are presented in [18] for solving nonlinear equations in the quantum calculus (or
the q-calculus).

The article in [19] is essentially the third part of a series of essays in which the author
advocates the use of (non-integer) fractional calculus in order to capture the dynamics of
complex networks in the twilight of the Newtonian era. In addition to the widely-cited
monograph [20] on fractional differential, integral, differintegral and integro-differential
equations and their widespread applications, the interested reader can potentially benefit by
the recently-published survey-cum-expository review articles [21–23] on the developments
of the theory and applications of fractional calculus. In particular, in [23], one can find a
systematic overview of some developments involving a hybrid version of several known
extensions and generalizations of the Mittag-Leffler-type functions as well as the Hurwitz-
Lerch-type zeta functions, together with their associated fractional integrals and fractional
derivatives (see also [24,25]).
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